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Abstract In the pulse compression radar using linear frequency modulation (LFM),
the sidelobe suppression signal processing is very important to overcome an effect
that may mask smaller targets or maybe mistaken as separate targets. This paper
considers a novel framework of the sidelobe suppression for linear frequency
modulation signal (LFM) at a receiver when existing internal receive noise. In pulse
compression for LFM signal, there exist not only range mainlobe components but
also range sidelobe components in the matched filter output. It is necessary to
effectively suppress the sidelobe components at the receiver of radar.

This paper presents variability index (VI)-threshold operation based on the
wavelet transform to further reduce these range sidelobes, and then analyzes it
compared to the conventional window method. The results show that the proposed
method is very effective in suppression of sidelobes components for LFM signal. It
also indicates that this method gives better a peak to sidelobe ratio (PSR)
performance than other methods for the sidelobe suppression.

Keywords LFM, pulse compression, sidelobe suppression, Wavelet transform,
variability index

Funding: The authors did not receive any support from any organization for the
submitted work.

Conflicts of interest/Competing interests: The authors declare that they have no
known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Availability of data and material: The data that supports the findings of this study
are available within the article and its supplementary material.

Authors’ contributions: Conceptualization: Gwang Hyon Choe; Methodology:
Gwang Hyon Choe; Formal analysis and investigation: Yun Il Choe; Resources:
Yun Il Choe; Writing: Gwang Hyon Choe; Editing: Yun Il Choe



Circuits Syst Signal Process2

1 Introduction

In modern radars pulse compression is being widely used to achieve long-range
target detection and a high range resolution simultaneously [1, 2]. Pulse compression
technique is used to enhance radar performance in terms of more efficient use of
high-power transmitters and increasing the system resolving capability, and the LFM
signal is widely used in radar because it can be generated easily. A standard
approach in pulse compression is to correlate the received signal with a reference
waveform, i.e. a matched filter (MF). The MF output of LFM signal can be
approximated as xx)sin( or sinc(x), shaped autocorrelation function (ACF).
But the pulse compression of LFM signal by MF produces sidelobes which is
objectionable in a way that they may mask smaller targets in vicinity [1-8]. These
sidelobes are undesirable. Range sidelobes are inherent part of the pulse
compression mechanism and these are occurring due to abrupt rise in the signal
spectrum of rectangular pulse. The conventional method is used to suppress these
ambiguous sidelobes by modelling the rectangular shape of the chirp spectrum using
amplitude weighing and it can be suppressed to the required level by using a suitable
window function [1-9]. In radar systems, weighing technique in the time or
frequency domain is mostly used to reduce these range sidelobes with broadening
and a loss in the mainlobe. Time domain weighing is preferred to frequency domain
weighing, because it produces lower sidelobe output [2]. Radar pulse compression
effect using different operations for the sidelobe suppression is given as results in
terms of a peak to sidelobe ratio (PSR). Various methods for the sidelobe
suppression have been proposed in the literatures [1-5, 9, 12-14, 16].

Typically, to reduce these sidelobes convolutional windows have been applied as
weighted function for radar pulse compression which are more sensitive to Doppler
shift as compared to conventional windows [2]. To reduce the sidelobes for LFM
waveform, there is an interesting approach related to the design of efficient NLFM
waveforms namely, a temporal predistortioning method of LFM signals by suitable
nonlinear frequency laws [3, 15]. By this method an average sidelobe reduction of 6
dB is also obtained when no internal receiver noise.

Also, adaptive approach was proposed as a new technique to adaptively shape the
spectral response of target returns, thereby controlling their range sidelobes
adaptively. This method had proposed to reduce processing loss of pulse
compression methods that adopt spectral shaping to achieve range sidelobe
suppression [4]. A sidelobe suppression based on Sparse Regularization was used for
a reconstruction method for SAR imaging [5].

