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Abstract
As two different but related infinite-length equations through analytic continuation, Hasse
principle is satisfied by Riemann zeta function as a certain type of equation that generates
all infinitely-many trivial zeros but this principle is not satisfied by its proxy Dirichlet eta
function as a dissimilar type of equation that generates all infinitely-many nontrivial zeros.
Based on two seemingly different location that are in fact identical, all nontrivial zeros
are mathematically located on critical line or geometrically located on Origin point. Thus
we prove location for complete Set nontrivial zeros to be critical line confirming Riemann
hypothesis to be true. Sieve of Eratosthenes as a certain type of infinite-length algorithm
is exactly constituted by an Arbitrarily Large Number of (self-)similar infinite-length
sub-algorithms that are specified by every even Prime gaps. Modified Hasse principle is
satisfied by this algorithm and its sub-algorithms that perpetually generate the Arbitrarily
Large Number of all Odd Primes. Thus we prove Set even Prime gaps with corresponding
Subsets Odd Primes all have cardinality Arbitrarily Large in Number confirming Modified
Polignac’s and Twin prime conjectures to be true.
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1 Introduction
Conceived in 1859, Riemann hypothesis proposed all infinitely many nontrivial zeros from
Riemann zeta function (via proxy Dirichlet eta function) are located on its critical line.
Respectively conceived in 1849 and 1846, Polignac’s conjecture proposed there are infinitely
many Odd Primes derived from each and every even Prime gaps 2, 4, 6, 8, 10.... and Twin
prime conjecture proposed there are infinitely many (Odd) Twin Primes derived from even
Prime gap 2. Thus Twin prime conjecture is simply a subset of Polignac’s conjecture.

The correct and complete mathematical arguments required to prove famous open prob-
lems in Number theory of Riemann hypothesis, Polignac’s and Twin prime conjectures are
best depicted when these problems are regarded as Incompletely Predictable Problems. It is
informative for the required mathematical arguments that are ”centered” around Axiom 1 to
be broadly based on Mathematics for Incompletely Predictable Problems (MIPP) with
Summary provided in subsection 1.2. Solving these problems is assisted by formulating the
Completely and Incompletely Predictable entities as ”Universal Principles” (Lemma 1) that
are applicable to relevant (sub)sets and (sub)tuples. The novel classification of Countably
Infinite Set into three subtypes (Lemma 2), p-adic absolute values, modular arithmetic, Hasse
and Modified Hasse principles are applied at various places in this paper when required.

As two different but related infinite-length equations through analytic continuation, Hasse
principle is satisfied by Riemann zeta function as a certain type of equation that generates all
infinitely-many trivial zeros [located outside the 0 < σ < 1-critical strip] but this principle is
not satisfied by its proxy Dirichlet eta function as a dissimilar type of equation that generates
all infinitely-many nontrivial zeros [located inside the 0 < σ < 1-critical strip on the σ = 1

2 -
critical line]. As two seemingly different location that are in fact identical, all nontrivial zeros
are mathematically located on [one-dimensional] σ = 1

2 -critical line or geometrically located
on [zero-dimensional]σ = 1

2 -Origin point. Thus we prove location for complete Set nontrivial
zeros to be critical line confirming Riemann hypothesis to be true.

We ignore the solitary even Prime number 2. As a certain type of infinite-length algorithm,
Sieve-of-Eratosthenes is exactly constituted by an Arbitrarily Large Number of (self-)similar
infinite-length sub-algorithms that are specified by every even Prime gaps 2, 4, 6, 8, 10....
Again as a certain type of infinite-length algorithm, Complement-Sieve-of-Eratosthenes is
exactly constituted by two inversely related infinite-length sub-algorithms that are specified
by odd Gap 1-Composites and even Gap 2-Composites. Modified Hasse principle is satisfied
by these two algorithms and their associated sub-algorithms that perpetually generate all Odd
Primes and Gap 2-Even Composites [that are both Arbitrarily Large in Numbers and overall
equal to each other], and Gap 1-Even Composites and Gap 1-Odd Composites [that are both
Infinitely Many in Numbers and equal to each other]. Thus we prove Set even Prime gaps
with uniquely associated Subsets Odd Primes all have cardinality Arbitrarily Large in Number
confirming Modified Polignac’s and Twin prime conjectures to be true [and with our proofs
being fully consistent with Prime number theorem].

The p1 commencing values are defined as being constituted from the entire set of prime
numbers 2, 3, 5, 7, 11, 13.... Incorporating all the integers between 0 and p-1 inclusive, the
p1 residue classes of 0 mod p1, 1 mod p1, 2 mod p1,..., p1-2 mod p1, p1-1 mod p1 from
modular arithmetic are used to delineate Admissible Prime k-tuplets from Inadmissible Prime
(k+1)-tuples [in Proposition 1, subsection 6.1] whereby all these created tuplets and tuples are
regarded as the ”overlapping and incomplete” (Sub)Tuples Classification of consecutive
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primes that cannot be used to either prove or disprove Modified Polignac’s and Twin prime
conjectures. On the contrary, the ”non-overlapping and complete” (Sub)Sets Classification
of grouped primes is used by us to prove Modified Polignac’s and Twin prime conjectures.

The p-adic number system for any prime number p extends the ordinary arithmetic of
rational numbers in a different way from the extension of rational number system to real
and complex number systems. The p-adic expansion of rational numbers also incorporate all
the integers between 0 and p-1 inclusive. We apply p-adic absolute values to Prevalences
of Nontrivial zeros, Primes and Composites in subsection 3.1. We insightfully deduce the
computed (infinite-length) patterns of p-adic absolute values are specific for Odd Primes
[as generated by (sub-)algorithms of Sieve-of-Eratosthenes from all even Prime gaps 2, 4,
6, 8, 10... in total, and from each and every even Prime gap in sub-totals]; Composites [as
generated by (sub-)algorithms of Complement-Sieve-of-Eratosthenes as Composites in total,
and even Gap 2-Composites and odd Gap 1-Composites in sub-totals]; and Nontrivial zeros
[as generated by equation Dirichlet eta function only at (unique) σ = 1

2 critical line whereby
this σ = 1

2 value is mutually exclusive and independent of all other σ , 1
2 values associated

with infinitely-many (non-unique) σ , 1
2 non-critical lines in the 0 < σ < 1 critical strip].

1.1 General notations, (Sub)Sets versus (Sub)Tuples Classification
Common abbreviations used in this paper: CP = Completely Predictable, IP = Incompletely
Predictable, FL = finite-length, IL = infinite-length, CFS = countably finite set, CIS =
countably infinite set, IM = infinitely many, ALN = Arbitrarily Large Number.

List of abbreviations incorporating relevant definitions [that also include s = σ ± it]:
·CP entities: Completely Predictable entities which will manifest CP independent properties.
·IP entities: Incompletely Predictable entities which will manifest IP dependent properties.
·ζ(s): f (n) Riemann zeta function containing variable n, and parameters t and σ will generate
[via its proxy Dirichlet eta function] Zeroes when σ = 1

2 and virtual Zeroes when σ , 1
2 .

·η(s): f (n) Dirichlet eta function, as the analytic continuation of ζ(s), containing variable n,
and parameters t and σ will generate Zeroes when σ = 1

2 and virtual Zeroes when σ , 1
2 .

·sim-η(s): f (n) simplified Dirichlet eta function, derived by applying Euler formula to η(s),
containing variable n, and parameters t and σ will generate Zeroes when σ = 1

2 and virtual
Zeroes when σ , 1

2 .
·DSPL: F(n) Dirichlet Sigma-Power Law =

∫
sim-η(s)dn containing variable n, and param-

eters t and σ will generate Pseudo-zeroes when σ = 1
2 and virtual Pseudo-zeroes when

σ , 1
2 whereby the (virtual) Zeros = (virtual) Pseudo-zeros – π

2 relationship allows (virtual)
Pseudo-zeros to (virtual) Zeros conversion and vice versa.
·NTZ: Nontrivial zeros located on one-dimensional (mathematical) σ = 1

2 -critical line are
precisely equivalent to G[x=0,y=0]P: Gram[x=0,y=0] points as Origin intercept points
which are located at zero-dimensional (geometrical) σ = 1

2 -Origin point [as per Figure 6].
These entities, mathematically defined by

∑
ReIm{η(s)} = Re{η(s)} + Im{η(s)} = 0, are

generated by equation G[x=0,y=0]P-η(s) containing exponent 1
2 when σ = 1

2 .
·GP or G[y=0]P: ’usual’ or ’traditional’ Gram points = Gram[y=0] points = x-axis intercept
points that are [multiple-positioned] located on one-dimensional x-axis line are generated
by equation G[y=0]P-η(s) when σ = 1

2 . These entities are mathematically defined by∑
ReIm{η(s)} = Re{η(s)} + 0, or simply Im {η(s)} = 0. Riemann hypothesis is usefully stated
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as none of the [additional] virtual G[x=0]P generated by equation G[x=0]P-η(s) when σ , 1
2

– as demonstrated by Figure 11 for σ = 1
3 – can be constituted by t transcendental number

values that [incorrectly] coincide with t transcendental number values for NTZ when σ = 1
2 .

·G[x=0]P: Gram[x=0] points = y-axis intercept points that are [multiple-positioned] located
on one-dimentional y-axis line are generated by equation G[x=0]P-η(s) when σ = 1

2 . These
entities are mathematically defined by

∑
ReIm{η(s)} = 0 + Im{η(s)}, or simply Re{η(s)} = 0.

·virtual NTZ: virtual nontrivial zeros or virtual G[x=0,y=0]P: virtual Gram[x=0,y=0]
points. These are virtual Origin intercept points located at the multiple-positioned virtual
Origin points which are generated by equation G[x=0,y=0]P-η(s) containing exponent values
, 1

2 when σ , 1
2 . We note that each virtual NTZ when σ < 1

2 in Figure 7 equates to an
[additional] negative virtual G[y=0]P located at IP varying positions on horizontal axis, and
each virtual NTZ when σ > 1

2 in Figure 8 equates to an [additional] positive virtual G[y=0]P
located at IP varying positions on horizontal axis. We observe overall less virtual G[x=0]P
when σ > 1

2 , and overall more virtual G[x=0]P when σ < 1
2 .

·Sieve-of-Eratosthenes: As symbolically denoted by pn+1 = 2 +
n∑

i=1

gi with gn = pn+1 − pn,

its derived (sub-)algorithms will faithfully generate all prime numbers.

·Complement-Sieve-of-Eratosthenes: As symbolically denoted by cn+1 = 4 +
n∑

i=1

ci with

gn = cn+1 − cn, its derived (sub-)algorithms will faithfully generate all composite numbers.

Remark 1. Important deductions on (Sub)Sets Classification of grouped Primes (P),
Composites (C) and Integers (Z) versus (Sub)Tuples Classification of consecutive Primes:

Z {0, 1, 2, 3, 4, 5...} = Non-P Non-C {0, 1} + P {2, 3, 5, 7, 11, 13, 17, 19...} + C {4, 6, 8, 9,
10, 12, 14, 15...}. Available gaps between any two consecutive numbers to non-overlappingly
classify all Z, P and C as mutually exclusive sets or subsets: CIS-IM-linear odd Gap 1-Z
(or simply Gap 1-Z); CFS odd Gap 1-P (or simply Gap 1-P); CIS-ALN-decelerating even
Gap 2i-P (or simply Gap 2i-P) with i = 1, 2, 3, 4, 5...; CIS-IM-accelerating odd Gap 1-C (or
simply Gap 1-C); CIS-ALN-decelerating even Gap 2-C (or simply Gap 2-C).
· We refer to the CIS-ALN-decelerating p1 commencing values obtained from all P 2, 3, 5,
7, 11, 13.... For each p1 commencing value [with some caveats in Proposition 1, subsection
6.1]; we can overlappingly classify consecutive primes as the [non-mutually exclusive]
Admissible Prime k-tuplets and Inadmissible Prime (k + 1)-tuples of increasing lengths.
· (Finite-Length) Admissible Prime k-tuplets & tuples, and (Finite-Length) Inadmissible
Prime k-tuples represent finite ordered list of k consecutive primes. Only when k = 2, the two
consecutive primes in all Prime 2-tuplets [viz, representing all Gap 2-Odd P] and in all Prime
2-tuples [viz, representing all Gap 4-Odd P, Gap 6-Odd P, Gap 8-Odd P, Gap 10-Odd P,...]
are always uniquely non-overlapping and admissible. Otherwise when k > 2, some of the k
consecutive primes as subtuples from Prime k-tuplets or Prime k-tuples could overlappingly
recur in different Prime k-tuplets [that are always admissible] or in different Prime k-tuples
[that can be either admissible or inadmissible].

(I) All P = 2, 3, 5, 7, 11,... as CIS-ALN-decelerating; Even P or Gap 1-Even P = 2 as CFS
· (i) Odd P or Gap 2i-Odd P = 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,
67, 71, 73, 79, 83, 89, 97,... as CIS-ALN-decelerating
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· (ii) please refer to List of twin primes, cousin primes, sexy primes, etc in section 2 as derived
from individual even Prime gaps 2, 4, 6, 8, 10... in an ad infinitum manner.
· For i = 1, 2, 3, 4, 5...; All Odd P or Gap 2i-Odd P [as Set] = Gap 2-Odd P + Gap 4-
Odd P + Gap 6-Odd P + Gap 8-Odd P + Gap 10-Odd P... [as Subsets]. This important
Set =

∑
(ALN of Subsets) non-overlapping mutually exclusive relationship with the Set and

its derived Subsets of prime numbers all having cardinality CIS-ALN-decelerating confirms
Modified Polignac’s and Twin prime conjectures to be true.

(II) All C = 4, 6, 8, 9, 10, 12, 14, 15, 16... as CIS-IM-accelerating
· (i) Even C = 4, 6, 8, 10, 12, 14, 16... as CIS-IM-accelerating
· (ii) Odd C = 9, 15, 21, 25, 27, 33, 35... as CIS-IM-accelerating
· (iii) Gap 1-Even C = 8, 14, 20, 24, 26, 32, 34, 38, 44... as CIS-IM-accelerating
· (iv) Gap 1-Odd C = 9, 15, 21, 25, 27, 33, 35, 39, 45... as CIS-IM-accelerating
· (v) Gap 2-Even C = 4, 6, 10, 12, 16, 18, 22, 28, 30, 36... as CIS-IM-decelerating
· Important set and subsets non-overlapping mutually exclusive relationships for composite
numbers: (1) All C = Even C + Odd C = Gap 1-Even C + Gap 1-Odd C + Gap 2-Even C.
(2) Even C = Gap 1-Even C + Gap 2-Even C. (3) Odd C = Gap 1-Odd C. (4) Gap 1-Even C
= Gap 1-Odd C. (5) Even C > Odd C, Gap 1-Even C + Gap 1-Odd C or Gap 1-Even C or
Gap 1-Odd C > Gap 2-Even C. (6) P-C dependent connection: Gap 2-Even C = All Odd P.

1.2 Summary of Mathematics for Incompletely Predictable Problems
On the overall objective to rigorously derive the Algorithm-type proofs for Modified
Polignac’s and Twin prime conjectures [see Definition 1 in subsection 7.1] and the Equation-
type proof for Riemann hypothesis, we apply infinitesimal numbers at two places using the
following colloquially-stated propositions with their formal proofs[27] provided in section 7:

Proposition 3: In the limit of never reaching a [nonexisting] zero conceptually seen as
Prevalences of both even Prime gaps and the associated [positive and negative] Odd Primes
never becoming zero whereby arbitrarily large number of different even Prime gaps that
uniquely accompany all Odd Primes in totality will never stop recurring. Foundation Figure
1 allows Geometrical-Mathematical interpretation for positive Odd Primes.

Proposition 4: In the limit of reaching an [existing] zero conceptually seen as [entire
−∞ < t < +∞] trajectory of Dirichlet eta function, proxy for Riemann zeta function, touch-
ing (symbolic) zero-dimensional σ = 1

2 -Origin point only when parameter σ = 1
2 whereby all

nontrivial zeros [mathematically] located on (symbolic) one-dimensional σ = 1
2 -critical line

will [geometrically] declare themselves in totality as corresponding Origin intercept points.
Foundation Figure 12 allows Geometrical-Mathematical interpretation for 0 < t < +∞ range.

Remark 2. Important relationships & deductions from Gram Points, Primes, Composites,
Prime-Composite identifier grouping and Prime-Composite quotient:
· At σ = 1

2 -critical line; Gram Points = Solitary CP 1st G[y=0]P as Rational number {0} +
All IP CIS-IM-linear G[y=0]P, G[x=0]P and G[x=0,y=0]P as Irrational numbers. Overall, IP
CIS-IM-linear G[y=0]P = IP CIS-IM-linear G[x=0]P = IP CIS-IM-linear G[x=0,y=0]P. In
0 < σ < 1-critical strip (with logical reasoning given in Remark 5), (i) unique solitary (Co-
linear) Equation G[x=0,y=0]P-η(s) at σ = 1

2 -critical line [with optimal ”formula symmetry”]
is independent of (ii) non-unique infinitely many (Co-linear) Equations G[x=0,y=0]P-η(s) at
σ , 1

2 -noncritical lines [without optimal ”formula symmetry”]. Both (i) and (ii) generate

6



mutually exclusive and parallel co-linear lines (co-lines) that never cross over one another.
The complete absence of G[x=0,y=0]P at all CIS-IM-linearσ , 1

2 -noncritical lines equates
to Riemann hypothesis being true. As other phenomena happening on σ = 1

2 -critical line,
the perpetually applicable Gram’s Law and Rosser’s Rule on Nontrivial zeros-Gram points
relationships, and their [expected] intermittently occurring violations on an eternal basis, do
not contradict our derived proof for Riemann hypothesis to be true.
· We arbitrarily classify CIS-ALN-decelerating even Prime gaps 2, 4, 6, 8, 10... as small

Prime gaps 2 & 4, and large Prime gaps ≥ 6. (i) Small or smaller Prime gaps tend to appear
amongst the smaller range of integers. (ii) Large or larger Prime gaps tend to appear amongst
the larger range of integers. Both the former (i) and the later (ii) should overall appear in
a perpetual manner amongst the entire range of integers. First appearance of an even Prime
gap do not always occur in an orderly manner e.g. 31st P 127 [with even Prime gap 14] first
appear before 35th P 149 [with even Prime gap 10] and 43rd P 191 [with even Prime gap
12]. However once a particular even Prime gap does first appear, it must always perpetually
reappear albeit with decreasing frequency amongst the ever increasing range of integers.
· (i) IP CIS-IM-accelerating Gap 1-Even C = IP CIS-IM-accelerating Gap 1-Odd C. (ii) IP

CIS-ALN-decelerating Gap 2-Even C = IP CIS-ALN-decelerating Gap 2i-Odd P. From the
inversely related (i) [with its two unique subsets of Gap 1-Even C and Gap 1-Odd C that fully
comply with Composite number theorem] and (ii) [with its one unique subset of Gap 2-
Even C and ALN unique subsets from Gap 2i-Odd P that fully comply with Prime number
theorem], the Prime-Composite quotient is stated below in two equivalent formats:

(1) lim
x→∞

CIS-ALN-decelerating Gap 2i-Odd P + CIS-ALN-decelerating Gap 2-Even C
CIS-IM-accelerating Gap 1-Even C + CIS-IM-accelerating Gap 1-Odd C

= 0

(2) CIS-ALN-decelerating Gap 2i-Odd P + CIS-ALN-decelerating Gap 2-Even C
∼

1
CIS-IM-accelerating Gap 1-Even C + CIS-IM-accelerating Gap 1-Odd C

· In between any two given Odd P, even Prime gap [= 2 + Σ(Number of all Gap 1-Even
C + Number of all Gap 1-Odd C)]. Hence Gap 1-Even C and Gap 1-Odd C do not exist for
Gap 2-Odd P (twin primes). For Gap 2i-Odd P with CIS-ALN-decelerating i = 1, 2, 3, 4, 5...;
the initial five computed Prime-Composite identifier groupings [see section 5] are listed:–
When i = 1, CIS-ALN-decelerating Gap 2-Odd P is given by Gap 2-Even C, Gap 2-Odd P.
When i = 2, CIS-ALN-decelerating Gap 4-Odd P is given by Gap 2-Even C, Gap 4-Odd P,
Gap 1-Even C, Gap 1-Odd C.
When i = 3, CIS-ALN-decelerating Gap 6-Odd P is given by Gap 2-Even C, Gap 6-Odd P,
Gap 1-Even C, Gap 1-Odd C, Gap 1-Even C, Gap 1-Odd C.
When i = 4, CIS-ALN-decelerating Gap 8-Odd P is given by Gap 2-Even C, Gap 8-Odd P,
Gap 1-Even C, Gap 1-Odd C, Gap 1-Even C, Gap 1-Odd C, Gap 1-Even C, Gap 1-Odd C.
When i = 5, CIS-ALN-decelerating Gap 10-Odd P is given by Gap 2-Even C, Gap 10-Odd
P, Gap 1-Even C, Gap 1-Odd C, Gap 1-Even C, Gap 1-Odd C, Gap 1-Even C, Gap 1-Odd
C, Gap 1-Even C, Gap 1-Odd C. · · · for all other remaining i.
· If we also include Gap 2-Even C between two consecutive Odd P, then even Prime gap [= 1
+ Σ(Number of all Gap 1-Even C + Number of all Gap 1-Odd C + solitary Gap 2-Even C)].
The generalized sequence {n!+2, n1+3, n1+4, ..., n!+n} using factorial function give rise to
precisely n−1 consecutive C since 1st term n!+2 is divisible by 2, 2nd term n!+3 is divisible by
3,..., (n−1)th term n!+n is divisible by n. For any n = 2, 4, 6, 8, 10, 12..., there is (even Prime
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gap – 1) = n−1 = 1, 3, 5, 7, 11, 13... ”with length of at least n−1” thus reflecting the permitted
total number of n−1 consecutive C in between two consecutive Odd P. This implies arbitrarily
large even Prime gaps are possible whereby any particular even Prime gap chosen from 2, 4,
6, 8, 10... can be derived from the same grouping with or without including Gap 2-Even C as
respectively denoted by (even Prime gap – 1) or (even Prime gap – 2). Two important P-C
constraints: (i) Prime gaps of n− 1 numbers can occur at numbers much smaller than n! e.g.
first prime gap of size larger than 14 occurs between Odd P 523 and Odd P 541, while 15!
is the vastly larger number 1307674368000. (ii) Although computed n consecutive C = 2, 4,
6, 8, 10... [≡ (forbidden) odd Prime gaps 1, 3, 5, 7, 9...] based on our generalized sequence
using factorial function are mathematically possible; all these specific n consecutive C will
simply not correctly represent the (permitted) total number of n−1 consecutive C in between
any two consecutive Odd P. All even Prime gaps 2, 4, 6, 8, 10... with associated unique
Odd P that perpetually reappear [albeit with decreasing frequency] along the number
line equates to Modified Polignac’s and Twin prime conjectures being true.
· Probability (Gap 2i-Odd P from any i = 1, 2, 3, 4, 5... value that abruptly terminates) =

0 equates to Modified Polignac’s and Twin prime conjectures being true. In particular, this
statistical statement is fully validated by application of Prime number theorem for Arithmetic
progressions in Axiom 1, section 6 that confirms the Set and derived Subsets of Gap 2i-Odd P
are CIS-ALN-decelerating [and support the generalized and ordinary Riemann hypothesis].

