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Abstract

A brief review of the consequences of the hypothesis about the exis-
tence of a background of superstrong interacting gravitons is given. Grav-
ity is seen as a shielding effect in a sea of low-energy gravitons, and
Newton’s constant can be calculated as a function of the background
temperature. At very small distances, the phenomenon of asymptotic
freedom arises. Restrictions on the geometric language and the ban on
the existence of black holes are considered. Additional deceleration of
massive bodies occurs due to forehead and backhead collisions with gravi-
tons. Scattering of photons by background gravitons leads to a redshift
of distant objects, their additional darkening and the appearance of a
background of scattered photons. These effects could revolutionize cos-
mology because they don’t need dark energy, the Big Bang, etc. to explain
observations.
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1 Introduction

The equality of the inertial and gravitational masses of any body prompted
Albert Einstein to come up with the idea of a geometric description of gravity.
Supplemented by the postulate of local validity of special relativity, in which
light propagates along null geodesics, it led to a theory describing forceless
gravity, in which light is deflected near large bodies. General relativity takes
into account the finite speed of gravity. The intensity of the interaction depends
on the value of Newton’s constant G, i.e. this theory is at a fundamental level
no deeper than Newton’s law of gravity. In both cases, the mechanism of gravity
remains unknown. All the effects of the general theory of relativity are observed,
which makes it a real diamond of theoretical physics.

The Friedmann-Lemaitre-Robertson-Walker metric is an exact solution of
general relativity used in the modern standard cosmological model (LCDM) to
describe cosmological expansion. Although its use is not possible during the
early stages of expansion, it describes the redshift and the luminosity distance
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of remote galaxies, as well as the rate of expansion. To describe the observed
dimming of distant objects, the discovery of dark energy was announced in 1998
[1, 2].

But there is a contradiction between general relativity and quantum mechan-
ics, in which there is no trajectory for microparticles (the uncertainty principle
of W. Heisenberg, 1927). This principle is essential to understanding electron
diffraction on a crystal; at a distance scale of 10−10 m electrons behave like
waves. In general relativity there are no restrictions on the masses of bodies,
and it is expected that its use is possible up to the Planck distance scale, where
some quantum effects should take place. One of the most promising candidates
for the role of a theory of quantum gravity precisely on this scale and based
directly on the geometric formulation of general relativity is considered to be
loop quantum gravity [3]. This theory does not currently predict observable
effects that would allow it to be tested, but it is under development.

I would like to describe here an alternative approach to gravity, based on the
hypothesis of the existence of a background of superstrongly interacting gravi-
tons. Gravity can then be viewed as a screening effect, which is a completely
quantum phenomenon, without the need for quantization. Newton’s constant
can be calculated as a function of background temperature; this means that this
approach is in some sense deeper than general relativity. Scattering of photons
by background gravitons leads to a redshift of distant objects, their additional
darkening and the appearance of a background of scattered photons. These
effects can be very important for cosmology.

2 Gravity as the screening effect in the sea of
gravitons

In author’s papers [4, 5], a cross-section σ(E, ε) of interaction of a graviton with
an energy ε with any body having an energy E was accepted to be equal to:

σ(E, ε) = D · E · ε, (1)

where D is some new dimensional constant.
To ensure an attractive force which is not equal to a repulsive one, particle

correlations should differ for in and out flux. For example, single gravitons of
running flux may associate in pairs. If such pairs are destructed by collisions
with a body, then quantities < ε > will distinguish for running and scattered
particles (< ε > is an average energy of gravitons). Graviton pairing may
be caused with graviton’s own gravitational attraction or gravitonic spin-spin
interaction. Then a force of attraction of two bodies due to pressure of graviton
pairs F2 will be equal to:

F2 =
∫ ∞

0

σ(E2, < ε2 >)
4πr2

· 4σ(E1, < ε2 >) · 1
3
· 4f2(2ω, T )

c
dω = (2)

8
3
· D2c(kT )6m1m2

π3h̄3r2
· I2,

where

I2 ≡
∫ ∞

0

x5(1 − exp(−(exp(2x) − 1)−1))2(exp(2x) − 1)−5

exp(2(exp(2x) − 1)−1) exp(2(exp(x) − 1)−1)
dx = (3)
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2.3184 · 10−6.

