
Extension Formulas and Norm
Inequalities in Sobolev Hilbert Spaces

Saburou Saitoh
Institute of Reproducing Kernels,

saburou.saitoh@gmail.com

November 21, 2023

Abstract: In this note, we shall consider extension formulas and norm
inequalities for some typical Sobolev Hilbert spaces. We see many related
open problems.
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1 Introduction
In order to consider the restriction and extension of reproducing kernel
Hilbert spaces, we first recall the fundamental general property based on
[5].
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We consider a positive definite quadratic form function K : E × E → C
and its restriction of K to E0×E0, where E0 is a subset of E. Of course, the
restriction is again a positive definite quadratic form function on the subset
E0 × E0. We shall consider the relation between two reproducing kernel
Hilbert spaces derived from the positive definite quadratic form functions.

Theorem A. Let E0 be a subset of E. Then the reproducing kernel
Hilbert space that K|E0 × E0 : E0 × E0 → C defines is given by:

HK|E0×E0(E0) = {f ∈ F(E0) : f = f̃ |E0 for some f̃ ∈ HK(E)}. (1.1)

Furthermore, the norm is expressed in terms of the one of HK(E):

∥f∥HK|E0×E0
(E0) = min{∥f̃∥HK(E) : f̃ ∈ HK(E), f = f̃ |E0}. (1.2)

In Theorem A, note that the inequality, for any function f ∈ HK(E)

∥f∥HK|E0×E0
(E0) ≤ ∥f∥HK(E) (1.3)

holds, that is, the restriction map is a bounded linear operator.
At first, we shall consider the simplest Sobolev Hilbert space.
The space HS(R) is comprising of absolutely continuous functions f on

R with the norm

∥f∥HS(R) ≡

√∫
R
(|f(x)|2 + |f ′(x)|2)dx. (1.4)

The Hilbert space HS(R) admits the reproducing kernel

K(x, y) ≡ 1

2π

∫
R

1

1 + ξ2
exp(i(x− y)ξ)dξ =

1

2
e−|x−y| (x, y ∈ R). (1.5)

Its restriction to the closed interval [a, b] is the reproducing kernel Hilbert
space HS[a, b] = W 1,2[a, b] as a set of functions, and the norm is given by

∥f∥HS [a,b] ≡

√(∫ b

a

(|f(x)|2 + |f ′(x)|2) dx
)
+ |f(a)|2 + |f(b)|2 (1.6)

([5], pages 10-16).
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The representation (1.5) means that the functions f(x) of HS(R) are
represented in the form

f(x) =
1

2π

∫
R

1

1 + ξ2
exp(ixξ)F (ξ)dξ

with the functions F (ξ) satisfying

1

2π

∫
R

1

1 + ξ2
|F (ξ)|2dξ < ∞

and the norm is represented by

∥f∥HS(R) =

√
1

2π

∫
R

1

1 + ξ2
|F (ξ)|2dξ.

The restriction mapping L from the space HS(R) to the space HS[a, b] is, of
course, not injective and so, in particular, we obtain the norm inequality

∥f∥HS(R) ≥ ∥f∥HS [a,b];

that is,∫
R
(|f(x)|2 + |f ′(x)|2)dx ≥

(∫ b

a

(|f(x)|2 + |f ′(x)|2) dx
)
+ |f(a)|2 + |f(b)|2.

(1.7)
 

By our general theory, we can give the precise correspondence of the two
spaces; that is,

f |[a,b](x) = (f(ξ), K(ξ, x))HS(R) (1.8)
and

f(x) = (f[a,b](ξ), K(ξ, x))HS [a,b]), (1.9)
with the minimum extension f of f[a,b] in HS[a, b]) to HS(R). Indeed, we
can derive directly the identity (1.9) for the minimum extension f of f[a,b]
in HS[a, b]) to HS(R). See the following proof of Theorem 2.1 for the space
W 2,2(R).
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However, for the minimum extension formula we have the general formula
in Theorem A,

f(p) = (f |E0(·), K(·, p))HK|E0×E0
(E0),

for the minimum extension f of f |E0. See the proof of Proposition 2.5 in [5]
(pages 79-80), in particular, (2.4).