2 Infinite-length or Finite-length equations, sub-equations,
algorithms and sub-algorithms

We adopt the abbreviations from subsection 1.1. Conceptually, IL (sub-)algorithms or IL
(sub-)equations and FL (sub-)algorithms or FL (sub-)equations will respectively generate
infinitely-many and finitely-many entities. All the FL (sub-)algorithms or FL (sub-)equations
are CP but the IL (sub-)algorithms or IL (sub-)equations can be either CP or IP. Here, we can
validly regard equation Dirichlet eta function (proxy for Riemann zeta function), and algo-
rithms Sieve-of-Eratosthenes [for prime numbers] and Complement-Sieve-of-Eratosthenes
[for composite numbers] as ”IP IL number generators”. Not least to maintain Dimensional
analysis homogeneity and to conserve Total number of elements (cardinality) [as supported
by the outlined Proof by Contradiction in Remark 4], it is a sine qua non Pre-requisite
Mathematical Condition that a parent IP IL algorithm which is precisely constituted by its
IP IL sub-algorithms or a parent IP IL equation which is precisely constituted by its IP IL
sub-equations must generally all be wholly IP IL [and not be mixed IP IL and CP FL].

Prime counting function Prime-π(x) = number of prime numbers ≤ x. As literally
an infinite-scale stepped-mathematical function contributing to tuples and subtuples from
Admissible Prime k-tuplets/tuples and Inadmissible Prime k-tuples, there are three possible
trajectories from Prime-π(x) whereby we also use even Prime gaps 6n as common randomly
chosen examples – viz. for n = 1, 2, 3..., even Prime gaps = 6, 12, 18... [multiples of 6].

(a) Accelerating primes: Prime gapi+2 – Prime gapi+1 > Prime gapi+1 – Prime gapi

occurring an arbitrarily large number of times e.g. Admissible Prime 3-tuplet (p, p+2, p+6)
with smallest possible diameter = 6, Admissible Prime 3-tuple (p+6, p+10, p+16) ≡ (p, p+4,
p+10) with [not the smallest possible] diameter = 10 that is derived from Admissible Prime
18-tuplet (p, p+4, p+6, p+10, p+16, p+18, p+24, p+28, p+30, p+34, p+40, p+46, p+48,

8



p+54, p+58, p+60, p+66, p+70) with smallest possible diameter = 70, and Admissible Prime
3-tuple (p, p+6, p+18) from ([p-24], [p-22], [p-10], p, p+6, p+18, [p+42], [p+50]) with [not
the smallest possible] diameter = 18 occurring at consecutive primes (22391, 22397, 22409)
with position of first p = 2506.

(b) Decelerating primes: Prime gapi+2 – Prime gapi+1 < Prime gapi+1 – Prime gapi occur-
ring an arbitrarily large number of times e.g. Admissible Prime 3-tuplet (p, p+4, p+6) with
smallest possible diameter = 6, Admissible Prime 3-tuple (p+20, p+26, p+30) ≡ (p, p+6,
p+10) with [not the smallest possible] diameter = 10 that is derived from Admissible Prime
9-tuplet (p, p+2, p+6, p+8, p+12, p+18, p+20, p+26, p+30) with smallest possible diameter
= 30, and Admissible Prime 3-tuple (p, p+18, p+30) from ([p-26], [p-22], [p-12], p, p+18,
p+30, [p+50], [p+54]) with [not the smallest possible] diameter = 30 occurring at consecutive
primes (10193, 10211, 10223) with position of first p = 1252.

(c) Steady primes: Prime gapi+2 – Prime gapi+1 = Prime gapi+1 – Prime gapi that should
occur an arbitrarily large number of times [albeit on extremely rare occasions] and can only
involve prime gaps 6n. For instance, the Admissible Prime 3-tuple (p, p+6, p+12) from ([p-
2], p, p+6, p+12, [p+18], [p+28], [p+36]) with [not the smallest possible] diameter = 12
occurring at consecutive primes (63691, 63697, 63703) with position of first p = 6386; and
Admissible Prime 3-tuple (p, p+18, p+36) from ([p-2], p, p+18, p+36, [p+54], [p+60]) with
[not the smallest possible] diameter = 36 occurring at consecutive primes (76543, 76561,
76579) with position of first p = 7531. An exception is the solitary Inadmissible Prime 3-
tuple (p, p+2, p+4) with smallest diameter = 4 occurring at consecutive primes (3, 5, 7) ≡
cummulative prime gaps (0, 2, 4). We can explain using either (3, 5, 7) tuple or (0, 2, 4)
tuple why this particular Prime 3-tuple is inadmissible, and we choose the former tuple. k =
3, prime q ≤ k =⇒ prime q = 2 and 3 which are required for modular q. For modular 2: 3
≡ 1 (mod 2), 5 ≡ 1 (mod 2), 7 ≡ 1 (mod 2) =⇒ these three primes did not take on all two
residue values 0 and 1 [considered as success]. However, for modular 3: 3 ≡ 0 (mod 3), 5 ≡
2 (mod 3), 7 ≡ 1 (mod 3) =⇒ these three primes did take on all three residue values 0, 1
and 2 [considered as failure]. By definition, this failure occurrence =⇒ the three primes are
inadmissible since they would always include a multiple of 3 and therefore could not all be
prime unless one of the numbers is 3 itself with finite one prime placement.

For i = 1, 2, 3, 4, 5,..., n; relevant algorithm and sub-algorithms from Sieve of Eratosthenes
computed for the following mutually exclusive but dependent prime numbers all as rational
numbers endowed with the solitary odd Prime gap 1 for even prime number 2, and the initial
even Prime gaps 2, 4 and 6 for odd Twin primes, odd Cousin primes and odd Sexy primes:

(a) For IP IL algorithm [Gap 2, 4, 6, 8, 10...]-Sieve of Eratosthenes pn+1 = 3 +
n∑

i=1

gi

[where n = ALN] that faithfully generates all Odd P {3, 5, 7, 11, 13, 17, 19...} with cardinality
ℵ0-decelerating, the nth even Prime gap between two successive Odd P is denoted by gn =

(n + 1)st Odd P – (n)th Odd P, i.e. gn = pn+1 − pn = 2, 2, 4, 2, 4, 2....

(b) For CP FL sub-algorithm [Gap 1]-Sieve of Eratosthenes pn+1 = 2 +
n∑

i=1

gi [where n =

1 and not ALN] that faithfully generates the first and only Even P {2} with cardinality CFS of
1, the solitary nth odd prime gap between two successive primes is denoted by gn = (n + 1)st

Odd P – (n)th Even P, i.e. gn = pn+1 − pn = 3 − 2 = 1.
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(c) For IP IL sub-algorithm [Gap 2]-Sieve of Eratosthenes pn+1 = 3 +
n∑

i=1

gi [where n =

ALN] that faithfully generates all Odd twin P {3, 5, 11, 17, 29, 41, 59...} with cardinality ℵ0-
decelerating, the nth even Prime gap between two successive Odd twin P is denoted by gn =

(n + 1)st Odd twin P – (n)th Odd twin P, i.e. gn = pn+1 − pn = 2, 6, 6, 12, 12, 18....

(d) For IP IL sub-algorithm [Gap 4]-Sieve of Eratosthenes pn+1 = 7 +
n∑

i=1

gi [where n =

ALN] that faithfully generates all Odd cousin P {7, 13, 19, 37, 43, 67...} with cardinality ℵ0-
decelerating, the nth even Prime gap between two successive Odd cousin P is denoted by gn

= (n + 1)st Odd cousin P – (n)th Odd cousin P, i.e. gn = pn+1 − pn = 6, 6, 8, 6, 24....

(e) For IP IL sub-algorithm [Gap 6]-Sieve of Eratosthenes pn+1 = 23 +
n∑

i=1

gi [where n =

ALN] that faithfully generates all Odd sexy P {23, 31, 47, 53, 61, 73, 83...} with cardinality
ℵ0-decelerating, the nth even Prime gap between two successive Odd sexy P is denoted by gn

= (n + 1)st Odd sexy P – (n)th Odd sexy P, i.e. gn = pn+1 − pn = 8, 16, 6, 8, 12, 10....
With n = ALN or, traditionally,∞; rigorous algorithm-type proof for Modified Polignac’s

and Twin prime conjectures can be stated here as two statements. Statement 1: All known
prime numbers = IP IL algorithm (a) + CP FL sub-algorithm (b). Statement 2: IP IL algorithm
(a) = IP IL sub-algorithm (c) + IP IL sub-algorithm (d) + IP IL sub-algorithm (e) +... [that
involves all even Prime gaps 2, 4, 6, 8, 10...] whereby all the (sub-)algorithms in Statement 2
can be mathematically used to create self-similar fractal objects based on their corresponding
Prevalences [that are geometrically never identical to each other as outlined in section 3].

There are three types of Gram points when σ = 1
2 and two types of virtual Gram points

when σ , 1
2 . With nontrivial zeros being a type of Gram points, there is zero probability

that any of the countably infinitely many nontrivial zeros (Gram[x=0,y=0] Points or Origin
intercept Points) can be located away from [geometrical] Origin point, which correspond to
[mathematical] critical line. This statement is precisely equivalent to Riemann hypothesis.

As proxy function for Riemann zeta function in 0 < σ < 1 critical strip, Dirichlet eta
function at the (unique) σ = 1

2 -critical line generates all x-axis intercept points as usual Gram
points or Gram[y=0] points, all y-axis intercept points as Gram[x=0] points, and all Origin
intercept points as Gram[x=0,y=0] points or nontrivial zeros. When treated as equation and
sub-equation, Dirichlet eta function can conceptually be used to calculate all these mutually
exclusive but dependent entities endowed with t-valued irrational (transcendental) numbers
except for initial Gram[y=0] point endowed with a t-valued rational number:

(a) Considered for t = 0 to +∞, Dirichlet eta function as IP IL equation will faithfully
generate all above-mentioned three types of Gram points that are endowed with t-valued
irrational (transcendental) numbers except for first Gram[y=0] point.

(b) Considered only for t = 0, Dirichlet eta function as CP FL sub-equation will faithfully
generate the first and only Gram[y=0] point that is endowed with t-valued rational number 0.

2.1 The extended and generalized Riemann hypothesis, Hasse principle
for equations and Modified Hasse principle for algorithms

Being an integral part of L-functions and modular forms database (LMFDB), an L-function is
a Dirichlet series with an Euler product and a functional equation e.g. Riemann zeta function,
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Dirichlet L-functions, L-functions of elliptic curves. Convolution involves manipulations of
the Satake parametes of the L-function at good places e.g. symmetric powers, exterior pow-
ers, Rankin-Selberg convolution. The top half of the diagram in ’The LMFDB universe’[13]
is based on Langlands program, which predicts that any motivic object corresponds to an
automorphic object via their L-functions. Usually convergent on a half-plane, an L-series is
a Dirichlet series that may give rise to an L-function via analytic continuation. Riemann zeta
function ζ(s) is a meromorphic function on complex plane associated with one of several
categories of mathematical objects. Via analytic continuation, it gives rise to Dirichlet eta
function η(s) [a special case of polylogarithm function]. We compare and contrast [as our
personal views using current knowledge] the extended and generalized Riemann hypothesis
[which are generally considered to be true] with the original Riemann hypothesis.

Suppose K is a number field (a finite-dimensional field extension of the rationals Q) with
ring of integers Oκ (this ring is the integral closure of the integers Z in K). If a is an ideal of Oκ,
other than the zero ideal, we denote its norm by Na. The Dedekind zeta-function of κ is then

defined by ζK(s) =
∑

a

1
(Na)s for every complex number s with real part > 1. The sum extends

over all non-zero ideals a of Oκ. Dedekind zeta-function satisfies a functional equation and
can be extended by analytic continuation to the whole complex plane. The resulting function
encodes important information about the number field κ. The extended Riemann hypothesis
asserts that for every number field K and every complex number s with ζK(s) = 0: if the real
part of s is between 0 and 1, then it is in fact 1

2 . The ordinary Riemann hypothesis follows
from the extended one if we take the number field to be Q, with ring of integers Z.

Hurwitz zeta function is one of the many zeta functions formally defined for complex

variables s with Re(s) > 1 and a , 0,−1,−2,−3, ... by ζ(s, a) =
∞∑

n=0

1
(n + a)s . This series is

absolutely convergent for given values of s and a, and can be extended to a meromorphic
function defined for all s , 1. With a = 1, Riemann zeta function is then ζ(s, 1). With
using rational arguments, Hurwitz zeta function may be expressed as a linear combination of
Dirichlet L-functions and vice versa. For Dirichlet L-functions which is defined as L(χ, s) =
∞∑

n=1

χ(n)
ns ; the generalized Riemann hypothesis asserts that, for every Dirichlet character χ and

every complex number s with L(χ, s) = 0, if s is not a negative real number, then the real part
of s is 1

2 . The case χ(n) = 1 for all n yields the ordinary Riemann hypothesis.
Where p is a prime number, analytic or arithmetic p-adic zeta function [or the more

general p-adic L-function] is a function analogous to Riemann zeta function [or the more
general L-functions], but whose domain (e.g. the p-adic integers Zp, a profinite p-group,
or a p-adic family of Galois representations) and target (e.g. the p-adic numbers Qp or its
algebraic closure) are p-adic. Via p-adic interpolation of special values of L-functions, a
[analytic] p-adic L-function, also known as p-adic Riemann zeta function ζp(s), is constructed
by Kubota-Leopoldt using Kummer’s congruences for Bernoulli numbers whereby values
at negative odd integers are those of Riemann zeta function at negative odd integers (up to
an explicit correction factor). The main conjecture of Iwasawa theory (now a theorem due
to Barry Mazur and Andrew Wiles) is the statement that the [analytic] Kubota-Leopoldt p-
adic L-function Lp(s, χ) and an [arithmetic] p-adic L-function [as analogue constructed by
Iwasawa theory which can be potentially sourced from the arithmetic of cyclotomic fields,
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or more generally, certain Galois modules over towers of cyclotomic fields or even more
general towers] are essentially the same. This type of conjecture represent formal statements
concerning the philosophy that special values of L-functions contain arithmetic information.

The [analytic] Kubota-Leopoldt p-adic L-function Lp(s, χ) interpolates the Dirichlet L-
function with Euler factor at p removed. More precisely, Lp(s, χ) is the unique continuous
function of p-adic number s such that Lp(1 − n, χ) = (1 − χ(p)pn−1)L(1 − n, χ) for positive
integers n divisible by p− 1. The right hand side is just the usual Dirichlet L-function, except
that Euler factor at p is removed, otherwise it would not be p-adically continuous. The con-
tinuity of right hand side is closely related to Kummer congruences. When n is not divisible
by p − 1, this does not usually hold; instead Lp(1 − n, χ) = (1 − χω−n(p)pn−1)L(1 − n, χω−n)
for positive integers n. Here χ is twisted by a power of the Teichmuller character ω.

The p-adic L-functions can also be perceived as the p-adic measures (or the p-adic
distributions) on p-profinite Galois groups. The translation between this point of view
and the original point of view of Kubota-Leopoldt (as Qp-valued functions on Zp) is
via the Mazur-Mellin transform (and class field theory). One can also construct analytic
p-adic L-functions for totally real fields. Via analytic continuation, Dirichlet L-function

is given by L(s, χ) =
∑

n

χ(n)
ns =

∏
p prime

1
1 − χ(p)p−s . At negative integers, it is given by

L(1 − n, χ) = −
Bn,χ

n
where Bn,χ is a generalized Bernoulli number defined by

∞∑
n=0

Bn,χ
tn

n!
=

f∑
a=1

χ(a)teat

e f t − 1
for χ a Dirichlet character with conductor f .

A polynomial can be expressed more concisely by using summation notation
n∑

k=0

ak xk; viz,

it can either be zero or can be written as the sum of a finite number of non-zero terms. Each
term consists of the product of a number, called the coefficient of the term; and a finite number
of indeterminates raised to non-negative integer powers. Some subtypes of polynomials are
Laurent polynomials [involving negative integer powers], trigonometric polynomials, matrix
polynomials and exponential polynomials. As opposed to an infinite series, a polynomial can
also be regarded as a finite series with operation of adding finitely many quantities.

An infinite series is the operation of adding infinitely many quantities whereby it can be
constituted by the two broad groups of power series and harmonic series. A power series
is viewed as generalization of polynomials since it is essentially an infinite polynomial that
allows infinitely many non-zero terms to occur with finite number of indeterminates raised to
non-negative integer powers [as well as fractional or negative integer powers]. A harmonic
series is the infinite series formed by summing all positive unit fractions whereby Riemann
zeta function [manifesting non-converging or diverging behavior in 0 < σ < 1 critical strip]
is a (non-alternating) harmonic series. Then Dirichlet eta function [manifesting converging
behavior in 0 < σ < 1 critical strip] is a (alternating) harmonic series; viz, the infinite series
formed by summing all positive and negative unit fractions.

Some special cases of power series: A geometric series is the sum of an infinite number of
terms that have a constant ratio between successive terms. Puiseux series are a generalization
of power series that allow for negative and fractional exponents of the indeterminate. Laurent
series of a complex function f (z) is a representation of that function as a power series which
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includes terms of negative degree. A function can be represented as a power series if it is
complex differentiable in an open set. This is applicable to functions such as sin x, cos x, ex,
sinh x and cosh x for domain of applicability or convergence interval (−∞,∞); and ln(1+ x),
arcsin x and arctan x for domain of applicability or convergence interval (−1, 1).

Hasse principle is the original idea that one can find an integer solution to a polynomial
equation with rational coefficients by using Chinese remainder theorem to piece together
solutions modulo powers of each different prime number. This is handled by examining the
equation in completions of rational numbers: real numbers and p-adic numbers.

Real numbers R = Rational numbers Q + Irrational numbers R/Q. When Hasse principle
or Modified Hasse principle is satisfied, local solutions derived from equations or algorithms
are given as R and p-adics numbers QP with their global solutions given as Q [since Q
embed in R and QP; a global solution yields local solutions at each prime, and vice versa].
For equations or algorithms having global solutions given as Q/P, their local solutions can
only be given as R but not p-adics numbers QP, and thus Hasse principle or Modified Hasse
principle is not satisfied. When these principles are satisfied, we can conceptually consider
eligible polynomials, power series or harmonic series be generally regarded as represent-
ing certain types of p-adic (sub-)equations and eligible algorithms and sub-algorithms be
generally regarded as representing certain types of p-adic (sub-)algorithms.

Our formal generic version of Hasse or local-global principle states that certain types
of equations have [global] rational solutions if and only if they have [local] solutions in the
real numbers and in the p-adic numbers for each prime p. We reveal the following examples:
For −∞ < x < +∞, y = 2x equation [that generates all positive and negative even numbers]
and y = 2x − 1 equation [that generates all positive and negative odd numbers] have finite
(solitary) rational solution at, respectively, x = 0 and x = 1

2 .
When considering s = σ + it, the CP IL equation Riemann zeta function [through its

functional equation given by Eq. (3)] as a (non-alternating) harmonic series, has a simple zero
at each even negative integer s = −2n = −2,−4,−6,−8,−10... that exactly correspond to all
trivial zeros [with cardinality of ℵ0] given as the (infinitely many) rational solutions. Based
on Hasse principle being satisfied, the p-adic Riemann zeta function [w.r.t. mathematically
obtaining infinitely many Completely Predictable trivial zeros outside the 0 < σ < 1 critical
strip] can be conceptually created.

When considering s = σ ± it, the IP IL equation Dirichlet eta function [proxy func-
tion for Riemann zeta function via analytic continuation] as a (alternating) harmonic series,
has nontrivial zeros [with cardinality of ℵ0] given as the infinitely many t-valued irrational
(transcendental) solutions [which are not rational solutions] only at σ = 1

2 critical line –
this is Riemann hypothesis. Then as not satisfying Hasse principle, the p-adic Dirichlet eta
function [w.r.t. mathematically obtaining infinitely many Incompletely Predictable nontrivial
zeros inside the 0 < σ < 1 critical strip] cannot be conceptually created.

Our formal generic version of Modified Hasse or local-global principle states that certain
types of algorithm and its sub-algorithms have [global] rational solutions if and only if they
have [local] solutions in the real numbers and in the p-adic numbers for each prime p.

We ignore even prime number 2. The algorithms Sieve-of-Eratosthenes generates all
Primes as Odd Primes, and Complement-Sieve-of-Eratosthenes generates all Composites as
Even and Odd Composites. For i = 1, 2, 3, 4, 5..., there are an arbitrarily large number of sub-
algorithms derived from Gap 2i-Sieve-of-Eratosthenes [c.f. List in section 2] that generates
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all Gap 2-Odd Twin Primes (3, 5), (5, 7), (11, 13), (17, 19), (29, 31), (41, 43)... depicted as
paired Odd Twin Prime and its next Odd Prime + all Gap 4-Odd Cousin Primes (7, 11), (13,
17), (19, 23), (37, 41), (43, 47), (67, 71)... depicted as paired Odd Cousin Prime and its next
Odd Prime + all Gap 6-Odd Sexy Primes (23, 29), (31, 37), (47, 53), (53, 59), (61, 67), (73,
79), (83, 89)... depicted as paired Odd Sexy Prime and its next Odd Prime +...], etc. For Mod-
ified Polignac’s and Twin prime conjectures to be true [w.r.t. primes (and composites) being
rational numbers]; then all these (sub-)algorithms must generate relevant (sub-)sets of Incom-
pletely Predictable primes (and composites) [with cardinality of ℵ0] as (infinitely many)
rational solutions. We say all these (sub-)algorithms which can be conceptually perceived as
certain types of p-adic (sub-)algorithms must satisfy Modified Hasse principle in that one
can always find all the (infinitely many) rational solutions to these IP IL (sub-)algorithms.

3 The Prevalences of Nontrivial zeros, Primes and
Composites as Incompletely Predictable entities

We adopt the abbreviations from subsection 1.1. The sets of numbers generated using power
(exponent) such as 2 or 1

2 , even numbers, odd numbers, etc are morphologically constituted
by Completely Predictable numbers in the sense that these sets of numbers are actually not
random and do not behave like one. The sets of nontrivial zeros, primes, composites, etc
are morphologically constituted by Incompletely Predictable numbers [or pseudo-random
numbers] in the sense that these sets of numbers are actually not random but behave like one.
The word number [singular noun] or numbers [plural noun] in reference to CP even and odd
numbers, IP prime and composite numbers, IP Gram points and virtual Gram points can be
interchanged with the word entity [singular noun] or entities [plural noun].

Lemma 1. We can formally define the elements from (sub)sets and (sub)tuples as Completely
Predictable or Incompletely Predictable entities.

Proof. A set is a collection of zero (viz, the empty set) or more elements (viz, a finite set
with a finite number of elements or an infinite set with an infinite number of elements). A
singleton refers to a finite set with a single element. A set can be any kind of mathematical
objects: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even
other sets whereby these [mutable] non-repeating elements are not arranged in an unique
order. A subset can be a [smaller] finite set derived from its [larger] parent finite set or its
[larger] parent infinite set. A subset can also be a [smaller] infinite set derived from its [larger]
parent infinite set. A tuple, which can potentially be subdivided into subtuples, is a finite
ordered list (sequence) of elements whereby these [immutable] non-repeating elements are
arranged in an unique order. Thus a tuple or a subtuple is regarded as a special type of finite
set with the extra imposed restriction. As shown below using worked examples:
CP simple equation or algorithm generates CP numbers e.g. even numbers 0, 2, 4, 6, 8, 10... or
odd numbers 1, 3, 5, 7, 9, 11.... A generated CP number is locationally defined as a number
whose ith position is independently determined by simple calculations without needing to
know related positions of all preceding numbers – this is a Universal Property.
IP complex equation or algorithm generates IP numbers e.g. prime numbers 2, 3, 5, 7, 11, 13...
or composite numbers 4, 6, 8, 9, 10, 12.... A generated IP number is locationally defined as
a number whose ith position is dependently determined by complex calculations with needing
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to know related positions of all preceding numbers – this is a Universal Property.
We notice that the elements in (sub)sets and (sub)tuples when generated by equations or
algorithms will precisely constitute the relevant entities or numbers of interest.