It compared with traditional MF method, and the convex optimization method
outperforms in high resolution and sidelobe suppression and greatly improves the
imaging quality. The pre-condition is that the signal is sparse in some domain,
including time, frequency, space etc.

Preceding Literatures lack neither a mathematical model of the sidelobe
suppression filter response nor a simulation model for the effect of noise on the PSR
performance of LFM radars, when existing internal receiver noise environment,
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Generally, the pulse compression and sidelobe suppression in LFM radar are the
processing for the receiving signals in the state which is existed internal receiver
noise.

For this, this paper presents a variability index (VI) adaptive operation based on
wavelet transform for the sidelobe suppression on pulse compression when existing
the band-limited internal receiver noise, and analyzes in contrast with conventional
method. The rest of this paper is organized as follows. In Sect. 2, the LFM signal
processing method, which is based on the pulse compression and sidelobe
suppression by window weighting is defined. In Sect. 3, the signal processing
method for sidelobe suppression of LFM waveform when existing the internal
receiver noises is mathematically analyzed. Finally, in Sect. 4, the sidelobe
suppression performance of this method is studied through simulation.

2 Preliminary

Let consider a radar system employing LFM waveforms. The
continuous-time model of the transmitted LFM waveform can be written as
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is the LFM pulse having rectangular envelope, k is the number of pulses, T is the
pulse period,  /B is the sweep rate measured in Hertz per second, B is the
LFM waveform bandwidth,  is the uncompressed pulse width, 0f is a carrier
frequency of transmitted signal, and )/( trect is given by
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The complex envelope of (2) can be written as
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where )(tv is the complex envelop of a single LFM at baseband and is as

follows;
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A conventional approach in pulse compression is to correlate the received signal
with a reference waveform. The impulse response of the matched filter for the
complex envelop of the LFM signal of (5) can be expressed as:
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The matched filter output magnitude response due to the LFM signal can be

calculated by performing a convolution process between the signal )(tV and the

matched filter impulse response )(th as follows [8]:

)(*)()( tvthty  (7)

)]([sinc)(   tBty (8)

For a point scatterer in white Gaussian noise, it is well-known that correlating the

received signal with a delayed copy of the reference waveform, i.e. a matched filter

(MF), maximizes the output signal-to-noise ratio (SNR). Unfortunately, the MF

output has a low peak to sidelobe ratio (PSR). When the received signal contains

both strong and weak echoes, the presence of weak targets can be masked by the

range sidelobes of a sufficiently stronger echo if they are not suppressed adequately.

To achieve range sidelobe suppression for radar systems with LFM waveform, a

spectral window is often utilized to shape the spectral response of the reference

waveform, leading to a mismatched filter [2, 17]. Fig. 1 shows the diagram of LFM

pulse compression using the spectral window.

Fig. 1 The diagram of LFM pulse compression using the spectral window

To enhance the PSR and thereby allowing the detection of weak targets in the

presence of stronger echoes, a spectral window )(W is often used to shape the

spectral response of the reference waveform. This leads to a mismatched filter with

the resulting reference waveform )(th now being given by

)(th ℱ 1   jeVW )()( * (9)

where ℱ 1 denotes the inverse Fourier transform operations and )(V is the
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Fourier transform of )(tv . The windowed weighing function for the sidelobe

suppression is given by
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where K and n is coefficients related with a window shape. If 2  ,08.0  nK ,

it is Hamming weight function. In this case, the sidelobe is reduced to a level of

40dB and the mainlobe loss is about 2 or 3dB. This is obtained as the results of

pulse compression in the case of no internal receiver noise. However, in the presence

of internal receiver noise, the efficiency of pulse compression and sidelobe

suppression by the aforementioned algorithms is reduced, and the smaller the input

SNR of the radar system, the more the sidelobe component is increased, and the

more the PSR is decreased. In this paper we propose a new thresholding technique to

the wavelet transform by variability index (VI) of target returns in the state which is

existed internal receiver noise.