The difference F between attractive and repulsive forces will be equal to:

F ≡ F2 − F
′
2 =

1
2
F2 ≡ G2

m1m2

r2
, (4)

where the constant G2 is equal to:

G2 ≡ 4
3
· D2c(kT )6

π3h̄3 · I2. (5)

If one assumes that G2 coincides with the Newton’s constant G, then it
follows from the last expression that by T = 2.7K the constant D should have
the value:

D = 0.795 · 10−27m2/eV 2. (6)

3 Asymptotic freedom at very small distances

Here, a portion of screened gravitons for big distances between the bodies is
described by the factor σ(E2, < ε2 >)/4πr2, which should be much smaller of
unity. A net force is attractive, and it is equal to F2/2. For small distances, the
condition σ(E2, < ε2 >) � 4πr2 will be broken. For example, σ(E2, < ε2 >) ∼
4πr2 for two protons and < ε2 >∼ 10−3 eV at distances r ∼ 10−11 m. This
quantity is many orders larger than the Planck length.

When we compute a pressure force of graviton pairs in the limit case of
super-short distances it turns out that this force almost vanishes. For this limit
case, we should replace the factor σ(E2, < ε2 >)/4πr2 by 1/2 if a separation of
interacting particles has a sense. If we accept this replacement, we get for the
pressure force (acting on body 1):

F2 =
∫ ∞

0

1
2
· 4σ(E1, < ε2 >) · 1

3
· 4f2(2ω, T )

c
dω = (7)

8
3
· D(kT )5E1

π2h̄3c3
· I5,

where I5 is the new constant:

I5 ≡
∫ ∞

0

x4(1 − exp(−(exp(2x) − 1)−1))(exp(2x) − 1)−3

exp((exp(2x) − 1)−1) exp((exp(x) − 1)−1)
dx = (8)

4.24656 · 10−4.

Then the corresponding limit acceleration is equal to:

wlim = G
π

D(kT )c2
· I5

I2
= 3.691 · 10−13 m/s2. (9)

This extremely small acceleration means that at very small distances (which
are meantime many orders of magnitude larger than the Planck length) we have
in this model the property which never has been recognized in any model of
quantum gravity: almost full asymptotic freedom (for more details, see [6, 7]).
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4 Restrictions on geometric language and the
ban on the existence of black holes

In this model, the cross section σ(E, ε) of the interaction of a graviton with
energy ε with any particle with energy E was taken equal to: σ(E, ε) = D ·
E · ε,, where D is a new dimensional constant (its estimate is: D = 0.795 ·
10−27m2/eV 2). We obtain the inverse square law for bodies if the condition
of large distances r is satisfied: σ(E,< ε >) � 4πr2, where E is the bigger
energy of a pair of bodies. This leads to an important consequence: some
”atomic” structure of matter is needed [5, 8]. For microparticles, the property
of asymptotic freedom arises at very small distances when this condition is
violated.

But black holes have no structure, and this condition can only be satisfied
at huge distances: for a solar-mass black hole, the condition would be satisfied
at distances r � 106 AE. On the other hand, in the model, screening of the
background of superstrong interacting gravitons creates for any pair of bodies
both an attractive force and a repulsive force due to the pressure of gravitons.
This means that black holes that absorb any particles and do not re-emit them
must have a much larger gravitational mass than the inertial one, i.e. for them,
Einstein’s equivalence principle will be violated. So, we have here a double ban
on the existence of black holes. This could mean that the invisible supermassive
objects at the centers of many galaxies, as well as other supposed black holes,
are now misnamed.

5 Vacuum effects

The interaction of any single massive body or photon with background gravitons
leads to small effects, which to the observer will seem like vacuum effects. All
of them are outside the scope of the special theory of relativity. Some of these
effects may only manifest themselves at cosmological distances or on large time
scales.