The proof is now complete for Lemma 12.
Lemma 2. We can validly classify the countably infinite sets as accelerating, linear or
decelerating subtypes.

Proof. We provide the following required mathematical arguments.
Cardinality: With increasing size, arbitrary Set [or Subset] X can be countably finite set
(CFS), countably infinite set (CIS) or uncountably infinite set (UIS). Denoted as ∥X∥ in this
paper, the cardinality of Set X measures number of elements in Set X. E.g., Set negative
Gram[y=0] point as constituted by a [solitary] rational (Q) t-value of 0 instead of a usual
transcendental (R − A) t-value has CFS of negative Gram[y=0] point with this particular
∥negative Gram[y=0] point∥ = 1, Set even Prime number (P) has CFS of solitary even P 2
with ∥even P∥ = 1, Set Natural numbers (N) has CIS of N with ∥N∥ = ℵ0, and Set Real num-
bers (R) has UIS of R with ∥R∥ = c (cardinality of the continuum). Then with ∥CIS∥ = ℵ0
= [countably] infinitely many elements; we provide a novel classification for CIS based on
its number of elements (cardinality) manifesting linear, accelerating or decelerating property
thus constituting the three subtypes of CIS.
CIS-IM-accelerating: CIS with its cardinality given by ∥CIS-IM-accelerating∥ = ℵ0-
accelerating = [countably] infinitely many elements that will (overall) acceleratingly reach
an infinity value. Examples: CP integers 0, 1, 4, 9, 16... generated by simple equation y = x2

for x = 0, 1, 2, 3, 4... and CP values obtained from natural exponential function y = e(x); and
IP composite numbers 4, 6, 8, 9, 10... faithfully generated by complex Complement-Sieve-
of-Eratosthenes algorithm [which is equivalent to simply discarding 0, 1, and all generated
prime numbers via Sieve-of-Eratosthenes algorithm from the set of integers 0, 1, 2, 3, 4, 5...].
CIS-IM-linear: CIS with its cardinality given by ∥CIS-IM-linear∥ = ℵ0-linear = [count-
ably] infinitely many elements that will (overall) linearly reach an infinity value. Examples:
CP entities 0, 1, 2, 3, 4, 5... [representing all positive integer numbers] generated by simple
equation y = x for x = 0, 1, 2, 3, 4...; CP entities 0, 2, 4, 6, 8, 10... [representing all positive
even numbers] generated by simple equation y = 2x for x = 0, 1, 2, 3, 4...; CP entities 1, 3, 5,
7, 9, 11... [representing all positive odd numbers] generated by simple equation y = 2x − 1
for x = 1, 2, 3, 4, 5...; and IP nontrivial zeros, Gram[y=0] points and Gram[x=0] points (all
given as R − A t-values) generated from complex equation Riemann zeta function via its
proxy Dirichlet eta function. These IP entities will inevitably manifest IP perpetual repeat-
ing violations (failures) in Gram’s Law and Rosser’s Rule occuring infinitely many times.
E.g., the former will give rise to Set negative Gram[y=0] points whereby CIS negative
Gram[y=0] points is constituted by R − A t-values and is classified as having ∥negative
Gram[y=0] points∥ = ∥CIS-IM-linear∥ = ℵ0-linear.
CIS-IM-decelerating or CIS-ALN-decelerating: CIS with its cardinality given by ∥CIS-
ALN-decelerating∥ = ℵ0-decelerating = [countably] arbitrarily large number of elements
that will (overall) deceleratingly reach an Arbitrarily Large Number value. Examples: CP
entities 0, 1,

√
2,
√

3, 2,
√

5... generated by simple equation y =
√

x for x = 0, 1, 2, 3, 4, 5...
and CP values obtained from natural logarithm function y = ln(x); and IP prime numbers 2,
3, 5, 7, 11... faithfully generated by complex Sieve-of-Eratosthenes algorithm.
The proof is now complete for Lemma 22.
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Endowed with t-valued transcendental (irrational) numbers, we define Gram points and
virtual Gram points which are generated by Riemann zeta function (via proxy Dirichlet
eta function) as follows: Three types of Gram points refer to Origin intercept points as
Gram[x=0,y=0] points or nontrivial zeros, x-axis intercept points as Gram[y=0] points and
y-axis intercept points as Gram[x=0] points when σ = 1

2 (i.e. the solitary critical line). Two
types of virtual Gram points refer to virtual x-axis intercept points as virtual Gram[y=0]
points and virtual y-axis intercept points as virtual Gram[x=0] points when σ , 1

2 (i.e. the
infinitely many non-critical lines) whereby virtual Origin intercept points do not exist.

Let n denotes number. Congruence n ≡ 0 (mod 2) holds for even n {0, 2, 4, 6, 8, 10...}
and congruence n ≡ 1 (mod 2) holds for odd n {1, 3, 5, 7, 9, 11...}. For i = all integers ≥ 0
[to allow inclusion of zeroeth or 0th even number = 0] or for i = all integers ≥ 1; both the ith

position of nominated CP numbers or entities and the ith position of nominated IP numbers
or entities are simply given by i. Apart from the very first Gram[y=0] point and the very first
virtual Gram[y=0] point both occurring at t = 0, we note all infinitely many Gram points and
infinitely many virtual Gram points will consist of t-valued transcendental numbers whose
ith positions are IP with infinitely many digits after the decimal point in each transcendental
number again being IP. Important caveat: The choice of index n for Gram[y=0] points [or
usual / traditional Gram point] is crude and confusing as it is historically chosen in such a
way that this index is 0 at the first value which is larger than the smallest positive [equating
to 1st] nontrivial zero (occurring at imaginary part t = 14.134725...) located on σ = 1

2 critical
line of Riemann zeta function. Thus when using the notation ith Gram[y=0] point; our utilized
position index i = 1, 2, 3, 4, 5, 6, 7... will now correspond to traditional position index n
= –3, –2, –1, 0, 1, 2, 3.... The initial few Gram[y=0] points are 0, 3.436218..., 9.666908...,
17.845599..., 23.170282..., 27.670182..., etc. The initial few nontrivial zeros are 14.134725...,
21.022040..., 25.010858..., 30.424876..., 32.935062..., 37.586178..., etc.

CP simple equation or algorithm generates CP numbers. Reiterating from Lemma 1: A
generated CP number is locationally defined as a number whose ith position is independently
determined by simple calculations without needing to know related positions of all preceding
numbers. We supply the example using even and odd numbers.

E-O Pairing: For i = 1, 2, 3,..., ∞; let ith Even numbers = Ei and ith Odd numbers = Oi,
and ith even number gaps = eGapi and ith odd number gaps = oGapi. We ignore E0 = 0. The
positions of Ei and Oi are CP, and are independent from each other.

Ei 2 4 6 8 10 12 .....
eGapi 2 2 2 2 2 2

We can precisely, easily and independently calculate E5 = (2X5) = 10 and O5 = (2X5)–1 = 9.
Oi 1 3 5 7 9 11 .....

oGapi 2 2 2 2 2 2
IP complex equation or algorithm generates IP numbers. Reiterating from Lemma 1: A

generated IP number is locationally defined as a number whose ith position is dependently
determined by complex calculations with needing to know related positions of all preceding
numbers. We supply the example using prime and composite numbers (and note analogous
examples can be readily created using nontrivial zeros, Gram[y=0] points and Gram[x=0]
points when σ = 1

2 ).
P-C Pairing: For i = 1, 2, 3,...,∞; let ith Prime numbers = Pi and ith Composite numbers =

Ci, and ith prime number gaps = pGapi and ith composite number gaps = cGapi. The positions

16



of Pi and Ci are IP, and are dependent on each other.
Pi 2 3 5 7 11 13 .....

pGapi 1 2 2 4 2 4
We can precisely, tediously and dependently compute C6 = 12 and P6 = 13: 2 is 1st prime,
3 is 2nd prime, 4 is 1st composite, 5 is 3rd prime, 6 is 2nd composite, 7 is 4th prime, 8 is 3rd

composite, 9 is 4th composite, 10 is 5th composite, 11 is 5th prime, 12 is 6th composite, 13 is
6th prime, etc. Our desired integer 12 is the 6th composite and integer 13 is the 6th prime.

Ci 4 6 8 9 10 12 .....
cGapi 2 2 1 1 2 2

We concisely define (rolling and cumulative) Prevalence of nontrivial zeros [including
logical deduction that support Riemann hypothesis to be true], and (rolling and cumulative)
Prevalences of prime and composite numbers [including logical deductions that support Mod-
ified Polignac’s and Twin prime conjectures to be true]. We provide in subsection 3.1 the
p-adic absolute values for these eternal entities when calculated as rolling Prevalences.

We analyze the data of all CIS-IM-linear computed nontrivial zeros (NTZ) when extrapo-
lated out over a wide range of t ≥ 0 real number values. We can symbolically define nontrivial
zeros counting function NTZ-π(t) = number of NTZ ≤ t with t assigned to having real number
values which are conveniently designated by 10n whereby n = 1, 2, 3, 4, 5.... The cumula-
tive Prevalence of nontrivial zeros = NTZ-π(t) / t = NTZ-π(t) / (10n) when t = 0 to 10n,
whereby denominator t is [artificially] regarded as having integer number values. We concep-
tually define all consecutive NTZ gaps as ith t-valued NTZ – (i-1)th t-valued NTZ. Thus there
are CIS-IM-linear computed NTZ gaps. The numbers of NTZ between 100 – 101 [interval =
9], 101 – 102 [interval = 90], 102 – 103 [interval = 900], 103 – 104 [interval = 9000], 104 –
105 [interval = 90000], 105 – 106 [interval = 900000], 106 – 107 [interval = 9000000], 107 –
108 [interval = 90000000]... are 0, 29, 620, 9493, 127927, 1609077, 19388979, 226871900...
with corresponding rolling Prevalence of nontrivial zeros = 0, 0.322, 0.689, 1.055, 1.421,
1.788, 2.154, 2.521... =⇒ rolling Prevalence of nontrivial zeros seems to overall fluctuat-
ingly increase by around 0.366 in a ”linear” manner. This limited observation alone suggests
Cardinality of nontrivial zeros = ∥CIS-IM-linear∥ = ℵ0-linear.

In comparison, we further notice here the numbers of NTZ between 100 – 101 [interval =
9], 100 – 102 [interval = 99], 100 – 103 [interval = 999], 100 – 104 [interval = 9999], 100 – 105

[interval = 99999], 100 – 106 [interval = 999999], 100 – 107 [interval = 9999999], 100 – 108

[interval = 99999999]... are 0, 29, 649, 10142, 138069, 1747146, 21136125, 248008025...
with corresponding cumulative Prevalence of nontrivial zeros = 0, 0.293, 0.650, 1.014,
1.381, 1.747, 2.114, 2.480...

Using different σ-valued Riemann zeta function, we define co-linear lines or co-lines as
any two generated independent and mutually exclusive parallel (curved) lines that will never
cross over one another. For −∞ < t < +∞ that give rise to 0 < t < +∞ positive part or image
having positive [t-valued] nontrivial zeros and −∞ < t < 0 negative counterpart or mirror
image having negative [t-valued] nontrivial zeros, the synthesized Proposition is: Each and
every t-valued nontrivial zeros that can be depicted geometrically as t-valued Gram[x=0,y=0]
points or t-valued Origin intercept points will only materialize when parameter σ in Riemann
zeta function [precisely] reaches the [exact] value of 1

2 .
The synthesized Corollary is: Nontrivial zeros will never materialize when parameter σ

in Riemann zeta function [imprecisely] reach an [inexact] infinitesimal small number 1
∞

value
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less than or more than (but not equal to) 1
2 . Therefore Riemann hypothesis is true since this

σ = 1
2 -associated Proposition and its σ , 1

2 -associated Corollary constitute a set of mutually
exclusive correct and complete mathematical arguments on nontrivial zeros location being
the unique σ = 1

2 critical line (but not the non-unique σ , 1
2 non-critical lines), and this is

moreover valid for the entire range of −∞ < t < +∞.
Riemann zeta function’s co-linear lines, three types of Gram points, two types of virtual

Gram points, and perpetually recurring violations (failures) of Gram’s Law and Rosser’s Rule
must [smoothly] manifest Mirror symmetry and Law of continuity (subsection 4.1) when
considered for entire range of −∞ < t < +∞ as positive and negative real number line having
its end boundaries delineated by interval (−∞,+∞).

We analyze the data of all CIS-IM-accelerating computed composite numbers when
extrapolated out over a wide range of x ≥ 4 integer values. We define composite counting
function Composite-π(x) = number of composites ≤ x with x conveniently assigned to having
odd number values of the form 10n − 1 whereby n = 1, 2, 3, 4, 5.... The cumulative Preva-
lence of all composite numbers = Composite-π(x) / x = Composite-π(x) / (10n − 4) when x
= 4 to 10n − 1. CIS-IM-accelerating composite numbers in totality all have either odd com-
posite gap 1 or even composite gap 2. All the odd integers which are not prime numbers are
odd composite numbers, consecutively given as 9, 15, 21, 25, 27, 31.... Except for 0 and 2,
all the remaining even integers are even composite numbers, consecutively given as 4, 6, 8,
10, 12, 14, 16.... We can also create cumulative Prevalences separately for the two subsets
of even and odd composite numbers with the former subset always being larger than the later
subset because, with exception of even prime number 2, all prime numbers are odd numbers.

We analyze the data of all CIS-ALN-decelerating computed prime numbers when extrap-
olated out over a wide range of x ≥ 2 integer values. We define prime counting function
Prime-π(x) = number of primes ≤ x with x conveniently assigned to having odd number val-
ues of the form 10n − 1 whereby n = 1, 2, 3, 4, 5.... The cumulative Prevalence of all prime
numbers = Prime-π(x) / x = Prime-π(x) / (10n − 2) when x = 2 to 10n − 1. Prime gaps for all
odd prime numbers are constituted by CIS-ALN-decelerating even Prime gaps 2, 4, 6, 8, 10....
We can also create cumulative Prevalence of twin primes with prime gap 2, Prevalence of
cousin primes with prime gap 4, Prevalence of sexy primes with prime gap 6, etc.

n 1 2 3 4 5 6 7
PrevallP 0.4 0.25 0.168 0.1229 0.09592 0.078498 0.0664579

PrevPgap2 0.2 0.08 0.035 0.0205 0.01224 0.008169 0.0058980
PrevPgap4 0.1 0.08 0.040 0.0202 ... ... ...
PrevPgap6 0.0 0.07 0.044 0.0299 ... ... ...

n 8 9 10 11 ...
PrevallP 0.05761455 0.050847534 0.0455052511 0.04118054813 ...

PrevPgap2 0.00440312 ... ... ... ...
The terms Prevalence and Proportion are interchangeable. For n = 1, 2, 3, 4, 5... in the

expression x= 2 to 10n−1, we obtain above tabulated calculations with captured manifestation
of decelerating properties on the relationship: Prevalence of all primes (PrevallP) = Prevalence
of twin primes with prime gap 2 (PrevPgap2) + Prevalence of cousin primes with prime gap 4
(PrevPgap4) + Prevalence of sexy primes with prime gap 6 (PrevPgap6) +.... We can compare
and contrast with computed rolling Prevalence of Prime numbers: between 0 to 9 = 4 1-
digit Primes per 10 1-digit integers = 0.4, between 10 to 99 = 21 2-digit Primes per 90 2-digit
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Fig. 1 Proportion (Prevalence) of Twin primes, Cousin primes [as partial calculations] and Sexy Primes [as partial
calculations] with Proportion (Prevalence) of all Primes included. The n = 1, 2, 3, 4, 5, 6, 7, 8... in 10n that is denoted
with horizontal x-axis implies the scale of this axis is non-linearly depicted using increasing powers of 10.

integers = 0.233, between 100 to 999 = 143 3-digit Primes per 900 3-digit integers = 0.159,
between 1000 to 9999 = 1061 4-digit Primes per 9000 4-digit integers = 0.118, between
10000 to 99999 = 8363 5-digit Primes per 90000 5-digit integers = 0.093, between 100000
to 999999 = 68906 6-digit Primes per 900000 6-digit integers = 0.076, etc.

n 1 2 3 4 5 6 7 8
PrevPgap2

PrevallP
0.5 0.32 0.2083 0.1668 0.1276 0.1041 0.08875 0.07642

PrevPgap4

PrevallP
0.25 0.32 0.2381 0.1644 ... ... ... ...

PrevPgap6

PrevallP
0.0 0.28 0.2619 0.2433 ... ... ... ...

We next calculate in above table [which are then graphically depicted in Figure 1] the
Proportion of Twin primes with prime gap 2, Cousin primes with prime gap 4, and Sexy

primes with prime gap 6. These are respectively derived using relevant ratios
PrevPgap2

PrevallP
,

PrevPgap4

PrevallP
and

PrevPgap6

PrevallP
with the Proportion of all Primes also depicted for comparison. The

Proportion of Twin primes, Cousin primes [as partial calculations] and Sexy Primes [as partial
calculations] with the Proportion (Prevalence) of all Primes included in Figure 1 clearly depict
these Proportions to deceleratingly reach an infinitesimal small number value 1

∞
just above

0 [but never reaches 0] as n → ∞. When utilizing the same 10n number system as specified
by variable n in Figure 1; the PrevallC = 0.5, 0.75, 0.832, 0.8771, 0.9041, 0.9215, 0.9335,
0.9424... will fully reflect the statement Integers = {0, 1} + all Primes {2, 3, 5, 7, 11, 13...} +
all Composites {4, 6, 8, 9, 10, 12...}. Then the Proportion (Prevalence) of all Composites will
reciprocally depict acceleratingly reaching an infinitesimal small number value 1

∞
just below

1 [but never reaches 1] as n→ ∞.
We can validly ignore the solitary even Prime number 2 [at x = 2] and simply regard all

Primes here as odd primes. Then there is an arbitrarily large number of all Primes for x = 3 to
10n − 1. We deduce the average prime gaps in relation to arbitrarily large number of all even
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Prime gaps 2, 4, 6, 8, 10, 12, 14... must overall and individually manifest the asymptotically
zero behavior of natural logarithm. Proportion of all Primes is known to deceleratingly reach
an infinitesimal small number value 1

∞
[but never 0] as n → ∞. Then for cases of even Pime

gaps 2, 4, 6, 8, 10... we infer the following deduction based on the all-important condition
Proportions of Twin primes, Cousin primes, Sexy primes, etc are all coupled to Proportion of
all Primes [conceptually] as self-similar fractal objects displayed in Figure 1: Whereas the
Proportions of Twin primes, Cousin primes, Sexy primes, etc and Proportion of all Primes
are coupled together [conceptually] as self-similar fractal objects [that are never identical],
so must both the well-defined Proportions of Twin primes, Cousin primes, Sexy primes, etc
and Proportion of all Primes always manifest deceleratingly reaching an infinitesimal small
number value 1

∞
[but never 0] as n→ ∞.

The above synopsis involves positive odd prime numbers as an overall set and individual
subsets of odd prime numbers derived from even Prime gaps 2, 4, 6, 8, 10... [treated overall
and individually as part or image] in regards to mathematical arguments on even Prime gaps
that prove Modified Polignac’s and Twin prime conjectures to be true. The mathematical
arguments on even Prime gaps can equivalently be applied to negative odd prime numbers
[with corresponding overall set and individual subsets treated as counterpart or mirror image],
thus also proving Modified Polignac’s and Twin prime conjectures to be true.

All above-mentioned overall set and individual subsets of positive and negative odd
primes must [jaggedly] manifest Mirror symmetry and Law of continuity (subsection 4.1)
when considered for entire range of positive and negative integer number line with its end
boundaries delineated by interval (−∞,+∞).

3.1 The p-adic absolute values applied to Prevalences of Nontrivial
zeros, Primes and Composites

A p-adic number is an extension of the field of rationals such that congruences modulo powers
of a fixed prime p are related to proximity in p-adic metric. Any nonzero rational number
x can be represented by x = (par)/s where p is a prime number, r and s are integers not
divisible by p, and a is a unique integer. We firstly define the p-adic norm of x by |x|p = p−a,
and secondly define the p-adic norm |0|p = 0.

Since zero terms can always be added at the beginning, every rational x has an [essen-

tially] unique p-adic expansion x =
∞∑

j=m

a j p j, with m an integer, a j the integers between 0 and

p-1 inclusive, and where the sum is convergent with respect to p-adic valuation. If x! , 0
and am! , 0, then the expansion is unique. Then for p a prime and n a positive integer,
|n!|p = p(−(n−Ap(n))/(p−1)), where the p-adic expansion of n is n = a0 + a1 p + a2 p2 + ... + aL pL,
and Ap(n) = a0 + a1 + ...+ aL. For sufficiently large n, |n!|p ≤ p−n/(2p−2). The p-adic valuation
on Q gives rise to the p-adic metric d(x, y) = |x − y|p, which in turn gives rise to the p-adic
topology. It can be shown that the rationals, together with the p-adic metric, do not form a
complete metric space. The completion of this space can therefore be constructed, and the set
of p-adic numbers Qp is defined to be this completed space.