3 Wavelet Threshold Processing by Variability Index (VI) Estimation

3.1 Threshold method in Wavelet Shrinkage by Variability Index (VI)

Based on the study and analysis of different sidelobe suppression algorithms of LFM

signals in the literatures, we propose a variability index (VI)-wavelet adaptive

shrinkage method to suppress the range sidelobes due to LFM pulse compression of

target returns in the presence of internal receiver noise, and prove its accuracy by

simulation. Fig. 2 shows the wavelet shrinkage adaptive processing diagram using

VI estimating operations.

Fig. 2 VI-wavelet shrinkage adaptive processing diagram

The wavelet subband decomposition is used to divide into multiple bands based on

the multi-scale wavelet coefficients according to the dyadic-scale, and then the

wavelet threshold processing is performed on each subband outputs.
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The signal detection using wavelet shrinkage and threshold method relies on the

basic idea that the energy of a signal will often be concentrated on a few coefficients

while the energy of noise is spread among all coefficients in wavelet multi-domain

[11]. If the mainlobe width obtained after pulse compression is defined as 0 , this

width is defined as a range bin on a pulse repetition interval (PRI) T , and

0/TM  bins on the PRI will be existed. For the i th range bin ( 10  Mi ) of

a PRI, the coefficients of the wavelet multiband are obtained by multi-resolution

analysis (MRA), and M range bins of all are processed by MRA.

N data of i th range bin from the past Nn  to current n th PRI are used for VI

calculation, and finally determine whether the target signal exists or not.

In radar signal processing, N is the number of the processing pulses, and it is

limited by the number of target echoes received by the radar and related with the

pulse repetition interval (PRI), the width of antenna beam and the rotation speed of

antenna.

The VI-wavelet adaptive processing can be classified into the following steps:

Step 1. Calculate the multi-scale wavelet coefficients with respect to the dyadic

scales ,2 ja  Jj 1 for the received signal of i th range bin. The multi-scale

wavelet coefficients are the approximation components kjcA , and the detail

components
kjcd ,

respectively. In this paper, we assume that the approximation

and the detail coefficients at the higher scale than J=3 are not meaningful for the

processing.

Step 2. Store the multiscale wavelet coefficients, kjcA , and kjcd , in the unit of

range bin and then calculate VI of the N data stored in advance with respect to

kjcA , and kjcd , respectively. The VI is used for the threshold processing of the

signals decomposed into multiscale wavelet coefficients.

Step 3. For each wavelet coefficient, perform the threshold operation by the

parameters determined to the VI estimation and then find the output after wavelet

synthesis. These steps make sidelobe suppression of LFM signal in the presence of

bandlimited noise. For an LFM signals, the output )(nx obtained after sidelobe

reduction by pulse compression and window function can be divided into wavelet

subbands by MRA.

In the wavelet decomposition step, the basic functions such as Daubench, Morlet,

and Shannon bases can be used. The Shannon function is the simple example of an

orthonormal wavelet, and the Scaling function that belongs to the Shannon wavelet

is the impulse responses of the ideal lowpass filter and it is given by

t

t
t


 sin

)(  (11)
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We may assume that the subspaces mV contain lowpass signals and that the

bandwidth of the signals contained in mV reduces with increasing m. Because of

the scaling property, the subspaces mV are spanned by scaled and time-shifted

versions of the scaling function )(t :

)]2([ ktspanV m
m   , Zkm   , (12)

Also, if the functions Z kktm   ),2( span the subspace mW containing

bandpass signals, the Shannon Wavelet with impulse response of ideal bandpass

filter is given by
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When 110 WVV  , the function 00   )()( Vkttk   can be written as linear

combinations of the base functions for the spaces 1V and 1W . The approach for

wavelet analysis by Multi-rate filtering may be given by
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where 01   )()( Wkttk  is the orthogonal base for 1W . The coefficients

)(0 ph and )(1 ph as the impulse responses of low-pass and high-pass filter can be

expressed as follows:
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3.2 Variability Index (VI) Estimation