5.1 Deceleration of massive bodies due to collisions with
gravitons

The additional deceleration of massive bodies due to forehead and backhead
collisions with gravitons was calculated in [9]. This deceleration w is equal to:
w = −H0c · 4v2/c2 · (1 − v2/c2)0.5, where H0 is the Hubble constant, c is the
velocity of light, v is the body’s velocity relative to the background. For small
velocities we have:

w � −w0 · 4η2. (10)

In the Newtonian approach, if u is a more massive body’s velocity relative to
the background, M is its mass, and V = v+u is the velocity of the small body
relative to the graviton background, we will have now the following equation of
motion of the small body:

r̈ = −G
M

r2
· r
r

+
4w0

c2
(u · u − | v + u | · (v + u)), (11)
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where r is a radius-vector of the small body. Some results of numerical modeling
of a motion of bodies in the central field by the influence of this additional
deceleration are described in[10]. To evaluate a stability of planetary orbits in
the solar system in a presence of the anomalous deceleration w, we can use
the following trick: to increase w by hand to see a very small change of the
orbit’s radius, and to re-calculate a value of the resulting effect. In a case of
the Earth-like circular orbit, i.e. by M = M�, r(0) = 1 AU, given u = 4 · 105

m/s and that three vectors r, v, u lie in one plane, we get by the replacement:
w → 104 · w for one classical period T : Δr/r(0) = −1.08 · 10−8 yr−1 by Δt =
10−10 · T. It means that by the anomalous deceleration w we should have now:
Δr/r(0) = −1.08 · 10−12 yr−1. For the case when u is perpendicular to r, v
we have: Δr/r(0) = −7.2 · 10−13 yr−1. The Earth orbit will be stable enough
to have not contradictions with the estimated age of it in the solar system.
Results of modeling a star orbit in a galaxy in the similar way show that for
M = 1010 · M�, u = 5 · 105 m/s by r(0) = 1 kpc and r(0) = 100 kpc the ratio
w0
r̈(0) is equal to 2.2 and 0.00022 respectively. By r(0) = 1 kpc the relative change
of the distance to the center is Δr/r(0) = −0.034 during the time interval of
� 30 Gyr. By r(0) = 1 kpc the first unclosed external loop corresponds to 29.2
Gyr. At all scales closed orbits do not exist in the model: bodies inspiral to the
center of attraction, but for the Earth-like orbits this effect is very small. When
u is perpendicular to r, v, another effect takes place: the motion of the body
in the central field is not planar.

5.2 Scattering of photons on gravitons of the background

The Hubble constant is not connected here with any expansion of the universe,
but only with energy losses of photons due to forehead collisions with gravitons
of the background that causes redshifts of spectra of remote galaxies. The
Hubble constant H in this model is described by the formula:

H =
1
2π

D · ε̄ · (σT 4), (12)

where ε̄ is an average graviton energy, σ is the Stephan-Boltzmann constant,
T is an effective temperature of the graviton background. Energy losses of
photons due to forehead collisions with gravitons of the background leads to the
geometrical distance/redshift relation of this model:

r(z) = ln(1 + z) · c/H0, (13)

where H0 is the Hubble constant, c is the velocity of light. We may introduce
the Hubble parameter H(z) in the following manner:

dz = H(z) · dr

c
, (14)

to imitate the local Hubble law. Taking a derivative dr
dz , we get in this model

without expansion for H(z) :

H(z) = H0 · (1 + z). (15)

The Hubble parameter H(z) of this model is a linear function of z, that is in
a big discrepancy with ΛCDM. As it was shown, this function fits available
observations of H(z) very well [12, 13].
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The additional effect of decreasing a number of photons in a propagating
beam due to non-forehead collisions with gravitons can explain the discovered
in 1998 additional dimming of remote sources [1, 2]. These two effects give the
luminosity distance/redshift relation of the model:

DL(z) = c/H0 · ln(1 + z) · (1 + z)(1+b)/2, (16)

where the ”constant” b belongs to the range 0 - 2.137 (b = 3
2 + 2

π � 2.137
for very soft radiation, and b → 0 for very hard one). This relation fits cos-
mological observations of remote sources very well without dark energy [12].
To fit this model, observations should be corrected for no time dilation as:
μ(z) → μ(z) + 2.5 · lg(1 + z), where lg x ≡ log10 x, and the distance modulus:
μ(z) ≡ 5lgDL(z)(Mpc) + 25. In [13], I have used 31 binned points of the JLA
compilation from Tables F.1 and F.2 of [14] (diagonal elements of the correlation
matrix in Table F.2 are dispersions of distance moduli). Varying the value of
b, we find the best fitting value of this parameter: b = 2.365 with χ2 = 30.71.
It means that the best fitting has 43.03% C.L. This value of b is 1.107 times
greater than the theoretical one. For the Hubble constant we have in this case:
< H0 > ±σ0 = (69.54±1.58) km

s·Mpc . Results of the best fitting are shown in Fig.
1.

Figure 1: The theoretical Hubble diagram μ0(z) of this model with b = 2.365
(solid); Supernovae 1a observational data (31 binned points of the JLA com-
pilation) are taken from Tables F.1 and F.2 of [14] and corrected for no time
dilation.

After non-forehead collisions, scattered photons should create the light-from-
nowhere effect which has not an analog in the standard cosmological model. The
ratio δ(z) of the scattered flux to the remainder reaching the observer is equal
to [15]:

δ(z) = (1 + z)b − 1. (17)

By b = 2.137 we have, for example: δ(0.4) = 1.05, i.e. this effect is big enough
to explain a tentative detection of a diffuse cosmic optical background [20].
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In this model, the functions r(z) and DL(z) are found for radiation consisting
of photons with energies h̄ω �< ε >, where < ε > is the average graviton energy.
But for h̄ω �< ε >, e.g. for the radio band, the situation is more complicated
[18]. In this case, only a small part of the background gravitons will transfer
their momentum to photons in head-on collisions, and this momentum will often
be of the same order as the photons’ own momentum. This should lead to a large
broadening of the emission spectrum towards the red, and its redshift as a whole
will be much smaller than expected for high-energy radiation. From another
side, all gravitons with energies ε > h̄ω are able to get the photon momentum
in such the collisions that should additionally attenuate the radiation flux. This
means that the known redshift z and the constant parameter b are not enough
to describe the situation; this issue remains open. This feature of the model
may be important for measurements of the redshifted 21-cm radiation, which
are now of great interest [19].

5.3 Lorentz symmetry violation due to interactions of pho-
tons with the graviton background

The small average time delay of photons due to multiple interactions with gravi-
tons of the background has place in this model. At enormous distances, this
violates the basic postulate of the special theory of relativity about the con-
stancy of the speed of light. The two variants of evaluation of the lifetime of
a virtual photon are considered: 1) on a basis of the uncertainties relation (it
is a common place in physics of particles) and 2) using a conjecture about con-
stancy of the proper lifetime of a virtual photon. It is shown that in the first
case the violation of Lorentz symmetry is insignificant: the ratio of the average
delay time of photons to their propagation time is approximately 10−28; in the
second (with a new free model parameter), the delay is proportional to the dif-
ference

√
E01 −

√
E02, where E01, E02 are the initial photon energies, and more

energetic photons should come later, as in the first case [20].
To compute the average time delay of photons in the model [4, 5], it is nec-

essary to find a number of collisions with gravitons of the graviton background
on a small way dr and to evaluate a delay due to one act of interaction. Let us
consider at first the background of single gravitons. Given the expression for H
in the model, we can write for the number of collisions with gravitons having
an energy ε = h̄ω:

dN(ε) =
|dE(ε)|

ε
= E(r) · dr

c

1
2π

Df(ω, T )dω, (18)

where f(ω, T ) is described by the Plank formula. In the forehead collision, a
photon loses the momentum ε/c and obtains the energy ε; it means that for a
virtual photon we will have:

v

c
=

E − ε

E + ε
; 1 − v

c
=

2ε

E + ε
; 1 − v2

c2
=

4εE

(E + ε)2
. (19)