We obtained several realizations of restricted reproducing kernel Hilbert
spaces as in (1.6), however, they are, in general, involved. See [4], [5]. The
formula (1.6) is a simple result, however, the realization of the restricted
reproducing kernel spaces is, in general, complicated in this sense.

Open Problem : Let m >
n

2
be an integer. Denote by NCK the binomial

coefficient and by Wm,2(Rn) the Sobolev space whose norm is given by

∥F∥Wm,2(Rn) =

√√√√√ m∑
ν=0

mCν

 ν∑
α∈Zn

+, |α|≤ν

ν!

α!

∫
Rn

∣∣∣∣∂νF (x)

∂xν

∣∣∣∣2 dx

. (1.10)

Then, the reproducing kernel K is given by

K(x, y) ≡ 1

(2π)n

∫
Rn

exp(i(x− y) · ξ)
(1 + |ξ|2)m

dξ (x, y ∈ Rn) (1.11)

([5], page 22). How will be the realization of the norm for the restricted
reproducing kernel Hilbert space to some nontrivial subset (the typical case is
a sphere {r < a}) of Rn as in the case (1.6) of one dimensional way?

2 The typical case for the space W 2,2(R)

For the Sobolev Hilbert space W 2,2(R) defined to be the completion of C∞
c (R)

with respect to the norm:

∥f∥W 2,2(R) =
√
∥f ′′∥L2(R)

2 + 2∥f ′∥L2(R)
2 + ∥f∥L2(R)

2,

we have the reproducing kernel

G(s, t) ≡ 1

4
e−|s−t|(1 + |s− t|) (s, t ∈ R)
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([5], page 21-22).
For simplicity, in this section, we shall consider functions in real valued

functions.
In order to look for the reproducing kernel Hilbert space WS([a, b]), (a <

b) admitting the restricted reproducing kernel G(s, t) to the interval [a, b],
we calculate the integral, for any function f ∈ W 2,2(R)

(f(s), G(s, t))W 2,2([a,b]).

By setting Gt(s) = G(s, t), we note that

Gt(s) =
t− s+ 1

4
exp(s− t)χ(a,t)(s) +

s− t+ 1

4
exp(t− s)χ[t,b)(s),

dGt

ds
(s) =

t− s

4
exp(s− t)χ(a,t)(s)−

s− t

4
exp(t− s)χ[t,b)(s),

d2Gt

ds2
(s) =

t− s− 1

4
exp(s− t)χ(a,t)(s) +

s− t− 1

4
exp(t− s)χ[t,b)(s). (2.1)

Then, by integration by parts repeatedly, we have

(f(s), G(s, t))W 2,2([a,b])

= f(t)

+f(a)
−t+ a− 2

4
exp (a− t)− f ′(a)

t− a− 1

4
exp (a− t)

−f(b)
b− t+ 2

4
exp (t− b) + f ′(b)

b− t− 1

4
exp(t− b). (2.2)

That is
(f(s), G(s, t))WS([a,b])

= f(t)

+f(a)G(a, t)

(
−1 +

−1

1 + t− a

)
+f ′(a)G′(a, t)

(
1

t− a
− 1

)
+f(b)G(b, t)

(
−1 +

−1

1 + b− t

)
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+f ′(b)G′(b, t)

(
1

b− t
− 1

)
. (2.3)

We thus have the desired identity admitting the restricted reproducing
kernel of G(s, t) to the interval [a, b]

(f,G(·, t))WS([a,b]) = (f,G(·, t))W 2,2(R) (2.4)

−f(a)
−t+ a− 2

4
exp (a− t) + f ′(a)

t− a− 1

4
exp (a− t)

+f(b)
b− t+ 2

4
exp (t− b)− f ′(b)

b− t− 1

4
exp(t− b).