The VI is a second-order statistic that is closely related to an estimate of the

shape parameter. Its value is a function of the estimated population mean µ and

population variance σ2 [10]. The VI estimating design partitions the reference

windows in the channels of all wavelet subbands. For any channel input x of VI

estimation in Fig. 2, The VI is then calculated for each split window using:
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where )(xE is the arithmetic mean of the N cells in the reference window. VI is

independent of the noise power in a homogeneous environment, but changes

considerably in the presence of interfering targets within the reference window. The

VI is compared with a threshold KVI, to decide if the output cells of wavelet subband
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with which the VI is computed are from a homogeneous (non-variable) environment

or from a non- homogeneous (variable) environment using the following hypothesis

test:
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If input noise in radar system is bandlimited white Gaussian noise, the output

noise in the envelope detector of LFM pulse compression has Rayleigh distribution

characteristics. When the variance of Gaussian noise is 2
0 , the envelope noise

obtained after envelope detection is a random noise with Rayleigh distribution

characteristics, its mean and mean square value are given by

2
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where )(xE and )( 2xE are satisfied when N is infinite. In this case, the expected

value of VI statistic is as follows:
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If the input signal only is in the state of noise environment, the expected value of

the VI statistic is 1.2732, but the expected value of the VI statistic differs from

1.2732 in the case with the state of noise plus target. According to this principle,

after pulse compression of the LFM signal, the mainlobe component and noise are

identified by VI . The signal of i th range bin is stored at intervals of pulse

repetition period (PRI) as transmitting parameter of radar, and VI of i th range bin

is computed by (16) using the stored data of i th range bin. For implementation

purposes, it is possible to reduce the computational requirements associated with

generating the VI statistic using an alternative definition. In this case, the

simplified statistic IV ˆ is obtained by using the biased, maximum likelihood

estimate of the population variance.
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The relation between the expected value of the VI statistic and IV ˆ is

IVVIE
N

ˆlim][


 .

In practice a finite number N of cells used to calculate IV ˆ is determined by the

number of received target pulse in radar. When a finite number of cells are used for
estimation of VI , the analytic expression for probability distribution of VI is

unavailable.
In lieu of analytical expression for the probability distribution of the VI statistic,

it is possible to use Monte Carlo simulation to generate independent and identically
distributed (IID) Rayleigh random numbers for the cells used compute the VI for a

large number of trials. For the i th trial, a sample iVI is calculated from the

random numbers. The resulting values of iVI are used to estimate the VI

probability density function and to estimate required values of vK to yield various

values of the hypothesis test error 0 .

 noiseonly     0 vKVIP  (22)

The hypothesis test error 0 of (22) means the probability that might be

wrongly identified as a target signal because the estimated variability index IV ˆ is

smaller than vK , though a certain sample data x is a Rayleigh distributed noise.

Table. 1 summarizes the relationship between 0 and vK for a number of

representative windows sizes N based on the simulation results for 1, 000, 000

trials, and it is based on using Monte Carlo operation.

Table.1 Simulation results for vK as a function of 0 and N

error

probability

vK

N = 32 N = 64 N = 128

0 = 0.1 1.1841 1.2109 1.2310

0 = 0.01 1.1358 1.1748 1.1966

0 = 0.001 1.1069 1.1447 1.1724

3.3 Determination of Wavelet Threshold Value

As input in the diagram of Fig. 2, the LFM compression signals are decomposed of
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the multi-scale wavelet coefficients 　ikCA and
jkCd , and the threshold function based

on IV ˆ is defined as follows:
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Where z is the signal corresponding to multi-scale wavelet coefficients 　ikCA

and jkCd ( 21  j ), )ˆ  ,( IVzL is the output signal after threshold comparison.

As a final step, the output signals after threshold comparison are synthesized by

wavelet synthesis by multi-rate filtering, and the coefficients of the synthesis filters

with the dyadic scales are given by
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where )(0 kh and )(1 kh are the coefficients of wavelet decomposition filter given

from (15).