5.3.1 Evaluation of the lifetime of a virtual photon on a basis of the
uncertainties relation

The uncertainty of energy for a virtual photon is equal to ΔE = 2ε. If we
evaluate the lifetime using the uncertainties relation: ΔE · Δτ ≥ h̄/2, we get
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Δτ ≥ h̄/4ε. So as during the same time Δτ real photons overpass the way cΔτ ,
and virtual ones overpass only the way vΔτ , we have:

cΔt = cΔτ − vΔτ,

where Δt is the time delay, and the last one will be equal to:

Δt(ε) = Δτ(1 − v

c
) ≥ h̄/2 · 1

E + ε
. (20)

The full time delay due to gravitons with an energy ε is: dt(ε) = Δt(ε)dN(ε).
Taking into account all frequencies, we find the full time delay on the way dr:

dt ≥
∫ ∞

0

h̄

2
E

E + ε
· dr

c

1
2π

Df(ω, T )dω. (21)

The one will be maximal for E → ∞, and it is easy to evaluate it:

dt∞ ≥ h̄

4π

dr

c
· DσT 4. (22)

On the way r the time delay is:

t∞(r) ≥ h̄

4π

r

c
· DσT 4. (23)

In this model: r(z) = c/H · ln(1 + z); let us introduce a constant ρ ≡ h̄/4π ·
DσT 4/H = 37.2 · 10−12s, then

t∞(z) ≥ ρ ln(1 + z). (24)

We see that for z � 2 the maximal time delay is equal to ∼ 40 ps, i.e. the one
is negligible.

In the rest frame of a virtual photon, a single parameter, which may be
juxtaposed with an energy uncertainty, is mc2. Accepting ΔE = mc2 in this
frame, we’ll get:

t(z) ≥ ρ/2 · ln(1 + z) (25)

with the same ρ; now this estimate doesn’t depend on E.

5.3.2 The case of constancy of the proper lifetime of a virtual photon

Taking into account that for a virtual photon after a collision (E
′
/c)2 −p

′2 > 0,
we may consider another possibility of lifetime estimation, for example, Δτ0 =
const, where Δτ0 is the proper lifetime of a virtual photon (it should be con-
sidered as a new parameter of the model). Now it is necessary to transit to the
reference frame of observer:

Δτ = Δτ0/(1 − v2

c2
)1/2 = Δτ0 · E + ε

2
√

εE
, (26)

accordingly:
Δt(ε) = Δτ(1 − v

c
) = Δτ0 ·

√
ε/E. (27)
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Then the full time delay due to gravitons with an energy ε is:

dt(ε) = Δt(ε)dN(ε) = Δτ0 ·
√

εE · dr

c

1
2π

Df(ω, T )dω, (28)

and integrating it, we get:

dt = Δτ0 ·
√

E(r) · dr

c

1
2π

D

∫ ∞

0

√
εf(ω, T )dω. (29)

The integral in this expression is equal to:
∫ ∞

0

√
εf(ω, T )dω ≡ 1

4π2c2
· (kT )9/2

h̄3 · I6, (30)

where a new constant I6 is the following integral:

I6 ≡
∫ ∞

0

x7/2dx

exp x − 1
= 12.2681. (31)

In this model, the energy of a photon decreases as: E(r) = E0 exp(−Hr/c).
The full delay on the way r now is:

t(r) = Δτ0 · D

8π3c2
· (kT )9/2

h̄3 · I6

∫ r

0

√
E(r′) · dr′

c
= (32)

= Δτ0 · D

8π3c2
· (kT )9/2

h̄3 · I6 · 2
H

· (
√

E0 −
√

E(r)).

Let us introduce a new constant ε0 for which:

1√
ε0

≡ D

8π3c2
· (kT )9/2

h̄3 · I6 · 2
H

,

so ε0 = 2.391 · 10−4 eV, then

t(r) =
Δτ0√

ε0
· (

√
E0 −

√
E(r)) = Δτ0

√
E0

ε0
· (1 − exp(−Hr/2c)), (33)

where E0 is an initial photon energy. This delay as a function of redshift is:

t(z) = Δτ0

√
E0

ε0
·
√

1 + z − 1√
1 + z

. (34)

In this case, the time-lag between photons emitted in one moment from the
same source with different initial energies E01 and E02 will be proportional to
the difference