We can see that this identity is right, indeed, we shall give another natural
method in order to see it.

In order to look for the norm admitting the restricted reproducing kernel
of G(s, t) to the interval [a, b], note that the integral∫ a

−∞

(
f ′′(x)2 + 2f ′(x)2 + f(x)2

)
dx (2.5)

is identical with its integral of the function

f(x) = 4f(a)Ga(x)− 4f ′(a)G′
ax) (2.6)

that is the minimum integral over (−∞, a) of the functions W 2,2(R) taking
the values f(a) and f ′(a).

The function is given by

f(x) = [(A+B)(a− x) + A] exp(x− a)

with
A = f(a), B = −f ′(a).

Then, by direct calculations, we have∫ a

−∞

(
f ′′(x)2 + 2f ′(x)2 + f(x)2

)
dx = 2(A2 + AB +B2) (2.7)

= 2(f(a)2 − f(a)f ′(a) + f ′(a)2).
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From this result, we see that the corresponding inner product over (−∞, a)
is represented by

(f1, f2)W 2,2(−∞,a) = 2(f1(a)f2(a) + f ′
1(a)f

′
2(a)) (2.8)

+
1

2
(f1(a)− f ′

1(a))(f2(a)− f ′
2(a))−

1

2
(f1(a) + f ′

1(a))(f2(a) + f ′
2(a)).

The situation for the integrals over (b,+∞) is similar and so we obtain the
desired isometric identity

∥f∥2W 2,2(R) = ∥f∥2WS([a,b])
(2.9)

+2(f(a)2 − f(a)f ′(a) + f ′(a)2)

+2(f(b)2 − f(b)f ′(b) + f ′(b)2).

Therefore, the inner product relation is given by

(f1, f2)W 2,2(R) = (f1, f2)WS([a,b])

+2(f1(a)f2(a) + f ′
1(a)f

′
2(a)) +

1

2
(f1(a)− f ′

1(a))(f2(a)− f ′
2(a))

−1

2
(f1(a) + f ′

1(a))(f2(a) + f ′
2(a))

+2(f1(b)f2(b) + f ′
1(b)f

′
2(b)) +

1

2
(f1(b)− f ′

1(b))(f2(b)− f ′
2(b))

−1

2
(f1(b) + f ′

1(b))(f2(b) + f ′
2(b)).

We can confirm that (2.4) and (2.9) are consistent, directly.
Indeed,

2(f(a)Gt(a) + f ′(a)G′
t(a)) +

1

2
(f(a)− f ′(a))(Gt(a)−G′

t(a))

−1

2
(f(a) + f ′(a))(Gt(a) +G′

t(a))

is identical with

+f(a)
−t+ a− 2

4
exp (a− t) + f ′(a)

t− a− 1

4
exp (a− t).
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For the point b, the result is similar.
In particular, we have
Theorem 2.1: The extension of the functions f in WS([a, b]) to W 2,2(R)

with the minimum norm is given by

f(t) = (f,G(·, t))W 2,2([a,b])

+2(f(a)Gt(a) + f ′(a)G′
t(a)) +

1

2
(f(a)− f ′(a))(Gt(a)−G′

t(a))

−1

2
(f(a) + f ′(a))(Gt(a) +G′

t(a))

+2(f(b)Gt(b) + f ′(b)G′
t(b)) +

1

2
(f(b)− f ′(b))(Gt(b)−G′

t(b))

−1

2
(f(b) + f ′(b))(Gt(b) +G′

t(b)).