Fig. 3 shows the system diagram for VI-wavelet threshold processing for the

sidelobe suppression of LFM signal.

Fig. 3 Diagram of the VI-wavelet threshold processing for the sidelobe reduction

4 Simulation Results

Here LFM signal having duration, center frequency, pulse repetition interval (PRI)

and bandwidth of μs24 , MHz60 , μs100 and MHz5.2 respectively is used for

simulation study.

In Hamming window weighting of LFM waveform, PSR after pulse compression

is about 35 dB, and the width of mainlobe increases about 2 times than rectangular

window [2].

However, in the presence of internal receiver noise, the sidelobe level incre
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ases and depends on the signal-to-noise ratio (SNR) of the received signal.

In the above condition, the output waveform after pulse compression of L

FM receive signal for SNR = -10 dB is shown in Fig. 4 (a), and here sidelo

be occurs at a level of -13 dB compared to the peak of the mainlobe.

This paper was shown the sidelobe suppression that occurs in the process of pulse

compression for LFM signal when existing the bandlimited white noise at a receiver.

In the proposed method of this paper, the largest discrete wavelet transform lever

J=3 is selected and then the coefficients )(0 kh and )(1 kh for the wavelet analysis

filter are obtained from (15), and the coefficients )(0 kg and )(1 kg for the

wavelet synthesis filter are determined from (24).

Since the pulse width obtained after pulse compression is about μs5.0 , the

number of all range bins given as a unit of μs5.0 is 200, and then the range bins of

200 are processed by the proposed method in parallel.

From LFM parameters of a radar, windows size of IV ˆ is determined as N=32.

Here, in the case of 32N and 01.00  , the threshold vK̂ is 1.1358 from

Table 1.
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Fig. 4 PSR characteristics of LFM in the case of SNR=10dB(a)

PSR by classic method, (b) PSR by VI estimation method

This paper compared and estimated the PSR according to SNR using the window

weighting method and VI-adaptive Wavelet processing method respectively.

As shown in Fig. 4(a), when SNR = 10dB, maximum PSR is 5dB after pulse

compression, and it is very difficult to detect target by CFAR (Constant False Alarm

Rate). Using the new method in this paper under the same conditions the PSR

increases to 45dB, which is 35dB larger than PSR by window weighting method

when existing bandlimited noises (bandwidth is MHz5.2 ), Fig. 4 (b) was shown.

Convolutional windows are giving better results in terms of PSR than the
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conventional windows in the case absence of internal receiver noise, and at higher

Doppler shifts the convolutional windows give better PSR values, i.e., about 4~5dB

[2]. But convolutional window is not giving better results than the window weighting

when existing internal receiver noise. The new method proposed in this paper are

giving better results than previous methods (window weighting and convolutional

window).

As shown in Table 2 the proposed method improves PSR by 33dB than previous

methods, only when SNR 15dB.

Table 2. Comparison of PSR for two methods

Input SNR (dB)

PSR (dB)

Previous

method

New

method
Gain(dB)

0 17 55 38

5 11 49 38

10 5 41 36

15 0 33 33

5 Conclusion

This paper deals with the application of VI-wavelet threshold method to an

important problem in signal processing, that is, a sidelobe suppression of LFM

waveform in the presence of internal receiver noise. To improve the reliability and

efficiency of traditional sidelobe suppression methods [1-5], a new method has been

presented for sidelobe suppression in the LFM pulse compression when existing

bandlimited white noise of receiver, and it has been proved by simulation. First, the

wavelet subband decomposition by multi-scale wavelet coefficients is used to divide

into multiple bands for LFM receive signals. Second, the outputs in wavelet

subbands is obtained by VI threshold processing, and it determines in terms of the

estimation of each subband data. Finally, wavelet synthesis is used to form to the

output that sidelobe components is reduced. Simulation results show that the

proposed method can provide better sidelobe suppression performance than previous

methods.
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