√
E01 − √

E02, and more energetic photons should arrive later,
also as in the first case. To find Δτ0, we must compare the computed value of
time-lag with future observations. An analysis of time-resolved emissions from
the gamma-ray burst GRB 081126 [21] showed that the optical peak occurred
(8.4 ± 3.9) s later than the second gamma peak; perhaps, it means that this
delay is connected with the mechanism of burst.
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5.3.3 An influence of graviton pairing

Graviton pairing of existing gravitons of the background is a necessary stage to
ensure the Newtonian attraction in this model. As it has been shown in [5], the
spectrum of pairs is the Planckian one, too, but with the smaller temperature
T2 ≡ 2−3/4T ; this spectrum may be written as: f(ω2, T2)dω2, where ω2 ≡
2ω. Then residual single gravitons will have the new spectrum: f(ω, T )dω −
f(ω2, T2)dω2, and we should also take into account an additional contribution
of pairs into the time delay.

We shall have now:

dN(ε) = E(r) · dr

c

1
2π

D(f(ω, T )dω − f(ω2, T2)dω2), (35)

and for pairs with energies 2ε :

dN(2ε) =
|dE(2ε)|

2ε
= E(r) · dr

c

1
2π

Df(ω2, T2)dω2. (36)

After a collision of a photon with a pair, a virtual photon will have a velocity
v2 : v2/c = (E − 2ε)/(E + 2ε), and a mass m2: m2c

2 = 2
√

2εE.
For the case of subsection 5.3.1, after collisions with pairs: ΔE = 4ε, Δτ ≥

h̄/8ε, and we get:

Δt(2ε) ≥ h̄/2 · 1
E + 2ε

. (37)

Then due to single gravitons and pairs:

dt2(ε) = dt′(ε) + dt(2ε) ≥ dt(ε) − h̄/2 · εE

(E + ε)(E + 2ε)
· dr

c

1
2π

Df(ω2, T2)dω2,

(38)
where dt′(ε) is a reduced contribution of single gravitons, dt(ε) is its full con-
tribution corresponding to formula (21). We see that if one takes into account
graviton pairing, the estimate of delay became smaller. So as

εE/(E + ε)(E + 2ε) → 0

by ε/E → 0, we have for the maximal delay in this case: t2∞(r) → t∞(r), i.e.
the maximal delay is the same as in subsection 5.3.1.

Repeating the above procedure for the case of subsection 5.3.2, we shall get:

t2(r) = [1 + (1 − 1/
√

2) · (T2/T )9/2] · t(r) � 1.028 · t(r), (39)

where t2(r) takes into account graviton pairing, and t(r) is described by formula
(33). In this case, the full delay is bigger on about 2.8% than for single gravitons.

6 Virtual massive gravitons as dark matter par-
ticles

Unlike models of expanding universe, in this model a problem of utilization of
energy, lost by radiation of remote objects, exists (see [8]). A virtual graviton
forms under collision of a photon with a graviton of the graviton background. It
should be massive if an initial graviton transfers its total momentum to a photon;
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it follows from the energy conservation law that its energy ε
′

must be equal to
2ε if ε is an initial graviton energy. By force of the uncertainty relation, one has
for a virtual graviton lifetime τ : τ ≤ h̄

ε′
, i.e. for ε

′ ∼ 10−3eV it is τ ≤ 10−12s.
By force of conservation laws for energy, momentum and angular momentum,
the virtual graviton may decay into no less than three real gravitons. In a case
of decay into three gravitons, their energies should be equal to ε, ε

′′
, ε′′′, with

ε
′′

+ ε′′′ = ε. So, after this decay, two new gravitons with ε
′′
, ε′′′ < ε inflow into

the graviton background. It is a source of refilling the graviton background.
Collisions of gravitons with massive bodies, leading to their deceleration [13],
should provide the bulk of this replenishment.