Corollary 2.1: We obtain the inequality for real valued functions f of
W 2,2(R)

∥f∥2W 2,2(R) = ∥f ′′∥2L2(R) + 2∥f ′∥2L2(R) + ∥f∥2L2(R)

≥ ∥f ′′∥2L2([a,b]) + 2∥f ′∥2L2([a,b]) + ∥f∥2L2([a,b])

+2(f(a)2 − f(a)f ′(a) + f ′(a)2) + 2(f(b)2 − f(b)f ′(b) + f ′(b)2).

Equality holds for the minimum extension stated in Theorem 2.1.

Related versions
By the similar method or directly we have the following results.
Let

K(s, t) ≡
∫ ∞

0

cos(s u) cos(t u)

u2 + 1
du =

π

4
(exp(−|s− t|) + exp(−s− t))

(2.10)
for s, t > 0. Then HK(0,∞) = W 1,2(0,∞) as a set of functions and the norm
is given by:

∥f∥HK(0,∞) =

√
2

π

∫ ∞

0

(|f ′(u)|2 + |f(u)|2) du (2.11)
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([5], page12-13). From the restriction of the kernel K(s, t) to [a, b], a > 0, we
have the norm inequality

∥f∥2HK(0,∞) ≥
2

π

1− exp(−2a)

1 + exp(−2a)
|f(a)|2 (2.12)

+
2

π

∫ b

a

(|f ′(u)|2 + |f(u)|2) du+
2

π
|f(b)|2.

Let

K(s, t) ≡
∫ ∞

0

sin(s u) sin(t u)

u2 + 1
du =

π

4
(exp(−|s− t|)− exp(−s− t)) (2.13)

for s, t > 0. Then we have

HK(0,∞) = {f ∈ AC(0,∞) : f(0) = 0} (2.14)

as a set of functions and the norm is given by

∥f∥HK(0,∞) =

√
2

π

∫ ∞

0

(|f ′(u)|2 + |f(u)|2) du (2.15)

([5], 13-14). From the restriction of the kernel K(s, t) to [a, b], a > 0, we have
the norm inequality

∥f∥2HK(0,∞) ≥
2

π

1 + exp(−2a)

1− exp(−2a)
|f(a)|2 (2.16)

+
2

π

∫ b

a

(|f ′(u)|2 + |f(u)|2) du+
2

π
|f(b)|2.

Let
K(s, t) ≡ min(s, t) (s, t > 0). (2.17)

Then we have

HK(0,∞) =

{
f ∈ W 1,2(0,∞) : lim

ε↓0
f(ε) = 0

}
(2.18)

as a set of functions and the norm is given by

∥f∥HK(0,∞) =

√∫ ∞

0

|f ′(u)|2 du (2.19)
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([5], 14-15). From the restriction of the kernel K(s, t) to [a, b], a > 0, we have
the norm inequality

∥f∥2HK(0,∞) ≥
1

a
|f(a)|2 +

∫ b

a

|f ′(u)|2 du. (2.20)

We have many type Sobolev Hilbert spaces. For example,
for ω2 = γ2 − α2 > 0, the kernel

K(s, t) =
exp(−α|s− t|)

4αγ2
cos(ω|s− t|) + α

ω
sin(ω|s− t|)

is the reproducing kernel for the Sobolev Hilbert space admitting the norm

||u||2 = 4αγ2u(a)2 + 4αu′(a)2

+

∫ b

a

(
u′′(t) + 2α2u′(t) + γ2u(t)

)2
dt

(E. Parzen, [2]). For the case α = 0, ω = γ, by the division by zero calculus
([6]), we have the corresponding reproducing kernel

K(s, t) =
−1

4γ2
|s− t| cos(ω|s− t|).

See also [1] and the recent paper A. Yamada ([7]).

Basic applications of the realization of the restricted reproduc-
ing kernel Hilbert space

Theorem 2.1 and other derived identities show that the extension of the
function with the minimum norm to the whole space (the half space) from a
closed interval [a, b] is given simply. This means that in the related Fourier
transform, the inversion that corresponds to the function with the minimum
norm may be calculated in terms of the values on the interval [a, b].
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