Consider the rolling Prevalence of Nontrivial zeros between 1 to 10, 10 to 100, 100 to

1000,... obtained from section 3:
0
9
= 0·3−2,

29
90
= 291·2−1·3−2·5−1,

620
900
= 311·3−2·5−1,

9493
9000

=
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111·8631·2−3·3−2·5−3,
127927
90000

= 191·67331·2−4·3−2·5−4,
1609077
900000

= 2571·20871·2−5·3−1·5−5,
19388979
9000000

= 21543311 · 2−6 · 5−6,
226871900
90000000

= 22687191 · 2−5 · 3−2 · 5−5,.... They have
corresponding p-adic absolute values as follows:

|
0
9
|2 = 0,

|
29
90
|29 =

1
29
/ |

29
90
|2 = 2 / |

29
90
|3 = 9 / |

29
90
|5 = 5,

|
620
900
|31 =

1
31
/ |

620
900
|3 = 9 / |

620
900
|5 = 5,

|
9493
9000

|11 =
1
11
/ |

9493
9000

|863 =
1

863
/ |

9493
9000

|2 = 8 / |
9493
9000

|3 = 9 / |
9493
9000

|5 = 125,

|
127927
90000

|19 =
1

19
/ |

127927
90000

|6733 =
1

6733
/ |

127927
90000

|2 = 16 / |
127927
90000

|3 = 9 / |
127927
90000

|5 = 625,

|
1609077
900000

|257 =
1

257
/ |

1609077
900000

|2087 =
1

2087
/ |

1609077
900000

|2 = 32 / |
1609077
900000

|3 = 3 / |
1609077
900000

|5

= 3125,

|
19388979
9000000

|2154331 =
1

2154331
/ |

19388979
9000000

|2087 =
1

2087
/ |

19388979
9000000

|2 = 64 / |
19388979
9000000

|5 =

15625,

|
226871900
90000000

|2268719 =
1

2268719
/ |

226871900
90000000

|2 = 64 / |
226871900
90000000

|3 = 9 / |
226871900
90000000

|5 =

15625,...
Consider the rolling Prevalence of Prime numbers between 1 to 9 as 1-digit Primes, 10

to 99 as 2-digit Primes, 100 to 999 as 3-digit Primes, 1000 to 9999 as 4-digit Primes, 10000
to 99999 as 5-digit Primes, 100000 to 999999 as 6-digit Primes,... obtained from Appendix

C:
4
9
= 22 · 3−2,

21
90
= 31 · 71 · 2−1 · 3−2 · 5−1,

143
900
= 111 · 131 · 2−2 · 3−2 · 5−2,

1061
9000

=

10611 ·2−3 ·3−2 ·5−3,
8363
90000

= 83631 ·2−4 ·3−2 ·5−4,
68906
900000

= 21 ·1311 ·2631 ·2−5 ·3−2 ·5−5,...
They have corresponding p-adic absolute values as follows:

|
4
9
|2 =

1
4
/ |

4
9
|3 = 9,

|
21
90
|7 =

1
7
/ |

21
90
|2 = 2 / |

21
90
|3 = 3 / |

21
90
|5 = 5,

|
143
900
|11 =

1
11
/ |

143
900
|13 =

1
13
/ |

143
900
|2 = 4 / |

143
900
|3 = 9 / |

143
900
|5 = 25,

|
1061
9000

|1061 =
1

1061
/ |

1061
9000

|2 = 8 / |
1061
9000

|3 = 9 / |
1061
9000

|5 = 125,

|
8363
90000

|8363 =
1

8363
/ |

8363
90000

|2 = 16 / |
8363
90000

|3 = 9 / |
8363
90000

|5 = 625,

|
68906
900000

|131 =
1

131
/ |

68906
900000

|263 =
1

263
/ |

68906
900000

|2 = 16 / |
68906

900000
|3 = 9 / |

68906
900000

|5 =

3125,...
Consider the rolling Prevalence of Composite numbers between 1 to 9 as 1-digit Com-

posites, 10 to 99 as 2-digit Composites, 100 to 999 as 3-digit Composites, 1000 to 9999
as 4-digit Composites, 10000 to 99999 as 5-digit Composites, 100000 to 999999 as 6-digit

Composites,... obtained from Appendix C:
4
9
= 22 · 3−2,

69
90
= 31 · 231 · 2−1 · 3−2 · 5−1,

757
900
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= 7571 · 2−2 · 3−2 · 5−2,
7939
9000

= 171 · 4671 · 2−3 · 3−2 · 5−3,
81637
90000

= 816371 · 2−4 · 3−2 · 5−4,
831094
900000

= 21 · 111 · 371 · 10211 · 2−5 · 3−2 · 5−5,... They have corresponding p-adic absolute
values as follows:
|
4
9
|2 =

1
4
/ |

4
9
|3 = 9,

|
69
90
|23 =

1
23
/ |

69
90
|2 = 2 / |

69
90
|3 = 3 / |

69
90
|5 = 5,

|
757
900
|757 =

1
757
/ |

757
900
|2 = 4 / |

757
900
|3 = 9 / |

757
900
|5 = 25,

|
7939
9000

|17 =
1
17
/ |

7939
9000

|467 =
1

467
|
7939
9000

|2 = 8 / |
7939
9000

|3 = 9 / |
7939
9000

|5 = 125,

|
81637
90000

|81637 =
1

81637
/ |

81637
90000

|2 = 16 / |
81637
90000

|3 = 9 / |
81637
90000

|5 = 625,

|
831094
900000

|11 =
1

11
/ |

831094
900000

|37 =
1
37
/ |

831094
900000

|1021 =
1

1021
/ |

831094
900000

|2 = 16 / |
831094
900000

|3 = 9

/ |
831094
900000

|5 = 3125,...
Progressively computed rolling Prevalences on infinitely-many Primes, Composites and

nontrivial zeros must all be eternal entities. Primes and Composites are complementary
numbers as manifested by the reciprocal patterns of [unique] p-adic absolute values (of
Infinite-Length) obtained for their respective rolling Prevalences. As eternal entities, then the
patterns of [unique] p-adic absolute values (of Infinite-Length) obtained for Odd Primes gen-
erated by each of their corresponding even Prime gaps 2, 4, 6, 8, 10... as rolling Prevalences
are also possible. We deduce as Proposition there can only be one [unique] pattern of p-
adic absolute values (of Infinite-Length) obtained for rolling Prevalence of Nontrivial zeros
when the only one [unique] σ = 1

2 condition is met. Then as Corollary, the pattern of p-adic
absolute value for rolling Prevalence of Nontrivial zeros must perpetually be zero when the
[non-unique] σ , 1

2 conditions are met.

4 Intersection of Riemann zeta function, Dirichlet eta
function and Sieve of Eratosthenes

Riemann zeta function ζ(s) is a function of complex variable s (= σ± ıt) that continues sum of

infinite series ζ(s) =
∞∑

n=1

1
ns =

1
1s +

1
2s +

1
3s + · · · for Re(s) > 1, and its analytic continuation

elsewhere. Containing no nontrivial zeros, ζ(s) is defined only in 1 < σ < ∞ region where it
is absolutely convergent. The common convention is to write s as σ + ıt with ı =

√
−1, and

with σ and t real. Valid for σ > 0, we write ζ(s) as Re{ζ(s)}+ıIm{ζ(s)} and note that ζ(σ + ıt)
when 0 < t < +∞ is the complex conjugate of ζ(σ − ıt) when −∞ < t < 0.

ζ(s) =
∞∑

n=1

1
ns (1)

=
1
1s +

1
2s +

1
3s + · · ·
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= Πp prime
1

(1 − p−s)

=
1

(1 − 2−s)
.

1
(1 − 3−s)

.
1

(1 − 5−s)
.

1
(1 − 7−s)

.
1

(1 − 11−s)
· · ·

1
(1 − p−s)

· · ·

η(s) =
∞∑

n=1

(−1)n+1

ns =
1
1s −

1
2s +

1
3s − · · · (2)

Eq. (2) alternating harmonic series Dirichlet eta function η(s) that faithfully generates
all three types of Gram points as three dependent CIS-IM-linear Incompletely Predictable
entities when σ = 1

2 must act as proxy function for Eq. (1) non-alternating harmonic series
Riemann zeta function ζ(s) in critical strip (0 < σ < 1) containing critical line (σ = 1

2 )
because ζ(s) only converges whenσ > 1. This implies ζ(s) is undefined to left ofσ > 1 region
in the critical strip which then requires η(s) representation. They are related to each other as

ζ(s) = γ · η(s) or equivalently as η(s) =
1
γ
· ζ(s) with proportionality factor γ =

1
(1 − 21−s)

.

ζ(s) = 2sπs−1 sin
(
πs
2

)
Γ(1 − s) ζ(1 − s) (3)

ζ(s) satisfies Eq. (3) as functional equation, whereby Γ(s) is the gamma function. As an
equality of meromorphic functions valid on whole complex plane, Eq. (3) relates values of
ζ(s) at points s and 1 − s; in particular, it relates even positive integers with odd negative
integers. Owing to the zeros of sine function, the functional equation implies that ζ(s) has a
simple zero at each even negative integer s = −2n = −2,−4,−6,−8,−10..., known as trivial
zeros of ζ(s). When s is an even positive integer, the product sin(

πs
2

)Γ(1 − s) on the right is
non-zero because Γ(1− s) has a simple pole, which cancels the simple zero of the sine factor.

4.1 Mirror symmetry and Law of continuity
Mirror symmetry is a state’s geometrical property that a point of symmetry, an axis (line)
of symmetry or a plane of symmetry will split the state (a line, figure or object) in half;
whereby these halves as image and mirror image are identical to, or indistinguishable from,
each other. We define Law of continuity as a heuristic principle that ”whatever succeeds for
the finite [local state], also succeeds for the infinite [general state]”, whereby locally and
generally there must not be a break in the state (a line or figure or object), and nothing passes
from one state to another without passing through all the intermediate states.

Remark 3. Figure 2 [regarding positive & negative primes and composites] and Figure 3
[regarding Co-linear Riemann zeta function for positive & negative range] manifest perfect
Mirror symmetry and fully comply with Law of Continuity. The following are valid comments:

Whereas the continuous-like equation Riemann zeta function ζ(s) Eq. (1) [via proxy
Dirichlet eta function η(s) Eq. (2)] for s = σ ± t range that generate mutually exclusive CIS-
IM-linear σ-valued co-lines are mathematically regarded as smoothly continuous everywhere
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Fig. 2 Narrow range of positive & negative prime and composite numbers plotted together on integer number line
generated using Sieve-of-Eratosthenes and complement-Sieve-of-Eratossthenes. The combined [positive] image and
[negative] mirror image will conceptually represent a one-dimensional line (state) having perfect Mirror symmetry
with integer number 0 acting as the Point of symmetry.

Fig. 3 OUTPUT forσ = 1
2 as Gram points. Polar graph of ζ( 1

2+ıt) depicted as a two-dimensional figure plotted along
critical line for real values of t running between –30 and +30 [viz, for s = σ ± t range], horizontal axis: Re{ζ( 1

2 + ıt)},
and vertical axis: Im{ζ( 1

2 + ıt)}. Total presence of all Origin intercept points at the Origin. There is manifestation of
perfect Mirror symmetry about the horizontal x-axis acting as the line of symmetry in this figure (state).

thus obeying Law of continuity; so must the discrete-like algorithms Sieve-of-Eratosthenes
and Complement-Sieve-of-Eratosthenes that generate mutually exclusive Primes and Com-
posites be conceptually regarded as jaggedly continuous everywhere thus also obeying
Law of continuity. CIS-ALN-decelerating Primes and CIS-IM-accelerating Composites are
dependent and complementary entities. In ζ(s) Eq. (1), equivalent Euler product formula with
product over prime numbers [instead of summation over natural numbers] also represents
ζ(s) =⇒ all primes and, by default, composites are intrinsically encoded in ζ(s). Since via
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analytic continuation, η(s) =
1
γ
· ζ(s) [proxy function for ζ(s) in 0 < σ < 1- critical strip];

then all primes and, by default, composites are also intrinsically encoded in η(s) Eq. (2).

The involved states that manifest Mirror symmetry and obey Law of continuity are: (i) For
i = 1, 2, 3, 4, 5...; positive (+ve) and negative (–ve) primes derived from Pi+1 = Pi ± PGapi

with P1 = ±2 [symbolizing Sieve-of-Eratosthenes] and +ve and –ve composites derived from
Ci+1 = Ci ± CGapi with C1 = ±4 [symbolizing Complement-Sieve-of-Eratosthenes], and (ii)
never-ending supply of co-linear lines (with range −∞ < t < +∞ giving rise to s = σ ± t)
from mutually exclusive and independent equations of Riemann zeta function [via proxy
Dirichlet eta function] having solitary σ = 1

2 value and infinitely-many σ , 1
2 values.

CIS-IM-linear Integers {0, ±1, ±2, ±3, ±4, ±5...} = CFS {0, ±1} + CIS-ALN-
decelerating Prime numbers {±2, ±3, ±5, ±7, ±11...} + CIS-IM-accelerating Composite
numbers {±4, ±6, ±8, ±9, ±10...}. We validly ignore even Prime number ±2. The two discrete-
like algorithms that generate unique Set (all +ve and –ve odd primes) and Set (all +ve and
–ve composites) can be further subdivided into various sub-algorithms that generate unique
Subsets (+ve and –ve odd primes) and Subsets (+ve and –ve composites). These (sub)sets
listed under Remark 1 in subsection 1.1 [depicted as +ve entities] must belong to either CIS-
ALN-decelerating or CIS-IM-accelerating. They contain primes and composites [as mutually
exclusive and dependent discrete zero-dimensional (0-D) entities] characterized in a perpetual
manner under +ve integer part or image and –ve integer counterpart or mirror image.

Via proxy Dirichlet eta function as its analytic continuation, Riemann zeta function is
a continuous-like equation forming an infinite number of continuous 1-D co-linear lines as
specified by their corresponding endowed σ values. For −∞ < t < +∞ (constituting 0 <
t < +∞ part or image and −∞ < t < 0 counterpart or mirror image), the generated solitary
σ = 1

2 -specified co-linear line contains three mutually exclusive and dependent discrete 0-D
entities of nontrivial zeros, Gram[y=0] points and Gram[x=0] points which are all given by
variable t having ± transcendental number values. Similarly for −∞ < t < +∞ (constituting
0 < t < +∞ part or image and −∞ < t < 0 counterpart or mirror image), the generated
infinitely many σ , 1

2 -specified co-linear lines will each contains two mutually exclusive and
dependent discrete 0-D entities of virtual Gram[y=0] points and virtual Gram[x=0] points
which are all given by variable t having ± transcendental number values.

Major differentiating property: Our two algorithms that generate discrete zero-
dimensional (0-D) primes and composites when plotted as connected [jagged] lines are only
defined at two end-points a,b but not for interval [a,b] whereas our functions with different
σ values that generate infinitely-many continuous [smooth] one-dimensional (1-D) co-linear
lines are defined at two end-points a,b as well as for interval [a,b]. The algorithms and
functions on interval (−∞,+∞) as integer number line and real number number line are
individually classified as well-defined jagged continuous algorithm and well-defined smooth
continuous function whose definition assigns it a unique interpretation or value. Respectively,
they are conceptually and mathematically continuous everywhere.

To colloquially interpret primes or composites never having any discontinuity, we say
there must [theoretically] never be any existing ”hidden” primes or composites yet-to-
be-discovered in between any two (consecutive) primes or composites when [faithfully]
generated by their jagged continuous algorithms. One just have to consider either +ve or
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–ve primes, composites and t-valued nontrivial zeros when proving their associated open
problems with Mathematical-Geometrical interpretations on Law of continuity given below.

A continuous-like equation such as Riemann zeta function (via its proxy Dirichlet eta
function) with designated σ value obtained from anywhere in the 0 < σ < 1 critical strip
[that is bisected by the σ = 1

2 critical line] is smoothly defined by the following properties:
1. Function f (x) is defined at point x = a and is smoothly continuous at that point.
2. The limit of function f (x) should be smoothly defined at point x = a.
3. The value of function f (x) at that point, i.e. f (a) must smoothly equal the value of the limit
of f (x) at x = a.
The co-linear line in Figure 3 with all Gram points [and intermittent occurrences of less
frequent violations (failures) of Gram’s Law and much less frequent violations (failures) of
Rosser’s Rule] is (smoothly) continuous everywhere [viz, continuous locally and generally].

Analogically, a discrete-like algorithm such as Sieve-of-Eratosthenes or Complement-
Sieve-of-Eratosthenes is jaggedly defined by the following properties:
1. Algorithm A(x) is defined at point x = a and is jaggedly continuous at that point.
2. The limit of algorithm A(x) should be jaggedly defined at point x = a.
3. The value of algorithm A(x) at that point, i.e. A(a) must jaggedly equal the value of the
limit of A(x) at x = a.
The two algorithms that generate all +ve and –ve primes or composites are (jaggedly)
continuous everywhere [viz, continuous locally and generally] as observed in Figure 2.

5 Prime-Composite identifier grouping and Co-linear
Riemann zeta function

Let E = even numbers, O = odd numbers, P = prime numbers, even Prime gapi = O-Pi+1 –
O-Pi = 2, 4, 6, 8, 10, 12..., Composite gapi = Ci+1 – Ci = 1, 2. For even Prime gaps 4, 6, 8,
10, 12..., we can generate the orderly consecutive numbers as sequence {Gap 2-E-C1, O-Pi,
Gap 1-E-C2, Gap 1-O-C3, Gap 1-E-C4, Gap 1-O-C5,..., Gap 1-E-Cn−2, Gap 1-O-Cn−1, Gap
2-E-Cn, O-Pi+1}. The cardinality of sub-sequence {Gap 1-E-C2, Gap 1-O-C3, Gap 1-E-C4,
Gap 1-O-C5,..., Gap 1-E-Cn−2, Gap 1-O-Cn−1} = even Prime gapi – 2 = n – 2. However for
twin primes; this sub-sequence [as an empty set or null set] do not exist with its cardinality =
0 since even Prime gap 2 – 2 = 0. With cardinality of this sub-sequence given by the involved
even Prime gap minus 2; we conveniently define P-C identifier grouping as Gap 2-E-C1,
O-Pi, Gap 1-E-C2, Gap 1-O-C3, Gap 1-E-C4, Gap 1-O-C5,..., Gap 1-E-Cn−2, Gap 1-O-Cn−1
for Arbitrarily Large Number of even Prime gaps 4, 6, 8, 10, 12... with caveat P-C identifier
grouping for even Prime gap 2 is an exception given by Gap 2-E-C1, O-Pi. For (”different”)
n = 1, 2, 3, 4, 5...; [decelerating] size of equally distributed Gap 2n-O-P and Gap 2-E-C is
inversely proportional to [accelerating] size of equally distributed Gap 1-E-C and Gap 1-O-
C. Gap 2-E-Cn is now acting as the new Gap 2-E-C1 for O-Pi+1 in the following perpetually
repeating cycles of O-Pi to O-Pi+1 with a [usually] different even Prime gapi [except for rare
recurring cases of two or more consecutive O-P having two or more identical consecutive
even Prime gaps involving 6 and multiples of 6].

We simply have no choice but to accept There is zero probability that appearances of P-C
identifier grouping when computed as Cardinality 0 for Gap 2-Twin primes, Cardinality 2 for
Gap 4-Cousin primes, Cardinality 4 for Gap 6-Sexy primes, etc should ever stop or terminate
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in a discriminatory manner over the large range of integer numbers, thus confirming Modified
Polignac’s and Twin prime conjectures. For Riemann zeta function via proxy Dirichlet eta
function, we simply have no choice but to accept the solitary σ = 1

2 -critical line connection
with all nontrivial zeros thus confirming Riemann hypothesis.

Useful deductions regarding prime numbers: For n = 1, 2, 3, 4, 5...; CIS-ALN-
decelerating Gap 2n-O-P + CIS-ALN-decelerating Gap 2-E-C is inversely proportional to
CIS-IM-accelerating Gap 1-E-C + CIS-IM-accelerating Gap 1-O-C. The Arbitrarily Large
Number of CIS-ALN-decelerating Gap 2-O-P, CIS-ALN-decelerating Gap 4-O-P, CIS-
ALN-decelerating Gap 6-O-P... must all constitute valid subsets of odd prime numbers. Law
of continuity aesthetically implies each and every Arbitrarily Large Number of even Prime
gaps 2, 4, 6, 8, 10, 12... must repeatedly exist without discontinuities [albeit not always
appearing as first occurrences of the relevant associated odd prime numbers and thus not
always complying with the prescribed naturally occurring ascending order for even numbers].

Remark 4. To confirm algorithm and sub-algorithms from Sieve-of-Eratosthenes must all be
Incompletely Predictable and of Infinite Length, we refer to the equally distributed Gap 1-E-
C and Gap 1-O-C existing as (i) recurring sets with varying different cardinality of 2, 4, 6, 8,
10... that correspond to even Prime gaps 4, 6, 8, 10, 12... and (ii) recurring null sets with non-
varying same cardinality of 0 that correspond to even Prime gap 2. There is zero probability
that any of these sets will [discriminatorily] become countably finite set for some particular
even Prime gap(s). We rephrase the relevant parts from section 2 below.

Incompletely Predictable complex Sieve-of-Eratosthenes (sub)algorithms [as Σ(Gap
2n-Sieve-of-Eratosthenes algorithm) = Gap 2-Sieve-of-Eratosthenes sub-algorithm + Gap
4-Sieve-of-Eratosthenes sub-algorithm + Gap 6-Sieve-of-Eratosthenes sub-algorithm +...
for n = 1, 2, 3, 4, 5...] will faithfully generate all ALN of Odd Primes. Applying Proof
by Contradiction to theoretical situation of, for instance, Modified Twin prime conjecture
being false; one would [falsely] contends the Gap 2-Sieve-of-Eratosthenes sub-algorithm [=
Σ(Gap 2n-Sieve-of-Eratosthenes algorithm) – Gap 4-Sieve-of-Eratosthenes sub-algorithm –
Gap 6-Sieve-of-Eratosthenes sub-algorithm –... for n = 1, 2, 3, 4, 5...] can only generate a
CFS of twin primes. By logical deduction, this Gap 2-Sieve-of-Eratosthenes sub-algorithm is
then strictly regarded [incorrectly] as a simple Completely Predictable sub-algorithm having
Finite-Length instead of [correctly] as a complex Incompletely Predictable sub-algorithm
having Infinite-Length. By logical contradiction, Modified Twin prime conjecture is then
consequently true in that there must be an Arbitrarily Large Number of twin primes. Ditto
for all other remaining Gap 2n-Sieve-of-Eratosthenes sub-algorithms derived from n = 2, 3,
4, 5, 6... by employing the above similar line of arguments to reach the same conclusion.

Useful deductions regarding nontrivial zeros: For a given function (equation) y = f (x),
there may be no geometrical symmetry in the given equation whereby this equation may or
may not intercept the Origin point; or there may be one or more geometrical symmetry in the
given equation about the X-axis, Y-axis, Diagonal, or Origin point whereby this equation may
or may not intercept the Origin point. For a given equation, these types of symmetry can be
correspondingly tested by replacing y with −y, x with −x, both y with x and x with y, or both
x with −x and y with −y.
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With Dirichlet eta function acting as proxy function for Riemann zeta function, we deduce
using first principle that the infinitely many t-valued Origin intercept points [which faithfully
represents all t-valued nontrivial zeros] of Riemann zeta function will only be generated when
its parameterσ = 1

2 [which represents the solitary critical line] but not when its parameterσ ,
1
2 [which represents the infinitely many non-critical lines]. This is notwithstanding another
simple deduction that Riemann zeta functions when endowed with any σ values between 0
and 1 [viz, in 0 < σ < 1 critical strip which is bisected by σ = 1

2 critical line into two regions
0 < σ < 1

2 and 1
2 < σ < 1] will always behave mathematically as different independent co-

linear equations [all without geometrical symmetry if we only consider the range of either
0 < t < +∞ or −∞ < t < 0] whereby they generate mutually exclusive co-linear lines that
geometrically never cross over one another.

∞∑
n=1

(2n)−
1
2 2

1
2 cos(t ln(2n) +

1
4
π) −

∞∑
n=1

(2n − 1)−
1
2 2

1
2 cos(t ln(2n − 1) +

1
4
π) = 0 (4)

∞∑
n=1

(2n)−
2
5 2

1
2 cos(t ln(2n) +

1
4
π) −

∞∑
n=1

(2n − 1)−
2
5 2

1
2 cos(t ln(2n − 1) +

1
4
π) = 0 (5)

Euler formula can be stated as eın = cos n + ı · sin n. Applying this formula to f(n) η(s)
will result f(n) simplified η(s). Eq. (4) is f(n) simplified η(s) at σ = 1

2 that will incorporate all
nontrivial zeros [as Zeroes]. There is total absence of (non-existent) virtual nontrivial zeros
[as virtual Zeroes]. Eq. (5) is f(n) simplified η(s) at σ = 2

5 that will incorporate all (non-
existent) virtual nontrivial zeros [as virtual Zeroes]. There is total absence of nontrivial zeros
[as Zeroes]. Upon inspecting Eq. (4) that manifest exact Dimensional analysis homogeneity
when σ = 1

2 whereby Σ(all fractional exponents) = 2(−σ) = exact negative whole number
of –1 [as opposed to Eq. (5) that manifest inexact Dimensional analysis homogeneity when
σ = 2

5 whereby Σ(all fractional exponents) = 2(–σ) = inexact negative fractional number of
– 4

5 ]; we deduce only Dirichlet eta function containing parameter σ = 1
2 will mathematically

depict the [optimal] ”formula symmetry” on Σ(all fractional exponents) as an exact negative
whole number. This formula symmetry is not equivalent to geometrical symmetry about the
X-axis, Y-axis, Diagonal, or Origin point that do not exist for any Dirichlet eta function when
only considered for either −∞ < t < 0 or 0 < t < +∞. With full range of t variable being
−∞ < t < +∞ whereby we conventionally adopt positive range 0 < t < +∞, this simple
observation confirms only σ = 1

2 -Dirichlet eta function will perpetually and geometrically
intercept Origin point as Origin intercept points (i.e. will perpetually and mathematically lie
on critical line as nontrivial zeros) an infinite number of times.