From another side, a self-interaction of gravitons of the background should
also lead to the formation of virtual massive gravitons with energies less than
εmin where εmin is a minimal energy of gravitons of an interacting pare. If
gravitons with energies ε

′′
, ε′′′ experience a series of collisions with gravitons of

the background, their lifetime should increase. In every such a cycle collision-
decay, an average energy of ”redundant” gravitons will double decrease, and its
lifetime will double or more increase. Only for ∼ 93 cycles, a lifetime will have
increased from 10−12s to as minimum 1 Gyr. Such virtual massive gravitons,
with the lifetime increasing from one collision to another, would be ideal dark
matter particles. The ones will not interact with matter in any manner except
usual gravitation. The ultracold gas of such gravitons will condense under the
influence of gravitational attraction. In addition, even in the absence of the
initial inhomogeneity in such the gas, it will easily arise. It is a way of cooling
the graviton background.

The model of the composite fundamental fermions by the author [17] has
all symmetries of the standard model of elementary particles on global level.
Possibly virtual gravitons with very low masses are quite acceptable for the role
of components of such the fermions.

7 How to verify the main conjecture of this ap-
proach

The main conjecture of this approach about the quantum nature of redshifts may
be verified in a ground-based laser experiment. To do it, one should compare
spectra of laser radiation before and after passing some distance l in a high-
vacuum tube [12]. The temperature T of the graviton background coincides in
the model with the one of CMB. Assuming T = 2.7K, we have for the average
graviton energy: ε̄ = 8.98 · 10−4 eV. Because of the quantum nature of redshift,
the satellite of main laser line of frequency ν would appear after passing the
tube with a redshift of 10−3 eV/h, and its position should be fixed. It will
be caused by the fact that on a very small way in the tube only a small part
of photons may collide with gravitons of the background. The rest of them
will have unchanged energies. The center-of-mass of laser radiation spectrum
should be shifted proportionally to a photon path. Due to the quantum nature
of shifting process, the ratio of satellite’s intensity to main line’s intensity should
have the order: ∼ hν

ε̄
H0
c l. Given a very low signal photon number frequency,

one could use a single photon counter to measure the intensity of the satellite
line after a narrow-band filter with filter’s transmittance k. If q is a quantum
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output of a photomultiplier cathode, fn is a frequency of its noise pulses, and
n is a desired signal-to-noise ratio, then an evaluated time duration t of data
acquisition would be equal to:

t =
(ε̄cn)2fn

(H0qkP l)2
, (40)

where P is a laser power. Assuming for example: n = 10, fn = 103 s−1, q = 0.3,
k = 0.1, P = 200 W, l = 300 km, we have the estimate: t ≈ 3 · 103 s. Such the
value of l may be achieved if one forces a laser beam to whipsaw many times
between mirrors in the vacuum tube with the length of a few kilometers.

8 Conclusion

In this approach, the main quantum effect of gravity is the inverse square law,
postulated by Isaac Newton to explain the motion of bodies in the solar system.
It is this effect that guarantees the irreversibility of time: when time is reversed,
attraction should be replaced by repulsion thanks to the described mechanism
of gravity. Here we can calculate the Newton and Hubble constants as functions
of background temperature using the new dimensional constant D. A very large
value of D makes gravity at the quantum level super strong. Of course, the ques-
tion arises: where in high-energy physics could such a superstrong interaction
be hidden? Perhaps the existence of three generations of fundamental fermions
may be due to their complex nature; then their components can be connected
by this interaction. On the other hand, background gravitons should create
a region of very high turbulence near any microparticle, which gives us hope
to explore in more detail using this approach the currently unknown nature of
quantum uncertainty in the microworld, described by quantum mechanics.

The scattering of photons by background gravitons leads to three effects [15],
two of which are observed, but currently have a different interpretation based on
the generally accepted cosmological paradigm. The cost of this interpretation
is very high: cosmological expansion must be accepted to explain the redshift
of distant objects, and their additional dimming requires the invention of dark
energy to accelerate this expansion.When New Horizons observations [20] of the
third effect (light from nowhere effect) will be confirmed, this triad can become
a very important argument for changing the existing paradigm. If in the case
of Big Bang cosmology we have to trust the main hypothesis without a chance
to prove it, then the local quantum nature of the cosmological redshifts in this
approach can be tested in the described laser experiment.
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