Remark 5. Logical reasoning to analogically confirm statements on ”formula symmetry”:
The co-linear mathematical equations having geometrical symmetry y = a cos(x)b –

c cos(x)d = zero [≡ solitary Origin intercept point at the Origin point] occur only when the
unique solitary a = c condition is met. This represents the Proposition: Optimal ”formula
symmetry” at solitary unique σ = 1

2 -critical line will always produce nontrivial zeros as
Origin intercept points. Then, y = a cos(x)b – c cos(x)d , zero [≡ nil Origin intercept point
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at the Origin point] occur when the non-unique multiple a , c conditions are met. These
represent the Corollary: Nil optimal ”formula symmetry” at infinitely many non-unique
σ , 1

2 -noncritical lines will never produce nontrivial zeros as Origin intercept points. We
notice that it is immaterial whether the b = d or b , d conditions are met for both situations.

We also deduce that occurrences of infinitely many violations (failures) of Gram’s Law
and Rosser’s Rule resulting in altered appearances of Gram points [w.r.t. nontrivial zeros]
in σ = 1

2 -Dirichlet eta function do not contradict the above findings in Remark 5 since any
possible solutions for σ , 1

2 -Dirichlet eta functions as true x-axis intercept points [w.r.t. true
Origin intercept points] or as true Gram points [w.r.t. true nontrivial zeros] is a geometrical or
mathematical impossibility. Here, the term Gram points denote Gram[y=0] points (or x-axis
intercept points). From Appendix A, we note Gram’s Law is the tendency for nontrivial zeros
of Riemann-Siegel function Z(t) to alternate with Gram[y=0] points when σ = 1

2 . The first
violation (failure) of Gram’s Law occurs at n = 126. Rosser’s Rule states that every Gram
block contains the expected number of roots as Gram[y=0] points when σ = 1

2 . The first
violation (failure) of Rosser’s Rule occurs at the much larger n = 13999525.

Remark 6. Incorporating classification of countably infinite sets into three subtypes,
we outline the simple and complex properties manifested by Completely Predictable and
Incompletely Predictable entities:

As an example of simple property, x-axis intercept points for simple function sin n are
Completely Predictable to ”linearly” occur infinitely many times when n = all positive and
negative multiples of π. Here are examples of complex properties: As stated by Gram’s
Law, x-axis intercept points for complex function Riemann-Siegel function Z(t) or Riemann
zeta function [via its proxy Dirichlet eta function] ”linearly” occur infinitely many times
as Incompletely Predictable t-values that represent usual positive Gram[y=0] points which
tend to alternate with nontrivial zeros. As unique Incompletely Predictable events ”linearly”
occurring infinitely many times, there are intermittent observable various geometric variants
of two consecutive (positive first and then negative) Gram[y=0] points that is alternatingly
followed by two consecutive nontrivial zeros. These events denote violations (failures) of
Gram’s Law. Violations (failures) of Rosser’s Rule refer to the much less frequent intermit-
tently occurring Incompletely Predictable observable various geometric variants of reduction
in expected number of t-values for certain x-axis intercept points. ”Linearly” occurring
infinitely many times, each of these events gives rise to two missing Gram[y=0] points
or, equivalently, to two extra nontrivial zeros. Plus Gap 2 Composite Number Continuous
Law and Plus-Minus Gap 2 Composite Number Alternating Law[26] outlined in section 8
are two overall Incompletely Predictable properties seen when we dependently combine
[deceleratingly-occurring] primes and [acceleratingly-occurring] composites with associated
prime gaps and composite gaps for critical analysis.

Occurring over 2000 years ago (c. 300 BC), ancient Euclid’s theorem on infinitude of
prime numbers using reductio ad absurdum (proof by contradiction) is earliest known but not
the only proof for this simple problem. Since then dozens of proofs have been devised such
as three chronologically listed: Goldbach’s Proof using Fermat numbers (written in a letter
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to Swiss mathematician Leonhard Euler, July 1730), Furstenberg’s Topological Proof[6], and
Filip Saidak’s Proof[20]. The strangest candidate is Furstenberg’s Topological Proof.

In 2013, Yitang Zhang proved a landmark result showing some unknown even number
N < 70 million such that this condition holds: There are CIS-ALN-decelerating Odd Primes
that differ by N between each other[32]. By optimizing Zhang’s bound, subsequent Polymath
Project collaborative efforts using a new refinement of GPY sieve in 2014 lowered N to 246;
and assuming Elliott-Halberstam conjecture and its generalized form further lower N to 12
and 6, respectively. Intuitively, N has more than one valid values such that the same condition
holds for each N value. With different methods, we can at most lower N to 2 and 4 in regards
to Odd Primes having small prime gaps 2 & 4 with each uniquely generating CIS-ALN-
decelerating Odd Primes. We anticipate there are all remaining prime gaps in regards to Odd
Primes with large prime gaps ≥ 6 that are denoted by corresponding N ≥ 6 values whereby
each large prime gap will generate its own unique CIS-ALN-decelerating Odd Primes.

5.1 Inverse functions of ln(x) with e(x) and li(x) with Ei(x)
We start with the conditional statement ”If P, then Q” which is notated as P→Q. The converse
of the conditional statement is ”If Q, then P” which is notated as Q→ P. The contrapositive of
the conditional statement is ”If not Q, then not P” which is notated as ∼Q→ ∼P. The inverse
of the conditional statement is ”If not P then not Q” which is notated as ∼P→∼Q. An inverse
function (or anti-function) is a function that ”reverses” another function: if the function f
applied to an input x gives a result of y, then applying its inverse function g to y gives the
result x, i.e., g(y) = x if and only if f (x) = y. Not all functions have an inverse. The inverse
function of f is also denoted as f −1 and it exists if and only if f is bijective. Since a function
is a special type of binary relation, many of the properties of an inverse function correspond
to following three properties of converse relations:

(i) Uniqueness. If an inverse function exists for a given function f , then it is unique.
This follows since the inverse function must be the converse relation, which is completely
determined by f .

(ii) Symmetry. There is a symmetry between a function and its inverse. Specifically, if f
is an invertible function with domain X and codomain Y, then its inverse f −1 has domain Y
and image X, and the inverse of f −1 is the original function f . In symbols, for functions f : X
→ Y and f −1: Y→ X, f −1 ◦ f = idX and f ◦ f −1 = idY . This statement is a consequence of
the implication that for f to be invertible it must be bijective.

(iii) Self-inverses. If X is a set, then the identity function on X is its own inverse:
idX
−1 = idX . More generally, a function f : X→X is equal to its own inverse, if and only if the

composition f◦ f is equal to idX . Such a function is called an involution. The involutory nature
of inverse can be concisely expressed by

(
f −1

)−1
= f . The inverse of g◦ f is

(
f −1

)
◦
(
g−1

)
.

The inverse of a composition of functions is given by (g ◦ f )−1 = f −1 ◦ g−1. Notice that the
order of g and f have been reversed; to undo f followed by g, we must first undo g, and then
undo f . For a function f : X → Y , its inverse f −1 : Y → X admits an explicit description: it
sends each element y ∈ Y to the unique element x ∈ X such that f (x) = y.

As the base of natural logarithm, irrational (transcendental) number e is a mathematical

constant approximately equal to 2.71828. It is the limit of (1 +
1
n

)n as n approaches∞ and can
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Fig. 4 The natural logarithm function loge x or ln(x) and natural exponential function exp(x) or ex. The graphs of
loge x and its inverse ex are symmetric with respect to line y = x thus geometrically denoting diagonal symmetry of
these two functions.

also be calculated as sum of infinite series e =
∞∑

n=0

1
n!
= 1 +

1
1
+

1
1 · 2

+
1

1 · 2 · 3
+ · · ·. We

outline the important properties of natural logarithm function and natural exponential function
with their connections to logarithmic integral function and exponential integral function as
inverse or pseudo-inverse functions. The natural logarithm function, if considered as a real-
valued function of a positive real variable, is the inverse of exponential function, leading to

the following identities:
eln x = x if x is strictly positive,

ln ex = x if x is any real number.
As shown in Figure 4, the natural logarithm ln(x) has a vertical asymptote of x = 0 [y-

axis] as x approaches 0 [with ln(x) becoming −∞]. Its inverse function e(x) has a horizontal
asymptote of y = 0 [x-axis] as x approaches −∞ [with e(x) becoming 0]. With the slope of
horizontal line being 0, and the slope of vertical line being an undefined value; we recognize
the slope of ln(x) becomes an infinitesimal small number (+ 1

∞
) that approaches 0 as x grows

towards ∞ but the slope of its inverse function e(x) becomes an infintely large number (+∞)
that approaches an undefined value as x grows towards ∞. Extrapolations: (1) Slope for
Prevalence of all Primes as fraction of all integers. We recognize the slope of ln(x) can
symbolically denote, for instance, the (decelerating) slope for Prevalence of all Primes will
approach 0 as an infinitesimal small number value [but never becomes 0] as x grows towards
∞. (2) Slope for Prevalence of all Composites as fraction of all integers. Similarly, the
slope of e(x) can symbolically denote, for instance, the (accelerating) slope for Prevalence of
all Composites will approach an undefined value as an infinite large number value [but never
becomes an undefined value] as x grows towards∞.

Like all logarithms, the natural logarithm maps multiplication of positive numbers into
addition: ln(x · y) = ln x + ln y. Logarithms can be defined for any positive base other than 1,
not only e. However, logarithms in other bases differ only by a constant multiplier from the
natural logarithm, and can be defined in terms of the latter, logb x = ln x/ ln b = ln x · logb e.
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Their properties are ln 1 = 0; ln e = 1; ln(xy) = ln x + ln y for x > 0 and y > 0; ln(x/y)

= ln x − ln y; ln(xy) = y ln x for x > 0; ln x < ln y for 0 < x < y; lim
x→0

ln(1 + x)
x

= 1; lim
α→0

xα − 1
α

= ln x for x > 0;
x − 1

x
≤ ln x ≤ x − 1 for x > 0; ln (1 + xα) ≤ αx for x ≥ 0 and α ≥ 1.

The real natural exponential function exp: R→ R can be characterized in a variety

of equivalent ways. It is commonly defined by Taylor series exp x :=
∞∑

k=0

xk

k!
= 1 + x +

x2

2

+
x3

6
+

x4

24
+ · · · +

xn

n!
+ · · ·. By way of binomial theorem and power series definition, the

exponential function can also be defined as the limit: exp x = lim
n→∞

(
1 +

x
n

)n
. It can be shown

that every continuous, nonzero solution of the functional equation f (x + y) = f (x) f (y) is
an exponential function, f : R→ R, x 7→ ekx, with k ∈ R. The exponential function satisfies
exponentiation identity ex+y = exey for all x, y ∈ R, which, along with definition e = exp(1),
shows that factors en = e × · · · × e︸      ︷︷      ︸

n factors

for positive integers n, and relates exponential function to

the elementary notion of exponentiation. The base of natural exponential function, its value
at 1, e = exp(1) is a ubiquitous mathematical constant called Euler’s number approximately
equal to 2.71828 – this number also acts as base of natural logarithm function.

The [analogical] logarithmic integral function li(x) is defined as li(x) =
∫ x

0

dt
ln t

. The

function 1/(ln t) has a singularity at t = 1, and the integral for x > 1 is interpreted as a Cauchy

principal value, li(x) = lim
ε→0+

(∫ 1−ε

0

dt
ln t
+

∫ x

1+ε

dt
ln t

)
. The li(x) function is related to its inverse

exponential integral function Ei(x) via equation li(x) = Ei(ln x), and is valid for x > 0. This

identity provides a series representation of li(x) as li(eu) = Ei(u) = γ + ln |u| +
∞∑

n=1

un

n · n!
for

u , 0, where γ ≈ 0.57721 56649 01532... is the Euler-Mascheroni constant. A more rapidly

convergent series by Ramanujan is li(x) = γ + ln ln x +
√

x
∞∑

n=1

(−1)n−1(ln x)n

n! 2n−1

⌊(n−1)/2⌋∑
k=0

1
2k + 1

.

The asymptotic behavior for x → ∞ is li(x) = O
( x
ln x

)
where O is big O notation. The full

asymptotic expansion is li(x) ∼
x

ln x

∞∑
k=0

k!
(ln x)k or

li(x)
x/ ln x

∼ 1+
1

ln x
+

2
(ln x)2 +

6
(ln x)3 + · · ·.

This gives more accurate asymptotic behaviour: li(x) −
x

ln x
= O

(
x

(ln x)2

)
.

In perspective, the [100% accurate] perfect Prime-π(x) stepped-mathematical function
being wrapped around by [less-than-100% accurate] approximate li(x) smooth-mathematical
function infinitely many times via this sign of difference changes implies li(x) is the most
efficient approximate mathematical function. Contrast this with the crude [less-than-100%
accurate] approximate

x
ln x

smooth-mathematical function whereby studied values diverge
away from Prime-π(x) at increasingly greater rate for larger range of prime numbers.
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6 Prime number theorem and Composite number theorem
with Prime-Composite quotient

A number base, consisting of any whole number greater than 0, is the number of digits or
combination of digits that a number system uses to represent numbers e.g. decimal number
system or base 10, binary number system or base 2, octal number system or base 8, hexa-
decimal number system or base 16. As x → ∞, various derived properties of Prime counting
function, Prime-π(x) [= number of primes up to x] occur in, for instance, Prime number
theorem for Arithmetic Progressions, Prime-π(x; b, a) [= number of primes up to x with last
digit of primes given by a in base b]. For any choice of digit a in base b with gcd(a,b) = 1:

Prime-π(x; b, a) ∼
Prime-π(x)

ϕ(b)
. Here, Euler’s totient function ϕ(n) is defined as the number

of positive integers ≤ n that are relatively prime to (i.e., do not contain any factor in common
with) n, where 1 is counted as being relatively prime to all numbers. Then each of the last digit
of primes given by digit a in base b as x → ∞ is equally distributed between the permitted
choices for digit a with this result being valid for, and is independent of, any chosen base b.

Numbers with their last digit ending in (i) 1, 3, 7 or 9 [which can be either primes or
composites] constitute ∼40% of all integers; and (ii) 0, 2, 4, 5, 6 or 8 [which must be com-
posites] constitute ∼60% of all integers. We validly ignore the only single-digit even prime
number 2 and odd prime number 5. We note ≥ 2-digit Odd Primes can only have their last
digit ending in 1, 3, 7 or 9 but not in 0, 2, 4, 5, 6 or 8. These are given as the complete List:
The last digit of Odd Primes having their Prime gaps with last digit ending in 2 [viz, Gap 2,
Gap 12, Gap 22, Gap 32...] can only be 1, 3 or 9 [but not (5) or 7] as three choices.
The last digit of Odd Primes having their Prime gaps with last digit ending in 4 [viz, Gap 4,
Gap 14, Gap 24, Gap 34...] can only be 1, 3 or 7 [but not (5) or 9] as three choices.
The last digit of Odd Primes having their Prime gaps with last digit ending in 6 [viz, Gap 6,
Gap 16, Gap 26, Gap 36...] can only be 3, 7 or 9 [but not (5) or 1] as three choices.
The last digit of Odd Primes having their Prime gaps with last digit ending in 8 [viz, Gap 8,
Gap 18, Gap 28, Gap 38...] can only be 1, 7 or 9 [but not (5) or 3] as three choices.
The last digit of Odd Primes having their Prime gaps with last digit ending in 0 [viz, Gap 10,
Gap 20, Gap 30, Gap 40...] can only be 1, 3, 7 or 9 [but not (5)] as four choices.

Axiom 1. Applications of Prime number theorem for Arithmetic Progressions confirm
Modified Polignac’s and Twin prime conjectures, and support the generalized and ordinary
Riemann hypothesis. Primes from various even Prime gaps are listed in section 2.

Proof. We use decimal number system (base b = 10), and ignore the only single-digit
even prime number 2 and odd prime number 5. For i = 1, 2, 3, 4, 5...; the last digit of all Gap
2i-Odd Primes can only end in 1, 3, 7 or 9 that are each proportionally and equally distributed
as ∼25% when x → ∞, whereby this result is consistent with Prime number theorem for
Arithmetic Progressions. The 100%-Set of, and its derived four unique 25%-Subsets of, Gap
2i-Odd Primes based on their last digit being 1, 3, 7 or 9 must all be CIS-ALN-decelerating.
Since the ALN of Gap 2i are fully represented by all Prime gaps with last digit ending in
0, 2, 4, 6 or 8 that are associated with various permitted combinations of last digit in Gap
2i-Odd Primes being 1, 3, 7 and/or 9 as three or four choices [outlined above in List from
preceding paragraph that complies with the well-known intrinsic property ”different Prime
numbers literally equates to different Prime gaps”], then these ALN unique subsets of Prime
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gaps based on their last digit being 0, 2, 4, 6 or 8 with their correspondingly derived ALN
unique subsets constituted by Gap 2i-Odd Primes having last digit 1, 3, 7 or 9 must also all
be CIS-ALN-decelerating. With all Gap 2i-Odd Primes having their last digit as 1, 3, 7 or 9;
the Probability (any Gap 2i abruptly terminating as x → ∞) = Probability (any Gap 2i-Odd
Primes abruptly terminating as x → ∞) = 0. Thus Modified Polignac’s and Twin prime
conjectures is confirmed to be true. With the ordinary Riemann hypothesis being a special
case, the generalized Riemann hypothesis formulated for Dirichlet L-function [subsection
2.1] holds once x > b2, or base b < x

1
2 as x→ ∞. The proof is now complete for Axiom 12.

All primes generated by Sieve-of-Eratosthenes algorithm and all composites generated
by Complement-Sieve-of-Eratosthenes algorithm are mutually exclusive and complementary
numbers. These two algorithms will act as pseudo-inverse algorithms for each other. Prime
gaps P–gn = Pn+1 − Pn and Composite gaps C–gn = Cn+1 − Cn. Prime gaps are constituted
by CFS of P–gn = 1 representing solitary even prime number {2}; and CIS-ALN-decelerating
of P–gn {2, 4, 6, 8, 10...} representing all CIS-ALN-decelerating odd prime numbers {3, 5,
7, 11, 13, 17, 19...}. Composite gaps are constituted by CFS of C–gn = 1 representing all
CIS-IM-accelerating odd composite numbers {9, 15, 21, 25, 27, 33, 35, 39...} and all CIS-
IM-accelerating even composite numbers {8, 14, 20, 24, 26, 32, 34, 38, 44...} [that both occur
together in between any two odd prime numbers specified by P–gn ≥ 4]; and C–gn = 2
representing all CIS-ALN-decelerating even composite numbers [that precede all odd prime
numbers] {4, 6, 10, 12, 16, 18, 22, 28, 30, 36, 40, 42...}.

One notice three useful facts: (i) the [only] solitary even prime number 2 do not have a
preceding composite number since 1 is neither prime nor composite, (ii) the [recurring] CIS-
ALN-decelerating even composite numbers following all twin primes {4, 6, 12, 18, 30, 42, 60,
72...} having C–gn = 2 always represent the next even composite number that will precede the
following odd prime number [with thus complete absence of both even composite numbers
having C–gn = 1 and odd composite numbers having C–gn = 1 in between the two odd primes
that specify the involved twin primes], and (iii) the [only] consecutive twin primes [with both
having P–gn = 2] that occur involves three consecutive odd prime numbers 3, 5 and 7; and are
associated with the [only] two existing consecutive even composite numbers 4 and 6 [with
both having C–gn = 2]. Note: (i) Even number 2 is prime [and not a Gap 2-Even composite].
(ii) Each twin prime Pn is always associated with two consecutive Gap 2-Even composites
that precede and follow this twin prime.

Combined Completely Predictable Even-Odd formula:
CIS-IM-linear Gap 1-integers {0, 1, 2, 3, 4, 5, 6...} = CIS-IM-linear Gap 2-even numbers {0,
2, 4, 6, 8, 10, 12...} + CIS-IM-linear Gap 2-odd numbers {1, 3, 5, 7, 11, 13...}
We deduce the independent functions (equations) y = f (x) = 2x with its inverse function
y−1 = f −1(x) =

x
2

that generate all Gap 2-even numbers and y = f (x) = 2x − 1 with

its inverse function y−1 = f −1(x) =
x + 1

2
=

x
2
+

1
2

that generate all Gap 2-odd numbers
must act as two complementary and balanced functions [whereby these are pseudo-inverse

functions of each other since the two inverse functions only differ by the constant
1
2

]. We
compare this to the two dependent functions y = e(x) and y = ln(x) which are complementary
and balanced inverse functions of each other.
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Combined Incompletely Predictable Prime-Composite formulae:
CIS-IM-linear Gap 1-integers {0, 1, 2, 3, 4, 5, 6...} = CFS integers {0, 1} + CFS even prime
number {2} + CIS-ALN-decelerating odd prime numbers {3, 5, 7, 11, 13, 17, 19...} + CIS-
IM-accelerating composite numbers {4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20...}.
We deduce the dependent algorithms that generate all Odd Primes and all Composites must
act as two complementary and balanced pseudo-inverse algorithms. We further deduce
from previous analysis that the dependent paired algorithms that generate (i) {Odd Primes
[but which does not include even Prime 2] + Gap 2-Even Composites [but which does not
precede solitary Odd Prime 3]} and (ii) {Gap 1-Even Composite + Gap 1-Odd Composites}
must also act as two complementary and balanced paired pseudo-inverse algorithms.

Prime-Composite quotient: Let P = Primes, C = Composites, Z = Integers. Based on
Prime-π(x) and Composite-π(x) as x→ ∞, the P-C quotient is derived from Conservation of
Set Z = {0, 1} + Set P + Set C, and Set Gap 2i-Odd P = Subset Gap 2-Odd P + Subset Gap
4-Odd P + Subset Gap 6-Odd P +.... Whereas the overall algorithm that generate all Odd P
from even Prime gaps 2, 4, 6, 8, 10... is classified as CIS-ALN-decelerating; so must each
and every sub-algorithms that generate Gap 2-Odd P from even Prime gap 2, Gap 4-Odd
P from even Prime gap 4, Gap 6-Odd P from even Prime gap 6, etc be also classified as
CIS-ALN-decelerating [and not be classified as CIS-IM-accelerating or CFS]. As defined
below, the limit of P-C quotient as x increases without bound is 0:

lim
x→∞

CIS-ALN-decelerating (Gap 2i-Odd P) + CIS-ALN-decelerating (Gap 2-Even C)
CIS-IM-accelerating (Gap 1-Even C) + CIS-IM-accelerating (Gap 1-Odd C)

= 0

Using asymptotic notation, this [inversely proportional] quotient result can be restated as:
CIS-ALN-decelerating (Gap 2i-Odd P) + CIS-ALN-decelerating (Gap 2-Even C)

∼
1

CIS-IM-accelerating (Gap 1-Even C) + CIS-IM-accelerating (Gap 1-Odd C)
We reiterate Gap 1-Even C and Gap 1-Odd C are missing between all twin primes.

Strictly, CIS-ALN-decelerating (Gap 2i-Odd P) = CIS-ALN-decelerating (Gap 2-Even C) +
1 whereby the even number 2 that precede first odd prime number 3 is prime and thus not a
Gap 2-Even C. Since CIS-ALN-decelerating (Gap 2i-Odd P) = CIS-ALN-decelerating (Gap
2-Even C) and CIS-IM-accelerating (Gap 1-Even C) = CIS-IM-accelerating (Gap 1-Odd C)
is sufficiently accurate, then the following are also valid statements:
CIS-ALN-decelerating (Gap 2i-Odd P) or CIS-ALN-decelerating (Gap 2-Even C)

∼
1

2 · CIS-IM-accelerating (Gap 1-Even C) + 2 · CIS-IM-accelerating (Gap 1-Odd C)

∼
1

4 · CIS-IM-accelerating (Gap 1-Even C)

∼
1

4 · CIS-IM-accelerating (Gap 1-Odd C)

Finally, two randomly selected consecutive Odd P can be systematically classified [non-
overlappingly] according to P–gn = 2, 4, 6, 8, 10... as previously shown in section 2.

Prime-π(x) is prime-counting function = number of primes ≤ x, for any real number x.
Composite-π(x) is composite-counting function = number of composites ≤ x, for any real
number x. Prime number theorem and our derived Composite number theorem describe the
asymptotic distribution of primes and composites among positive integers. Respectively, they
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formalize the intuitive idea that primes (and composites) become deceleratingly less (and
acceleratingly more) common as they become larger by precisely quantifying the rate at
which this occurs. Prime number theorem is concluded to be heuristically true and was proved
independently by Jacques Hadamard[8] and Charles Jean de la Vallee Poussin[31] in 1896
using ideas introduced by Bernhard Riemann (in particular, Riemann zeta function). This
theorem has also been rigorously proven as the elementary proofs of Atle Selberg[22] and
Paul Erdos[2] in 1949, and as the non-elementary proof in 1980 by Donald J. Newman[14] in
the sense that he used Cauchy’s integral theorem from complex analysis in his proof.

The asymptotic law of distribution for prime numbers [that involves natural logarithm

function and confirms the CIS-ALN-decelerating property] is given as lim
x→∞

Prime-π(x)[
x

ln(x)

]
= 1. Using asymptotic notation, this result from Prime number theorem can be restated as
Prime-π(x) ∼

x
ln(x)

. This theorem is also equivalent to the statement that the nth prime number

Pn satisfies Pn ∼ n ln(n).
The [pseudo-inverse] asymptotic law of distribution for composite numbers [that involves

natural exponential function and confirms the CIS-IM-accelerating property] is given as

lim
x→∞

Composite-π(x)[
x

e(x)

] = 1. Using asymptotic notation, this result can be heuristically restated

as Composite-π(x) ∼
x

e(x)
to represent our Composite number theorem. This theorem is also

equivalent to the statement that the nth composite number Cn satisfies Cn ∼ ne(n).
The following asymptotic relations are logically equivalent:

lim
x→∞

Prime-π(x) ln(x)
x

= 1, and lim
x→∞

Prime-π(x) ln(Prime-π(x))
x

= 1.

lim
x→∞

Composite-π(x)e(x)
x

= 1, and lim
x→∞

Composite-π(x)e(Composite-π(x))
x

= 1.

Prime number theorem is also equivalent to lim
x→∞

ϑ(x)
x
= lim

x→∞

ψ(x)
x
= 1, where ϑ and

ψ are the first and the second Chebyshev functions respectively, and to lim
x→∞

M(x)
x
= 0,

where M(x) =
∑
n≤x

µ(n) is the Mertens function. Here, the most common generalized

counting function is Chebyshev function ψ(x) defined by ψ(x) =
∑
pk≤x,

p is prime

ln p . This is some-

times written as ψ(x) =
∑
n≤x

Λ(n), where Λ(n) is the von Mangoldt function, namely Λ(n)

=

ln p if n = pk for some prime p and integer k ≥ 1,
0 otherwise.

.

The logarithmic integral function li(x) is defined by li(x) =
∫ x

0

dt
ln t

. An even better

approximation to Prime-π(x) is given by the offset logarithmic integral function Li(x) which

is defined by Li(x) =
∫ x

2

dt
ln t
= li(x) − li(2); or equivalently, li(x) =

∫ x

0

dt
ln t
= Li(x) + li(2).

Also, Li(x) = Ei(ln(x))−Ei(ln(2)) since logarithmic integral function li(x) is related to inverse
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exponential function Ei(x) via equation li(x) = Ei(ln(x)), valid for x > 0. Both li(x) and

Li(x) strongly support the notion that density of prime numbers around t should be
1

ln(t)
;

and is related to natural logarithm by the asymptotic expansion Li(x) ∼
x

ln x

∞∑
k=0

k!
(ln x)k =

x
ln x
+

x
(ln x)2 +

2x
(ln x)3 + · · ·. With the inverse Ei(x) = Li (e(x)) – Li (e(2)), we conclude

Ei(x)−Ei(2) or Ei(x) will both strongly support the notion that density of composite numbers

around t should be
1

e(t)
.

The asymptotic law of distribution for prime numbers [and composite numbers] can also

be given as lim
x→∞

Prime-π(x)
Li(x)

= 1 or lim
x→∞

Prime-π(x)
li(x)

= 1 [and lim
x→∞

Composite-π(x)
Ei(x) − Ei(2)

=

1 or lim
x→∞

Composite-π(x)
Ei(x)

= 1]. Using asymptotic notation, this result is correspondingly

restated as Prime-π(x) ∼ Li(x) or Prime-π(x) ∼ li(x) [and Composite-π(x) ∼ Ei(x) − Ei(2) or
Composite-π(x) ∼ Ei(x)], thus equivalently representing Prime number theorem [and Com-
posite number theorem]. In 1899, de la Vallee Poussin proved the estimate Prime-π(x) =

Li(x) + O
(
xe−a

√
ln x

)
as x→ ∞ is valid for some positive constant a, where O(...) is the

big O notation. The statements Prime-π(x) = Li(x) + O
(√

x ln x
)

and | li(x) – Prime-π(x)| =
O(x1/2+a) for any a > 0 are equivalent to Riemann hypothesis.

Riemann’s prime-power counting function, usually denoted as Π0(x) or J0(x), has

jumps of
1
n

at prime powers pn and takes a value halfway between the two sides at the
discontinuities of π(x). That added detail is used because the function may then be defined

by an inverse Mellin transform. We formally define Π0(x) by Π0(x) =
1
2

∑
pn<x

1
n
+

∑
pn≤x

1
n


where the variable p in each sum ranges over all primes within the specified limits. We may

also write Π0(x) =
x∑

n=2

Λ(n)
ln n

−
Λ(x)
2 ln x

=

∞∑
n=1

1
n
π0

(
x1/n) where Λ(n) is the von Mangoldt

function and π0(x) = lim
ε→0

π(x − ε) + π(x + ε)
2

. The Mobius inversion formula then gives

π0(x) =
∞∑

n=1

µ(n)
n
Π0

(
x1/n), where µ(n) is the Mobius function. Using Perron formula and

the relationship between logarithm of Riemann zeta function and von Mangoldt function

Λ; we have ln ζ(s) = s
∫ ∞

0
Π0(x)x−s−1 dx. The exact form of Prime-π(x) was provided

by Bernhard Riemann (1826 – 1866). For x > 1, let π0(x) = π(x) −
1
2

when x is a prime

number, and π0(x) = π(x) otherwise. It is proved that π0(x) = R(x) –
∑
ρ

R(xρ), where R(x)

=

∞∑
n=1

µ(n)
n

li(x1/n), µ(n) is the Mobius function, li(x) is the logarithmic integral function, ρ

indexes every zero of Riemann zeta function, and li(xρ/n) is not evaluated with a branch cut
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k pk k#
1 2 2
2 3 6
3 5 30
4 7 210
5 11 2310
6 13 30,030
7 17 510,510
8 19 9,699,690
9 23 223,092,870
10 29 6,469,693,230

Table 1 Tabulated data of k
primorial for k = 1 to 10.

but instead considered as Ei(
ρ

n
ln x) where Ei(x) is the exponential integral.

Remark 7. Asymptotic Law of Distribution for Prevalences of Primes and Composites:
As two continuous functions valid for x → ∞ range that share a common mathematical

constant e ≈ 2.71828, the natural logarithm function logex or ln(x) is used in Asymptotic Law
of Distribution for prime numbers and the natural exponential function exp(x) or ex is used in
Asymptotic Law of Distribution for composite numbers. Since we can validly ”project” logex
onto Prevalence of Primes and ex onto Prevalence of Composites; then these functions are
consequently acting as unique two allowable complementary-reciprocal functions that can
also be individually ”projected” onto (i) Prevalence of Odd Primes derived separately from
even Prime gaps 2, 4, 6, 8, 10... and Prevalence of Gap 2-Even Composites [w.r.t. logex],
and (ii) Prevalence of Gap 1-Even Composites and Gap 1-Odd Composites [w.r.t. ex]. Thus
the full x → ∞ range applicability of logex to each and every even Prime gaps will support
Modified Polignac’s and Twin prime conjectures to be true.

6.1 Admissible Prime k-tuplets, Inadmissible Prime (k+1)-tuples,
Dirichlet Sigma-Power Law and Principle of Equidistant for
Multiplicative Inverse

For k ≥ 2, a Prime k-tuple [that can be subdivided into available subtuples for sufficiently
large k values] is a repeatable pattern of finite k consecutive primes {p1, p2,..., pk} [viz, a
finite collection with p1 < p2 <...< pk] having diameter d defined as difference between its
largest and smallest elements [viz, diameter d = pk – p1]. There are two main types of Prime
k-tuples: [repeating] Admissible Prime k-tuples and [non-repeating] Inadmissible Prime k-
tuples. These are further classified into various subtypes and varieties[27] with this aspect not
discussed in this paper. An Admissible Prime k-tuplet is a sequence of finite k consecutive
primes such that the distance between first prime and last prime is in some well-defined sense
as small as possible. Then an Admissible Prime k-tuple is a sequence of finite k consecutive
primes such that this same distance is in some well-defined sense not as small as possible.

The k primorial mentioned in caption of Table 1 is for k = 1 to 10 with its underlying
principles given here: Let pk be the kth prime with k = 1, 2, 3, 4, 5.... Then k primorial
(k#) is product of first k primes whereby [even] numbers in third column are product of
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primes in second column. It is a well-defined Incompletely Predictable function acceleratingly
reaching an infinity value. As part of group theory with notation that read as (Z/nZ)*, concepts
behind multiplicative group of integers modulo n are important for theory of prime k-tuples
or constellations. It contains a subset of integers from 1 to n-1. The elements of (Z/nZ)* are
integers from 1 to n-1 that are relatively prime to n. If n is a prime number, then (Z/nZ)*
contains all integers from 1 to n-1. If n has many divisors, then (Z/nZ)* will contain fewer
elements. To find Admissible Prime k-tuplets, we need to consider the multiplicative group
of integers mod k primorial. This group contains set of integers less than k primorial that are
relatively prime to k primorial.

The multiplicative group mod 6 [2#] has two elements; viz, (Z/6Z)* = {1, 5}. Then all
primes greater than 3 have the form 6*n ± 1. To search for the smaller of twin prime pairs
[Admissible Prime 2-tuplets], one should look at [odd] numbers of the form 6*n + 5. The
multiplicative group mod 30 [3#] has 8 elements; viz, (Z/30Z)* = {1, 7, 11, 13, 17, 19, 23,
29}. By looking at the differences between adjacent elements in this set, we see Admissible
Prime 3-tuplets as pattern (p, p+2, p+6) is found only in the expressions 30*n + 11 and 30*n
+ 17. The ordered set (Z/30Z)* = {1, 7, 11, 13, 17, 19, 23, 29} can be manipulated by taking
the differences between adjacent elements; viz, d30 = [6, 4, 2, 4, 2, 4, 6] =⇒ the particular
pattern (p, p+2, p+6, p+8) which has differences [2, 4, 2] is found inside ordered set d30.
Thus we see Admissible Prime 4-tuplets having pattern (p, p+2, p+6, p+8) must have the
form 30*n + 11.

Proposition 1. Let finite k consecutive primes {p1, p2,..., pk} represent Admissible Prime k-
tuplets that are computed using p1 commencing values 2, 3, 5, 7, 11, 13.... Then except for
p1 commencing value 2 [having the empty set of Admissible Prime k-tuple], we can uniquely
generate a finite number of Admissible Prime k-tuplets / k-tuples that are specified by the k
values and an associated arbitrarily large number of Inadmissible Prime (k+1)-tuples that
are specified by the larger k+1 values whereby both types of tuplets / tuples will comply with
corresponding admissibility and inadmissibility criteria.

Proof. Suppose one is given a k0-tuple H = (h1,. . . , hk0 ) of k0 distinct integers for some
k0 ≥ 1, arranged in increasing order. We often anticipate finding an arbitrarily large number
of translates n + H =(n+h1,. . . , n+hk0 ) of H which consist entirely of consecutive primes
will prove (Modified) Polignac’s and Twin prime conjectures to be true. The case k0 = 1 is
just Euclid’s theorem on the infinitude of primes. The case k0 = 2 [as subset of k0 ≥ 2] with
H = (0, 2) correspond to twin prime conjecture that non-overlappingly deals with prime gap
= 2. The arbitrarily large number of cases k0 ≥ 2 [as full set] in their entirety correspond to
Polignac’s conjecture that [additionally] involve all other remaining cases such as k0 = 3 with
H = (0, 2, 6) as pattern-1 or (0, 4, 6) as pattern-2, k0 = 4 with H = (0, 2, 6, 8) as solitary
pattern, etc. Thus we have [overlappingly] dealt with all even Prime gaps = 2, 4, 6, 8, 10....

More generally, if there is a prime p1 such that H meets each of the p1 residue classes 0
mod p1, 1 mod p1, 2 mod p1, . . . , p1-1 mod p1, then every translate ofH contains at least
one multiple of p1. Since p1 is the only multiple of p1 that is prime, this shows that there are
only finitely many translates ofH that consist entirely of consecutive primes.

A k0-tuple H is admissible if it avoids at least one residue class mod p for each prime p.
It is easy to check for admissibility in practice, since a k0-tuple is automatically admissible
in every prime p larger than k0, so one only needs to check a finite number of primes in order

39



to decide on admissibility of a given tuple. Being a likely unprovable conjecture according to
Godel’s incompleteness theorem, we can succinctly state first Hardy-Littlewood conjecture
or Prime k-tuple conjecture in its qualitative form: If H is an admissible k0-tuple, then
there exists an arbitrarily large number of translates ofH that consist entirely of consecutive
primes. We then deduce neither proving nor disproving the first Hardy-Littlewood conjecture
will definitively prove or disprove (Modified) Polignac’s and Twin prime conjectures.

The statement ”Probability (Odd Primes that are [discriminatorily] derived from any of
the Arbitrarily Large Number of even Prime gaps 2, 4, 6, 8, 10... will abruptly terminate) =
0” =⇒ (Modified) Polignac’s and Twin prime conjectures must be true. Apart from the only
countably finite even prime number 2, all the countably arbitrarily large number of odd prime
numbers 3, 5, 7, 11, 13... can be fully represented by solitary Admissible Prime 2-tuplet that
represent even Prime gap 2 and arbitrarily large number of Admissible Prime 2-tuples that
represent even Prime gaps 4, 6, 8, 10, 12....

Constituted from entire CIS-ALN-decelerating prime numbers 2, 3, 5, 7, 11, 13..., our p1
commencing values act as reference points to orderly include all possible Admissible Prime
k-tuplets / k-tuples and Inadmissible Prime k-tuples whereby these k-tuplets and k-tuples are
constituted by k consecutive prime numbers starting from p1. We invoke multiplicative group
of integers modulo p1 that, via brute force algorithm, must result in a subset of consecutive
integers as residues from 0 to p1-2 and p1-1 whereby some of these integers that represent
corresponding residues will inevitably repeat more than once. For instance at p1 commencing
value = 11, the sequence of integers that mechanically represent corresponding residues from
mod prime 11 as iteratively computed using all available prime gaps are 0, 2, 6, 8, 1, 7, 9, 4,
8, 10, 3, 9, 4, 6, 1 [Admissible] and 5 [Inadmissible] whereby five [non-comprehensive] inte-
gers 1, 4, 6, 8 and 9 are overlappingly depicted more than once and two [uniquely nominated]
integers 0 and 5 must always be non-overlappingly depicted just once but with the [solitary]
integer 5 being (firstly) absent when the involved k-tuple is admissible and (secondly) present
when the involved (k+1)-tuple is inadmissible. The p1 commencing value = 11 has thus pro-
vided us with (i) Admissible Prime 15-tuplet as consecutive primes (11, 13, 17, 19, 23, 29,
31, 37, 41, 43, 47, 53, 59, 61, 67) that is mechanically ≡ progressive prime gaps (0, 2, 4, 2,
4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6) ≡ cummulative prime gaps (0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36,
42, 48, 50, 56) and (ii) Inadmissible Prime 16-tuple as consecutive primes (11, 13, 17, 19, 23,
29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71) that is mechanically ≡ progressive prime gaps (0,
2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 4) ≡ cummulative prime gaps (0, 2, 6, 8, 12, 18, 20, 26,
30, 32, 36, 42, 48, 50, 56, 60). We note all the involved [consecutive] prime gaps of 2, 4 and
6 are each overlappingly depicted more than once for both the involved Admissible Prime
15-tuplet and Inadmissible Prime 16-tuple.

We deduce there must be at least p1-1 consecutive integers representing residues 0, 1, 2,
3,..., p1-2 that cater for longest possible Admissible Prime k-tuplet [and at least p1 consecutive
integers representing residues 0, 1, 2, 3,..., p1-1 that cater for shortest possible Inadmissible
Prime (k+1)-tuple]. Apart from first four cardinality that are smaller than or equal to p1-1,
all subsequent cardinality must not be smaller than their corresponding p1-1 with the all-
important implication that we can always derive arbitrarily long Admissible Prime k-tuples
with maximal k values that must be at least equal to [but are usually always larger than]
p1-1. In general, we recognize that ever larger p1 commencing values are [overall] associ-
ated with ever larger k-valued Admissible Prime k-tuplets / k-tuples that characteristically
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have ever larger zenith diameter d and zenith average gaps. Reproduced with permission
below, these properties were confirmed using computations on initial 15 p1 commencing
values (out of an arbitrarily large number of other commencing values)[27] whereby it is
insightful to regard absolutely Inadmissible Prime k-tuples as those Prime k-tuples that begin
with p1 commencing value = 2 for all k ≥ 2 values and p1 commencing value = 3 for all
k ≥ 3 values, and relatively Inadmissible Prime k-tuples as those Prime k-tuples with p1
commencing value = 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47... for corresponding k
≥ 6, 7, 16, 22, 21, 36, 40, 60, 96, 74, 95, 78, 79... cyclical values. We notice the p1 commencing
value = 3 with k = 2 value will simply represent an Admissible Prime 2-tuplet.

Admissible Prime k-tuplets / k-tuples and Inadmissible Prime k-tuples for initial 15 p1
commencing values:
p1 commencing value = 2. Set Admissible Prime k-tuples as k-value = 0 [empty set] with
its cardinality = ∥CFS∥ = 0. Set Inadmissible Prime k-tuples as k-value = 2 [having nadir
diameter d = 1 and nadir average gap = 1/2 = 0.5], 3, 4, 5, 6... with its cardinality = ∥CIS-
ALN-decelerating∥ = ℵ0-decelerating. At p1 = 2, failure at mod 2 (term 3) first occur at k =
2 with minimum diameter d = 1.
p1 commencing value = 3. Set Admissible Prime k-tuplets as k-value = 2 [having zenith
diameter d = 2 and zenith average gap = 2/1 = 2] with its cardinality = ∥CFS∥ = 1. Set
Inadmissible Prime k-tuples as k-value = 3 [having nadir diameter d = 4 and nadir average
gap = 4/3 = 1.33], 4, 5, 6, 7... with its cardinality = ∥CIS-ALN-decelerating∥ = symbolically
ℵ0. At p1 = 3, failure at mod 3 (term 7) first occur at k = 3 with minimum diameter d = 4.
p1 commencing value = 5. Set Admissible Prime k-tuplets/k-tuples as k-value = 2, 3, 4, 5
[having zenith diameter d = 12 and zenith average gap = 12/5 = 2.4] with its cardinality =
∥CFS∥ = 4. Set Inadmissible Prime k-tuples as k-value = 6 [having nadir diameter d = 14 and
nadir average gap = 14/6 = 2.33], 7, 8, 9, 10... with its cardinality = ∥CIS-ALN-decelerating∥
= ℵ0-decelerating. At p1 = 5, failure at mod 5 (term 19) first occur at k = 6 with minimum
diameter d = 14.
p1 commencing value = 7. Set Admissible Prime k-tuplets/k-tuples as k-value = 2, 3, 4, 5,
6 [having zenith diameter d = 16 and zenith average gap = 16/6 = 2.67] with its cardinality
= ∥CFS∥ = 5. Set Inadmissible Prime k-tuples as k-value = 7 [having nadir diameter d =
22 and nadir average gap = 22/7 = 3.14], 8, 9, 10, 11... with its cardinality = ∥CIS-ALN-
decelerating∥ = ℵ0-decelerating. At p1 = 7, failure at mod 7 (term 29) first occur at k = 7
with minimum diameter d = 22.
p1 commencing value = 11. Set Admissible Prime k-tuplets/k-tuples as k-value = 2, 3, 4,
5,..., 15 [having zenith diameter d = 56 and zenith average gap = 56/15 = 3.73] with its
cardinality = ∥CFS∥ = 14. Set Inadmissible Prime k-tuples as k-value = 16 [having nadir
diameter d = 60 and nadir average gap = 60/16 = 3.75], 17, 18, 19, 20... with its cardinality
= ∥CIS-ALN-decelerating∥ = ℵ0-decelerating. At p1 = 11, failure at mod 11 (term 71) first
occur at k = 16 with minimum diameter d = 60.
p1 commencing value = 13. Set Admissible Prime k-tuplets/k-tuples as k-value = 2, 3, 4,
5,..., 21 [having zenith diameter d = 88 and zenith average gap = 88/21 = 4.19] with its
cardinality = ∥CFS∥ = 20. Set Inadmissible Prime k-tuples as k-value = 22 [having nadir
diameter d = 90 and nadir average gap = 90/22 = 4.09], 23, 24, 25, 26... with its cardinality
= ∥CIS-ALN-decelerating∥ = ℵ0-decelerating. At p1 = 13, failure at mod 13 (term 103) first
occur at k = 22 with minimum diameter d = 90.
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p1 commencing value = 17. Set Admissible Prime k-tuplets/k-tuples as k-value = 2, 3,
4, 5,..., 20 [having zenith diameter d = 84 and zenith average gap = 84/20 = 4.2] with its
cardinality = ∥CFS∥ = 19. Set Inadmissible Prime k-tuples as k-value = 21 [having nadir
diameter d = 86 and nadir average gap = 86/21 = 4.10], 22, 23, 24, 25... with its cardinality
= ∥CIS-ALN-decelerating∥ = ℵ0-decelerating. At p1 = 17, failure at mod 17 (term 103) first
occur at k = 21 with minimum diameter d = 86.
p1 commencing value = 19. Set Admissible Prime k-tuplets/k-tuples as k-value = 2, 3, 4,
5,..., 35 [having zenith diameter d = 162 and zenith average gap = 162/35 = 4.63] with its
cardinality = ∥CFS∥ = 34. Set Inadmissible Prime k-tuples as k-value = 36 [having nadir
diameter d = 172 and nadir average gap = 172/36 = 4.78], 37, 38, 39, 40... with its cardinality
= ∥CIS-ALN-decelerating∥ = ℵ0-decelerating. At p1 = 19, failure at mod 19 (term 191) first
occur at k = 36 with minimum diameter d = 172.
p1 commencing value = 23. Set Admissible Prime k-tuplets/k-tuples as k-value = 2, 3, 4,
5,..., 39 [having zenith diameter d = 188 and zenith average gap = 188/39 = 4.82] with its
cardinality = ∥CFS∥ = 38. Set Inadmissible Prime k-tuples as k-value = 40 [having nadir
diameter d = 200 and nadir average gap = 200/40 = 5], 41, 42, 43, 44... with its cardinality
= ∥CIS-ALN-decelerating∥ = ℵ0-decelerating. At p1 = 23, failure at mod 23 (term 223) first
occur at k = 40 with minimum diameter d = 200.
p1 commencing value = 29. Set Admissible Prime k-tuplets/k-tuples as k-value = 2, 3, 4,
5,..., 59 [having zenith diameter d = 308 and zenith average gap = 308/59 = 5.22] with its
cardinality = ∥CFS∥ = 58. Set Inadmissible Prime k-tuples as k-value = 60 [having nadir
diameter d = 318 and nadir average gap = 318/60 = 5.3], 61, 62, 63, 64... with its cardinality
= ∥CIS-ALN-decelerating∥ = ℵ0-decelerating. At p1 = 29, failure at mod 29 (term 347) first
occur at k = 60 with minimum diameter d = 318.
p1 commencing value = 31. Set Admissible Prime k-tuplets/k-tuples as k-value = 2, 3, 4,
5,..., 95 [having zenith diameter d = 540 and zenith average gap = 540/95 = 5.68] with its
cardinality = ∥CFS∥ = 94. Set Inadmissible Prime k-tuples as k-value = 96 [having nadir
diameter d = 546 and nadir average gap = 546/96 = 5.69], 97, 98, 99, 100... with its cardinal-
ity = ∥CIS-ALN-decelerating∥ = ℵ0-decelerating. At p1 = 31, failure at mod 31 (term 577)
first occur at k = 96 with minimum diameter d = 546.
p1 commencing value = 37. Set Admissible Prime k-tuplets/k-tuples as k-value = 2, 3, 4,
5,..., 73 [having zenith diameter d = 396 and zenith average gap = 396/73 = 5.42] with its
cardinality = ∥CFS∥ = 72. Set Inadmissible Prime k-tuples as k-value = 74 [having nadir
diameter d = 402 and nadir average gap = 402/74 = 5.43], 75, 76, 77, 78... with its cardinality
= ∥CIS-ALN-decelerating∥ = ℵ0-decelerating. At p1 = 37, failure at mod 37 (term 439) first
occur at k = 74 with minimum diameter d = 402.
p1 commencing value = 41. Set Admissible Prime k-tuplets/k-tuples as k-value = 2, 3, 4,
5,..., 94 [having zenith diameter d = 536 and zenith average gap = 536/94 = 5.70] with its
cardinality = ∥CFS∥ = 93. Set Inadmissible Prime k-tuples as k-value = 95 [having nadir
diameter d = 546 and nadir average gap = 546/95 = 5.75], 96, 97, 98, 99... with its cardinality
= ∥CIS-ALN-decelerating∥ = ℵ0-decelerating. At p1 = 41, failure at mod 41 (term 587) first
occur at k = 95 with minimum diameter d = 546.
p1 commencing value = 43. Set Admissible Prime k-tuplets/k-tuples as k-value = 2, 3, 4,
5,..., 77 [having zenith diameter d = 420 and zenith average gap = 420/77 = 5.45] with its
cardinality = ∥CFS∥ = 76. Set Inadmissible Prime k-tuples as k-value = 78 [having nadir
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diameter d = 424 and nadir average gap = 424/78 = 5.44], 79, 80, 81, 82... with its cardinality
= ∥CIS-ALN-decelerating∥ = ℵ0-decelerating. At p1 = 43, failure at mod 43 (term 467) first
occur at k = 78 with minimum diameter d = 424.
p1 commencing value = 47. Set Admissible Prime k-tuplets/k-tuples as k-value = 2, 3, 4,
5,..., 78 [having zenith diameter d = 432 and zenith average gap = 432/78 = 5.54] with its
cardinality = ∥CFS∥ = 77. Set Inadmissible Prime k-tuples as k-value = 79 [having nadir
diameter d = 440 and nadir average gap = 440/79 = 5.57], 80, 81, 82, 83... with its cardinality
= ∥CIS-ALN-decelerating∥ = ℵ0-decelerating. At p1 = 47, failure at mod 47 (term 487) first
occur at k = 79 with minimum diameter d = 440.
The proof is now complete for Proposition 12.

All Admissible Prime k-tuplets will usually have their unique allowable patterns.
A083409 Number of prime k-tuplet constellations, i.e., patterns with minimal diameter
A008407[1] is relevant. Computed for k = 2, 3, 4, 5, 6...; the number of possible patterns are
1, 2, 1, 2, 1, 2, 3, 4, 2, 2, 2, 6, 2, 4, 2, 4, 2, 4, 2, 2, 4, 2, 4, 18, 2, 8, 10, 2, 2, 2, 4, 14, 20, 2, 2, 2,
6, 26, 26, 8, 2, 6, 18, 4, 4, 4, 2, 2, 22, 22, 2, 2, 26, 6, 6, 2, 2, 4, 2, 2, 6, 2, 2, 2, 2, 18, 2, 20, 2,
2, 2, 10, 2, 14, 14, 40, 8, 2, 14, 14, 16, 4, 2, 2, 60, 50, 2, 2, 2, 16, 2, 18, 12.... The 18 patterns
of Admissible Prime 25-tuplets, as a random example, are given in Appendix B whereby we
also depict useful calculations behind frequency of the involved patterns.

For every appropriately paired Admissible Prime k-tuplet patterns endowed with same
modulo number, there exists a counterpart. For instance, Admissible Prime 7-tuplet pattern-1
(0, 2, 6, 8, 12, 18, 20) has its p1 congruent to 11 (modulo 210) and Admissible Prime 7-tuplet
pattern-2 (0, 2, 8, 12, 14, 18, 20) has its p1 congruent to 179 (modulo 210). We see that 11
+ 179 (viz, the counterpart) + 20 (viz, the diameter d) = 210 (viz, the modulo number). The
offset and multiplier containing variable n is related to p1 congruent to p (modular q) for
Admissible Prime k-tuplets as explained using below examples.
Example 1: For Admissible Prime 7-tuplet with pattern-1 given as cummulative prime gaps
(0, 2, 6, 8, 12, 18, 20) ≡ consecutive prime numbers (11, 13, 17, 19, 23, 29, 31) [as based on
first-occurring p1 = 11]; the p1 congruent to 11 (modulo 210) is equivalent to offset and mul-
tiplier 11 + 210*n. This is given by A022009 Initial members of prime septuplets (p, p+2,
p+6, p+8, p+12, p+18, p+20).[17] having values 11, 165701, 1068701, 11900501, 15760091,
18504371, 21036131, 25658441, 39431921, 45002591, 67816361, 86818211, 93625991,
124716071, 136261241, 140117051, 154635191, 162189101, 182403491, 186484211,
187029371, 190514321, 198453371... which is cross linked to A182387 Numbers n such that
210*n+11, 13, 17, 19, 23, 29, 31 are 7 consecutive primes.[21] having values 0, 789, 5089,
56669, 75048, 88116, 100172, 122183, 187771, 214298, 322935, 413420, 445838, 593886,
648863, 667224, 736358, 772329, 868588, 888020, 890616, 907211, 945016, 1052954,
1078331, 1106177, 1146724, 1223888, 1432230, 1452437, 1458355, 1509878, 1535216....
Example 2: For Admissible Prime 7-tuplet with pattern-2 given as cummulative prime gaps
(0, 2, 8, 12, 14, 18, 20) ≡ consecutive prime numbers (5639, 5641, 5647, 5651, 5653, 5657,
5659) [as based on first-occurring p1 = 5639]; the p1 congruent to 179 (modulo 210) is equiv-
alent to offset and multiplier 179 + 210*n. This is given by A022010 Initial members of prime
septuplets (p, p+2, p+8, p+12, p+14, p+18, p+20).[18] having values 5639, 88799, 284729,
626609, 855719, 1146779, 6560999, 7540439, 8573429, 17843459, 19089599, 24001709,
42981929, 43534019, 69156539, 74266259, 79208399, 80427029, 84104549, 87988709,
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124066079, 128469149, 144214319, 157131419, 208729049, 218033729... which is cross
linked to A357889 a(n) = (A022010(n) – 179)/210.[16] having values 26, 422, 1355, 2983,
4074, 5460, 31242, 35906, 40825, 84968, 90902, 114293, 204675, 207304, 329316, 353648,
377182, 382985, 400497, 418993, 590790, 611757, 686734, 748244, 993947, 1038255,
1181931, 1246060, 1310026, 1347976, 1354707, 1440679, 1477788, 1559980, 1720425,
1915719, 1989590....
Example 3: For Admissible Prime 38-tuplet there are six possible patterns with pattern-4
given as cummulative prime gaps (0, 6, 8, 14, 18, 20, 24, 30, 36, 38, 44, 48, 50, 56, 60,
66, 74, 78, 80, 84, 86, 90, 104, 108, 114, 116, 126, 128, 134, 140, 144, 150, 156, 158, 168,
170, 174, 176) ≡ consecutive prime numbers (23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71,
73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167,
173, 179, 181, 191, 193, 197, 199) [as based on first-occurring p1 = 23]; the p1 congruent to
2541318803 (modulo 6469693230) which is equivalent to offset and multiplier 2541318803
+ 6469693230*n is also applicable in a similar manner to previous two examples.

A prime k-tuple is admissible in its sequence of consecutive primes {p1, p2,..., pk} such
that for every prime q ≤ k, not all the residues modulo q are represented by p1, p2,..., pk.
Simpliest Admissible Prime k-tuplets and k-tuples using k = 2 value include all twin primes
as 2-tuplet with smallest possible diameter d (prime gap) = 2; all cousin primes as 2-tuple with
larger diameter d (prime gap) = 4; all sexy primes as 2-tuple with larger diameter d (prime
gap) = 6; etc. An example of Admissible Prime 3-tuple pattern-1 (p+0, p+2, p+8) is given by
consecutive prime numbers (5639, 5641, 5647). We note this particular Prime 3-tuple is also
a subtuple forming part of Admissible Prime 7-tuplet pattern-2 (p+0, p+2, p+8, p+12, p+14,
p+18, p+20) given by first occurrence consecutive prime numbers (5639, 5641, 5647, 5651,
5653, 5657, 5659).

Both the Admissible Prime 2-tuplets as two consecutive primes (p1, pk) with diameter
d or prime gap = pk – p1 = 2 and Admissible Prime 2-tuples as two consecutive primes
(p1, pk) with diameter d or prime gap = pk – p1 ≥ 4 can match an arbitrarily large number
of positions in the sequence of prime numbers. For n = 1, 2, 3, 4, 5...; there are the rarely
occurring but nevertheless arbitrarily large number of Admissible Prime 2-tuples conforming
to criterion pk – p1 = p1 – pk−2 and manifesting as two identical consecutive prime gaps (6n,
6n) = (6, 6), (12, 12), (18, 18), etc [and also manifesting as three or more much rarer identical
consecutive prime gaps (6n, 6n, 6n...) = (6, 6, 6...), (12, 12, 12...), (18, 18, 18...), etc]. They
could in principle also form [bridging] smaller subtuples of steady primes in Admissible
Prime k-tuplets / k-tuples or Inadmissible Prime k-tuples when k ≥ 3. The criterion pk – p1 <
p1 – pk−2 will be conformed to by an arbitrarily large number of Admissible Prime 2-tuples
whereby they could in principle also form [bridging] smaller subtuples of decelerating primes
in Admissible Prime k-tuplets / k-tuples or Inadmissible Prime k-tuples when k ≥ 3. The three
subtuples [that also includes smaller subtuples of accelerating primes] were further elaborated
upon in section 2 whereby they essentially form eternal repeated groupings of small and/or
large prime numbers and gaps.
Remark 8. At ever larger x ≥ 4 integer range manifesting progressively less Odd Primes
[with associated prime gaps], we intuitively expect an overall slowly increasing prevalence
of Admissible Prime k-tuples that cater for large(r) Odd Primes which is reciprocally and
simultaneously associated with an overall slowly decreasing prevalence of Admissible Prime
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k-tuples that cater for small(er) Odd Primes. When Admissible Prime 2-tuplets as two consec-
utive primes (p1, pk) with diameter d or prime gap = pk – p1 = 2 are combined with Admissible
Prime 2-tuples as two consecutive primes (p1, pk) with diameter d or prime gap = pk – p1 ≥ 4,
they are able to [uniquely] represent every known Odd Primes in an non-overlapping manner.

A Prime k-tuple is inadmissible in its sequence of consecutive primes {p1, p2,..., pk} such
that for some of the prime q ≤ k [example, for one of the prime q ≤ k when k ≥ 3 or for two of
the prime q ≤ k if p1 = 2 forms part of a Prime k-tuple when k ≥ 4]; all the residues modulo q
are represented by p1, p2,..., pk. All [non-repeating] Inadmissible Prime k-tuples only match
one finite position in the sequence of prime numbers and are defined by their diameter d
being the shortest. An arbitrarily large number of examples with one all-prime solution for
this subtype include Prime 2-tuple (p+0, p+1) as primes (2, 3) with d = 1; Prime 3-tuple
(p+0, p+1, p+3) as primes (2, 3, 5) with d = 3; Prime 3-tuple (p+0, p+2, p+4) as primes (3,
5, 7) with d = 4; Prime 4-tuple (p+0, p+1, p+3, p+5) as primes (2, 3, 5, 7) with d = 5; Prime
4-tuple (p+0, p+2, p+4, p+8) as primes (3, 5, 7, 11) with d = 8; etc.

Modular arithmetic: a (mod n) is a/n ≡ r whereby a = dividend, n = divisor and r =
remainder [round up to the next integer]. Therefore, a (mod n) ≡ a – (r ∗ n). With abbreviation
n denoting numbers, we analyze the Completely Predictable even n and odd n. For i = 0, 1, 2,
3, 4, 5...; congruence n ≡ 0 (mod 2) holds for even n = Ei = 2*i = 0, 2, 4, 6, 8, 10... and for i =
1, 2, 3, 4, 5, 6...; congruence n ≡ 1 (mod 2) holds for odd n = Oi = (2*i)–1 = 1, 3, 5, 7, 9, 11...
We note 0 is then the zeroth even n when we only consider all (non-negative) positive even
n and odd n. We analyze the Incompletely Predictable prime numbers collectively grouped
as k-tuples. For the worked example of modular arithmetic applied to test for admissibility
on Inadmissible Prime 4-tuple (p+0, p+1, p+3, p+5) ≡ cummulative prime gaps (0, 1, 3, 5)
with earliest and only candidate as consecutive prime numbers (2, 3, 5, 7) having progressive
prime gaps (0, 1, 2, 2); we can use either [I] cummulative prime gaps: congruence 0, 1, 3, 5 ≡
0, 1, 1, 1 (mod prime 2) and congruence 0, 1, 3, 5 ≡ 0, 1, 0, 2 (mod prime 3) or [II] consecutive
prime numbers: congruence 2, 3, 5, 7 ≡ 0, 1, 1, 1 (mod prime 2) and congruence 2, 3, 5, 7 ≡
2, 0, 2, 1 (mod prime 3). There are two failures at [firstly] mod prime 2 on second term = 1
(as prime gap) or 3 (as prime number) and [secondly] mod prime 3 on last term = 5 (as prime
gap) or 7 (as prime number) =⇒ this Inadmissible Prime 4-tuple is now truly confirmed to
be inadmissible. Since twin prime (3, 5) is a Admissible Prime 2-tuplet when first element p
= 3, we can redundantly generate a complete all-inclusive countably arbitrarily large number
of [non-repeating] Inadmissible Prime k-tuples using progressively longer k ≥ 3 values that
should have the shortest diameter when first element p = 3. We can also redundantly generate
a complete all-inclusive countably arbitrarily large number of [non-repeating] Inadmissible
Prime k-tuples using progressively longer k ≥ 2 values that should have the shortest diameter
when first element p = 2.

We hereby explain an example of [non-existing] Inadmissible Prime k-tuple which is
linked to Admissible Prime 3-tuplet (p+0, p+2, p+6) pattern-1 having diameter d = 6 that first
appear as consecutive primes (5, 7, 11). This Admissible Prime 3-tuplet is associated with
Inadmissible Prime 3-tuples with failure at mod prime 3 (last term = 10, 16, 22, 28...) and
must fully conform with the forbidden condition as stated here: Just as two consecutive twin
primes given by Prime 3-tuple (p+0, p+2, p+4+6n) cannot exist at all apart from the soli-
tary Inadmissible Prime 3-tuple occurring as consecutive primes (3, 5, 7) when n = 0, then
so must all two consecutive twin-related primes given by Prime 3-tuple (p+0, p+2, p+4+6n)
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cannot exist at all when n = 1, 2, 3, 4... [since at least one of the three primes is divisible
by 3]. Two other forbidden conditions that must be conformed to by all Prime k-tuplets and
Prime k-tuples including Inadmissible Prime k-tuples are:
(1) Apart from the solitary [single-digit] odd prime number 5 with its last and only digit
also ending in odd number 5, all other larger [multiple-digit] odd prime numbers cannot have
their last digit ending in odd number 5 and, consequently, these forbidden numbers can never
belong to any Prime k-tuplets and Prime k-tuples. Thus, apart from the solitary odd prime
number 5, it is an established mathematical fact that all odd prime numbers must have their
last digit ending in odd numbers 1, 3, 7 or 9.
(2) The arbitrarily large number of Admissible Prime 4-tuplets (p+0, p+2, p+6, p+8) with
smallest possible diameter d = 8 is first given by consecutive primes (5, 7, 11, 13) whereby
this must be differentiated from the totally different [solitary] Inadmissible Prime 4-tuple
(p+0, p+2, p+4, p+8) given by consecutive primes (3, 5, 7, 11) with [same-valued] small-
est diameter d = 8. All the arbitrarily large number of ≥ 2-digit primes in Admissible Prime
4-tuplets commencing sequentially as (11, 13, 17, 19), (101, 103, 107, 109), (191, 193, 197,
199), (821, 823, 827, 829)... must always occur in the same ten-block. Hence it is an estab-
lished mathematical fact that there must be exactly one with each of these unit digits 1, 3, 7
and 9 in all ≥ 2-digit primes from Admissible Prime 4-tuplets. Except for the first term p1 =

5 in Admissible Prime 4-tuplet (5, 7, 11, 13), all other terms are congruent to 11 (mod 30).
Thus all Admissible Prime 4-tuplets except when first term p1 = 5 are of the form (15k-4,
15k-2, 15k+2, 15k+4) with k ≥ 1, and so are centered on 15k.

With needing to include diameter d = 2 when k = 2 [viz, s(2) = 2]; Admissible Prime
k-tuplets for k ≥ 3 can be computed recursively using the following algorithm ([4], p. 1740)
whereby the diameter d is denoted by s(k), gcd is abbreviation for greatest common divisor,
and for p prime, the notation p# is product of all primes up to and including p.
Procedure s(k): Do S(s,3,1) for s = s(k-1)+2, s(k-1)+4,... until an admissible set B is found.

Procedure S(s,q,H): Step 1. Set U = q#, the product of all the primes q. Set D =
U
q

and h =

H. Step 2. Set B = {i: i = 0, 2,..., s, gcd(h+i, U) =1}. Step 3. If B does not contain both 0 and
s, go to step 8. Step 4. If B has less than k elements, go to step 8. Step 5. If B has more than k
elements, do S(s,q’,h), where q’ is the next prime after q. Then go to step 8. Step 6. If B has
exactly k elements and if for each prime p, q < p ≤ k, all residues modulo p are represented
by B, go to step 8. Step 7. Indicate that B is an admissible set and report s(k) = s. Step 8. Add
D to h. If h < H + U, go to step 2. Otherwise return.

The above algorithm is related to A008407 Minimal difference s(n) between beginning
and end of n consecutive large primes (n-tuplet) permitted by divisibility considerations.[5]
having values 0 [symbolizing the nonexisting 1-tuple], 2, 6, 8, 12, 16, 20, 26, 30, 32, 36, 42,
48, 50, 56, 60, 66, 70, 76, 80, 84, 90, 94, 100, 110, 114, 120, 126, 130, 136, 140, 146, 152,
156, 158, 162, 168, 176, 182, 186, 188, 196, 200, 210, 212, 216, 226, 236, 240, 246, 252,
254, 264, 270, 272, 278....
Remark 9. As opposed to Admissible Prime k-tuplets [with diameter d as small as possible],
Admissible Prime k-tuples [with diameter d not as small as possible] will cater more for
existence of prime numbers with large(r) prime gaps that tend to occur at large(r) range of
x integer values. We deduce when these Prime k-tuplets and Prime k-tuples are combined
together, they should in principle be able to represent every known odd prime numbers albeit
in an overlapping manner.
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Fig. 5 INPUT for σ = 1
2 (for Figure 6), 2

5 (for Figure 7), and 3
5 (for Figure 8). Riemann zeta function, ζ(s), has

countable infinite set of Completely Predictable trivial zeros located at s = all negative even numbers and countable
infinite set of Incompletely Predictable nontrivial zeros located at σ = 1

2 as various t-valued transcendental numbers.

Proposition 2. Both f (n) simplified Dirichlet eta function and F(n) Dirichlet Sigma-Power
Law will manifest Principle of Equidistant for Multiplicative Inverse.

Proof. Dirichlet eta function η(s) is the proxy function for Riemann zeta function ζ(s). We
use sim-η(s) to denote f (n) simplified Dirichlet eta function. With also containing variable
n, and parameters t and σ; sim-η(s) is essentially obtained by applying Euler formula to η(s)
and the F(n) Dirichlet Sigma-Power Law, denoted by DSPL, refers to

∫
sim-η(s)dn.

1

2
1
2

(
t2 +

1
4

) 1
2
[
(2n)

1
2 cos(t ln(2n) −

1
4
π) − (2n − 1)

1
2 cos(t ln(2n − 1) −

1
4
π) +C

]∞
1
= 0 (6)

With exact Dimensional analysis homogeneity, Eq. (6) is F(n) DSPL at σ = 1
2 that

will incorporate all nontrivial zeros [as Pseudo-zeroes to Zeroes conversion]. There is total
absence of (non-existent) virtual nontrivial zeros [as virtual Pseudo-zeroes to virtual Zeroes
conversion]. If alternatively using infinitesimal small number below [by letting variable δ =
1
∞

], we immediately recognize this action also confirms Proposition 2 to be true [and provide
further definitive evidence to support rigorous Equation-type proof for Riemann hypothesis].

Let variable δ = 1
10 . This will consistently generate in Figure 7 and Figure 8 the δ induced

shift of [infinitely many] Varying Loops in reference to Origin; viz, the simple relationship
of [more negative] left-shift given by ζ( 1

2 − δ + ıt) [Figure 7] < [neutral] nil-shift given by
ζ( 1

2 + ıt) [Figure 6] < [more positive] right-shift given by ζ( 1
2 + δ + ıt) [Figure 8].

Given δ = 1
10 , the σ = 1

2 − δ =
2
5 -non-critical line (represented by Figure 7) and σ =

1
2 + δ =

3
5 -non-critical line (represented by Figure 8) are equidistant from σ = 1

2 -critical line
(represented by Figure 6). The additive inverse operation of sin(δ) + sin(-δ) = 0 indicating
symmetry with respect to Origin [or cos(δ) - cos(-δ) = 0 indicating symmetry with respect to
y-axis] is not applicable to our complex single sine wave [or single cosine wave] since (2n)-
complex or (2n-1)-complex term with transcendental functions consisting of sine, cosine,
single sine wave, single cosine wave, natural logarithm are independent of parameter σ.
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Fig. 6 OUTPUT for σ = 1
2 as Gram points. Polar graph of ζ( 1

2 + ıt) plotted along critical line for real values of t
running from 0 to 34. Horizontal axis: Re{ζ( 1

2 + ıt)}. Vertical axis: Im{ζ( 1
2 + ıt)}. Presence of Origin intercept points.

Fig. 7 OUTPUT for σ = 2
5 as virtual Gram points. Varying Loops are shifted to left of Origin with horizontal axis:

Re{ζ( 2
5 + ıt)}, and vertical axis: Im{ζ( 2

5 + ıt)}. Nil Origin intercept points.

Fig. 8 OUTPUT for σ = 3
5 as virtual Gram points. Varying Loops are shifted to right of Origin with horizontal axis:

Re{ζ( 3
5 + ıt)}, and vertical axis: Im{ζ( 3

5 + ıt)}. Nil Origin intercept points.
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However, (2n)-complex or (2n-1)-complex term with algebraic functions consisting
of powers, fractional powers, root extraction [and scaled amplitude R on its (in)dependency

on parameter t] are dependent on parameter σ. Let x = (2n) or
1

(2n)
or (2n− 1) or

1
(2n − 1)

.

With multiplicative inverse operation of xδ·x−δ = 1 or
1
xδ
·

1
x−δ
= 1 that is applicable, this

imply intrinsic presence of Multiplicative Inverse in sim-η(s) or DSPL for all σ values with
this function or law rigidly obeying relevant trigonometric identity. We call this phenomenon
Principle of Equidistant for Multiplicative Inverse. By letting δ = 0, one can always gen-
erate Figure 6 representing σ = 1

2 -critical line. The proof is now complete for Proposition 22.

7 Infinitesimal numbers applied to Prime numbers and
Nontrivial zeros

The following is considered under real-valued functions of a positive real variable: The
asymptotic law of distribution of prime numbers states the limit of quotient of two functions

Prime-π(x) and
x

loge x
as x increases without bound is 1; viz, lim

x→∞

Prime-π(x)[
x

loge x

] = 1. Whereby

the deceleratingly distributed prime numbers mathematically involves loge x, then the accel-
eratingly distributed composite numbers must mathematically involves ex since these two set
of numbers are [complementary] mutually exclusive entities and natural logarithm function
is the inverse function of natural exponential function. Then the corresponding asymptotic

law of distribution of composite numbers is lim
x→∞

Composite-π(x)[
x
ex

] = 1. A direct consequence

of Prime number theorem [discussed under li(x) in section 6] is average gap between primes
[arising from arbitrarily large number of all even prime gaps 2, 4, 6, 8...] increases as natural
logarithm of these primes, and therefore the ratio of average prime gap to all primes involved
decreases (and is asymptotically zero). Heuristically, we expect the probability that the ratio
of the length of prime gap to the natural logarithm is ≥ a fixed positive number k to be e−k.
The average prime gap between all primes, and the ratio of prime gap to number of digits in
the integers involved, will both increase without bound as we go out on the number line.

Manifesting perpetual asymptotically zero behavior as the graphical distance gets closer
to 0 or∞; the natural logarithm of a number is its logarithm to base of mathematical constant e
– an irrational (transcendental) number ≈ 2.718281828459. With logee = 1 and loge1 = 0, the
logex function will deceleratingly grow to +∞ [conceptually a ”zero”] as x increases without
bound, and deceleratingly grow to –∞ [conceptually a ”zero”] as x approaches 0. Let f (x) =
g(x) + h(x) + i(x)... be a mathematically well-defined component function constituted by sum
of its sub-component functions that all contain natural logarithm [and are all Infinite-Length
functions]. Then f (x) together with g(x), h(x), i(x)... must all manifest the asymptotically zero
behavior of natural logairthm. Conceptually, f (x) can represent average prime gap between
all odd primes [from arbitrarily large number of all even Prime gaps 2, 4, 6, 8, 10...], g(x)
can represent average prime gap between all twin primes [from even Prime gap 2], h(x) can
represent average prime gap between all cousin primes [from even Prime gap 4], i(x) can
represent average prime gap between all sexy primes [from even Prime gap 6], etc whereby
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relevant computations from Appendix C confirm average prime gap between all odd primes
manifesting this asymptotically zero behavior of natural logarithm.

For Modified Polignac’s and Twin prime conjectures to be true, none of the arbitrarily
large number of Subsets Odd Primes generated by corresponding even Prime gaps should
ever become countably finite subsets. There are two somewhat anomalous situations.
(A) Prime numbers tend to be clustered around large or larger prime gaps occurring as mul-
tiples of 6; viz, prime gaps 6, 12, 18.... We deduce this observation do not prove or disprove
Modified Polignac’s and Twin prime conjectures, and can be logically explained as follow.
Excepting the first two prime gaps, all prime gaps are between numbers that are either 1 or 5
modulo 6. Under the assumption that both cases are equally likely, half the prime gaps will
be between numbers in the same class, and therefore of size 0 modulo 6, and the other half
will be between numbers in different classes, which split up into sizes that are 2 and 4 mod-
ulo 6. Since each of the latter cases only gets one quarter of the total, it is clear that ignoring
all other factors, gaps that are 2 or 4 modulo 6 are about half as likely to occur as gaps of the
same approximate magnitude that are 0 modulo 6.
(B) Here is a simple proof for two consecutive prime gaps that are equal must be of the form
(6n, 6n) for n = 1, 2, 3, 4, 5...: Suppose there were two consecutive gaps between 3 consecu-
tive prime numbers that were equal, but not divisible by 6. Then the difference is 2k where k
is not divisible by 3. Therefore the (supposed) prime numbers will be p, p+2k, p+4k. But then
p+4k is congruent modulo 3 to p+k. That makes the three numbers congruent modulo 3 to p,
p+k, p+2k. One of those is divisible by 3 and so cannot be prime. So two consecutive gaps
must be divisible by 3 and therefore (as they have to be even) by 6. However this observation
neither prove nor disprove Modified Polignac’s and Twin prime conjectures.

Riemann hypothesis propose all nontrivial zeros to be located on σ = 1
2 -critical line of

Riemann zeta function. Previous confirmation of first 10,000,000,000,000 nontrivial zeros
location on this critical line implies but does not prove Riemann hypothesis to be true. Hardy
initially[9], and then with Littlewood[10], showed there are infinitely many nontrivial zeros
lying on critical line or, equivalently, there are infinitely many Origin intercept points lying on
Origin point by considering moments of certain functions related to Riemann zeta function.
This discovery cannot constitute rigorous proof for Riemann hypothesis because they have
not exclude theoretical existence of nontrivial zeros located away from critical line when
σ , 1

2 . Furthermore, it is literally a mathematical impossibility (mathematical impasse) to
computationally check [in a complete and successful manner] the locations of all infinitely
many nontrivial zeros to correctly be the critical line. There must be infinitely many ±t-valued
Origin intercept points lying on Origin point [and hence infinitely many ±t-valued nontrivial
zeros] since variable t has full range of values given by –∞ < t < +∞ that involves ±∞.

An infinitesimal number is a quantity that is closer to zero than any standard real number,
but that is not zero. The mathematical concept infinity is represented by symbol∞. The recip-
rocal or inverse symbol 1

∞
is the representation of the mathematical concept infinitesimal.

Proposition 3. With the prevalence of various selected odd prime numbers as endpoints never
becoming zero [which are conceptually defined as the nonexisting zero in this instance], we
can apply infinitesimal numbers to rigorously show both the prevalence of total odd prime
numbers having all even Prime gaps and the prevalence of subtotal odd prime numbers
having corresponding even Prime gaps will never become zero.
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Proof. We recall that all CIS-ALN-decelerating computed prime numbers are extrapo-
lated out over a wide range of x ≥ 2 integer values; the prime counting function Prime-π(x)
= number of primes ≤ x with x [conveniently] assigned to having odd number values of the
form 10n−1 whereby n = 1, 2, 3, 4, 5...; and the Prevalence of prime numbers = Prime-π(x)
/ x = Prime-π(x) / (10n − 2) when x = 2 to 10n − 1. Note: The probability theory applied to
n-digit primes and n-digit composites are given in subsection 7.1.

Apart from even Prime gaps of the form 6n with n = 1, 2, 3, 4, 5... and the [solitary]
consecutive prime gaps (2, 2) present in Inadmissible Prime 3-tuple with consecutive primes
(3, 5, 7), no other types of two consecutive prime gaps that are identical is possible. In reality,
one could then rigorously argue from first principle alone there must be at least three even
Prime gaps that will perpetually reappear over the entire sequence of prime numbers because
the alternatingly appearance of just two different even Prime gaps at extremely large x integer
values simply cannot occur.

We recall from Proposition 1 concerning a given k0-tuple H = (h1,. . . , hk0 ) of k0 distinct
integers for some k0 ≥ 1, arranged in increasing order whereby one can, in principle, find an
arbitrarily large number of translates n +H =(n+h1,. . . , n+hk0 ) ofH which consists entirely
of consecutive primes. The case k0 = 1 is just Euclid’s theorem on the infinitude of primes.
From this simple theorem, we provide following mathematical arguments:
The cardinality of all prime numbers [or all odd prime numbers when we validly ignore the
only even prime number 2] is given by ∥CIS-ALN-decelerating∥ = ℵ0-decelerating when n→
∞ in x = 2 to 10n−1. The cardinality of all integer numbers is given by ∥CIS-IM-linear∥ = ℵ0-
linear when n→ ∞ in x = 0 to 10n−1. As n→ ∞, there are an arbitrarily large number (ALN)
of deceleratingly-occurring prime numbers amongst the infinitely many linearly-occurring
x integer numbers; viz, x integer numbers ≫ prime numbers. Then Prevalence of prime

numbers = Prime-π(x) / x = ALN / ∞ = an infinitesimal number symbolized by
1
∞

when
denominator x represents the range 0 to ∞. Since Euclid’s theorem holds for x = 2 to ∞,
then Prevalence of prime numbers is constituted by an infinitesimal number but can never
become zero; viz, Prevalence of prime numbers conceptually have a nonexisting zero.

A substantial amount of previous materials refer to the proposal on subsets of odd prime
numbers uniquely derived from corresponding arbitrarily large number of even Prime gaps
2i with i = 1, 2, 3, 4, 5... in that all these subsets [which equates to Admissible Prime 2-
tuplets with diameter or prime gap 2 + Admissible Prime 2-tuples with diameter or prime
gap 4, 6, 8, 10...] must also be arbitrarily large in number. Remark 8, in particular, support
this proposal. There must be full compliance with (i) Dimensional analysis homogeneity on
relevant cardinality, and (ii) even Prime gaps will never terminate. All odd prime numbers
having all even Prime gaps 2, 4, 6, 8, 10... = odd prime numbers having even Prime gap 2 +
odd prime numbers having even Prime gap 4 + odd prime numbers having even Prime gap
6 +... + odd prime numbers having even Prime gap 2i =⇒ ℵ0-decelerating [all odd prime
numbers] = ℵ0-decelerating [odd prime numbers having even Prime gap 2] + ℵ0-decelerating
[odd prime numbers having even Prime gap 4] + ℵ0-decelerating [odd prime numbers having
even Prime gap 6] +... + ℵ0-decelerating [odd prime numbers having even Prime gap 2i].
Based on similar reasoning from previous paragraph, we logically deduce that for x = 2 to
∞, Prevalence of various odd prime numbers as specified by their corresponding even

Prime gaps 2i can similarly all be constituted by infinitesimal numbers symbolized by
1
∞

but
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never become zero; viz, Prevalence of various odd prime numbers as specified by their
corresponding even Prime gaps 2i conceptually have a nonexisting zero.

The proof is now complete for Proposition 32.

Proposition 4. With σ = 1
2 -Origin point or σ = 1

2 -critical line of Riemann zeta function (via
proxy Dirichlet eta function) regarded as the zero endpoint [which is conceptually defined
as the existing zero in this instance], we can apply infinitesimal numbers to rigorously show
the equivalent [geometrical] Origin intercept points located at the zero-dimensional σ =
1
2 -Origin point and [mathematical] nontrivial zeros located at the one-dimensional σ = 1

2 -
critical line will uniquely appear only when parameter σ = 1

2 .
Proof. For simplicity, we use Riemann zeta function to also indicate Dirichlet eta function,

simplified Dirichlet eta function and Dirichlet Sigma-Power Law [and note the relevant Zeros
= Pseudo-zeros –

π

2
relationship]. We recall that all CIS-IM-linear computed nontrivial zeros

are extrapolated out over a wide range of t ≥ 0 real number values; and the Nontrivial zeros
gaps, Nontrivial zeros counting function and Prevalence of nontrivial zeros can be defined.
Although inevitably fluctuating, the initial Prevalence of nontrivial zeros is approximated
by, for instance, using t = 0 to 100 range as 29/100 = 0.29 = 29% since there are precisely
29 nontrivial zeros in this range. As noted in section 3, the rolling Prevalence of nontrivial
zeros seems to overall increase by around 0.366 in a ”linear” manner over t = 0 to∞.

We recall variable δ = 1
10 when applied to Riemann zeta function in Proposition 2 to

confirm Principle of Equidistant for Multiplicative Inverse refers to Figure 7 representing
σ = 2

5 -non-critical line and Figure 8 representing σ = 3
5 -non-critical line. We recognize zero-

dimensional σ = 1
2 -Origin point in Figure 6 is synonymous with one-dimensional σ = 1

2 -
critical line, and this particular point or line is conceptually regarded as the existing zero. Then
Varying Loop trajectory in Figure 6 will only depict CIS-linear [geometrical] Origin intercept
points that is precisely equivalent to CIS-linear [mathematical] nontrivial zeros when δ = 0
since Origin point is a zero-dimensional point that can only be touched by the trajectory when

δ = 0 and σ = 1
2 . We logically deduce variable δ = infinitesimal number value

1
∞

will never

become the existing zero since this equates to σ ≊ 1
2 [or the trajectory is extremely close to

zero-dimensional Origin point] but this is categorically still not the same as σ = 1
2 [or the

trajectory touching zero-dimensional Origin point]. Thus variable δ will instead only become
the existing zero when both σ = 1

2 and δ = 0 conditions are simultaneously fully satisfied.
Manifestation of Dimensional analysis (DA) homogeneity by parameter σ in Riemann

zeta function: The exact DA homogeneity indicate calculated values of [exact] integer −1
and 1 as derived from

∑
(all fractional exponents) = 2(−σ) and 2(1 − σ). Respectively, these

act as surrogate markers in simplified Dirichlet eta function and Dirichlet Sigma-Power Law
on the solitary unique σ = 1

2 ”Proposition” situation. Otherwise, for the infinitely many
non-unique σ , 1

2 ”Corollary” situations, calculated values of [inexact] fractional numbers ,
integer –1 and , integer 1 are derived from

∑
(all fractional exponents) = 2(−σ) and 2(1−σ)

to indicate inexact DA homogeneity. The proof is now complete for Proposition 42.

Let Pi, Pi+1, Pi+2 and Pi+3 = four randomly selected consecutive prime numbers whereby
Pi+3 > Pi+2 > Pi+1 > Pi. If this four primes are considered in total isolation, then there are
only three possible prime gaps able to be computed: Prime gapi = Pi+1 – Pi, Prime gapi+1
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= Pi+2 – Pi+1 and Prime gapi+2 = Pi+3 – Pi+2. In principle, we recognize these three prime
gaps can be constituted by all possible combinations of small prime gaps 2 and 4 and/or
large prime gaps ≥ 6; viz, all three prime gaps are constituted by small prime gaps, all three
prime gaps are constituted by large prime gaps, and the three prime gaps are constituted by
a mixture of small and large prime gaps. Intuitively, every even Prime gap 2, 4, 6, 8, 10...
and its correspondingly associated odd prime numbers must exist at least once; viz, occurring
only one time, occurring a finite number of times, or occurring an arbitrarily large number
of times. Proving the only correct possibility of both even Prime gaps 2, 4, 6, 8, 10... and
their correspondingly associated odd prime numbers occurring an arbitrarily large number
of times is equivalent to proving Modified Polignac and Twin prime conjectures to be true.

There is one and only one σ = 1
2 critical line that is mutually exclusive and independent

from the infinitely many σ , 1
2 noncritical lines. Since there is zero probability that any

particular parameter σ , 1
2 values that do occur in Dirichlet eta function will mathematically

represent the σ = 1
2 critical line [or will geometrically represent the analogous σ = 1

2 Origin
point], we consequently deduce all countably infinitely large number of nontrivial zeros that
linearly reach an infinity value as generated from Dirichlet eta function when parameterσ = 1

2
will, by default, also have to be located on the σ = 1

2 critical line. Proving the only correct
possibility of unique σ = 1

2 critical line location for all nontrivial zeros is equivalent to
proving Riemann hypothesis to be true.

7.1 Probability theory applied to n-digit Primes and n-digit Composites
With Probability = 100% X Proportion, Probability and Proportion are literally equivalent
to each other for analysis on prime and composite numbers (and nontrivial zeros). If the
probability [range between 0 or 0% and 1 or 100%] of an event occurring is Y, then the
probability [range between 0 or 0% and 1 or 100%] of the event not occurring is 1–Y. The
odds of an event represent the ratio Probability that the event will occur : Probability that the

event will not occur. This can be succinctly expressed as Odds of event =
Y

1 − Y
.

Based on cardinality of (sub)sets of primes and composites used in Prime-Composite
quotient from section 6, we interpret their Probability or Proportion will satisfy

P(odd primes) ≈
1

2 · P(Gap 1-Even composites) + 2 · P(Gap 1-Odd composites)
.

P(any number is divisible by a prime p, or in fact any integer) = 1/p. Let there be k
randomly chosen integers. When k = 2, P(two numbers are both divisible by p) = 1/p2, and
P(at least one of the two numbers is not divisible by p) = 1 − 1/p2. Any finite collection
of divisibility events associated to distinct primes is mutually independent. For example, in
the case of two events, a number is divisible by primes p and q iff it is divisible by pq;
the latter event has probability 1/pq. We make the heuristic assumption that such reasoning
can be extended to infinitely many divisibility events. Then, P(two numbers are coprime) =∏
prime p

(
1 −

1
p2

)
=

 ∏
prime p

1
1 − p−2


−1

=
1
ζ(2)

=
6
π2 ≈ 0.607927102 ≈ 61% – a product over all

primes. More generally, P(k randomly chosen integers being coprime) =
1
ζ(k)

.
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The fundamental theorem of arithmetic asserts that every nonzero integer can be written
as a product of primes in a unique way, up to ordering and multiplication by units. Prime
numbers are defined as All integers apart from 0 and 1 that are evenly divisible by itself
and by 1. Composite numbers are defined as All integers apart from 0 and 1 that are evenly
divisible by numbers other than itself and 1. The integer numbers (Z) = {0, 1, 2, 3, 4...},
prime numbers (P) = {2, 3, 5, 7, 11...} and composite numbers (C) = {4, 6, 8, 9, 10...} can all
be analyzed in terms of their corresponding unique n-digit numbers.

n 0 1 2 3 4 5 6
A006879n 0 4 21 143 1061 8363 68906
A006880n 0 4 25 168 1229 9592 78498

7 8 9 10 ...
586081 5096876 45086079 404204977 ...
664579 5761455 50847534 455052511 ...

A006879 Number of primes with n digits. Number of primes between 10(n−1) and 10n[23].
Using our unique n-digit P grouping, this statement is mathematically equivalent to Number
of primes between 10(n−1) and 10n − 1 since the integer 10n itself can never be prime.

A006880 Number of primes < 10n. Number of primes with at most n digits or Prime
counting function P-π(< 10n) defined as ∥P < 10n∥[24]. Using our unique n-digit P and n-
digit C groupings, Prime counting function P-π(≤ 10n − 1) is defined as ∥P ≤ 10n − 1∥; and
Composite counting function C-π(≤ 10n − 1) as ∥C ≤ 10n − 1∥.

The above two integer sequences A006879 and A006880 are directly related to our unique
n-digit P and n-digit C groupings whereby n = 0, 1, 2, 3, 4... [to an arbitrarily large number].
A006880 forms the partial sums of A006879. Using n-digit P grouping, A006879 can be
alternatively defined as The number of primes between 10(n−1) and 10n − 1 which supply
precisely the original and identical A006879n as n-digit prime number values. By employing
similar crucial step of using n-digit C grouping The number of composites between 10(n−1) and
10n − 1, we obtain the complementary-A006879n as n-digit composite number values. There
are precisely 10n−1 minus 10(n−1) plus 1 = 10n – 10(n−1) integer numbers between 10(n−1) and
10n − 1. The important implication is that we are now always dealing with the same n-digit
integer, prime and composite numbers whereby the relationship n-digit Z = n-digit P + n-digit
C will always hold [except for when n = 1 because 0 and 1 are neither prime nor composite].
We note from A006879 and A006880 the number of primes that are still constituted by very
large number values will proportionately decline rapidly with progressively larger n values
assigned to 10(n−1) and 10n − 1. One can aesthetically speculate there will always be many
allocated primes to theoretically represent all possible small or large Prime gaps.

For i = 1, 2, 3, 4, 5..., Set of Zi {0, 1, 2, 3, 4...} as CIS-IM-linear = Set of neither P nor
C {0, 1} as CFS + Set of Pi {2, 3, 5, 7, 11...} as CIS-ALN-decelerating + Set of Ci {4, 6, 8,
9, 10...} as CIS-IM-accelerating. All P are odd except for the first and only even P 2. There
is only one solitary even P 2 and one solitary odd P 5 that are not C. Otherwise, all Z with
their last digit ending as even numbers 0, 2, 4, 6 or 8, or odd number 5 must always be C.
Apart from P 2 and P 5, all P have their last digit ending as odd numbers 1, 3, 7 or 9. But not
all Z with their last digit ending as odd numbers 1, 3, 7 or 9 are P – in fact, these numbers
are more likely to be C than P. We deduce that for ≥2-digit numbers, (i) C can have their last
digit ending in 0, 1, 2, 3, 4, 5, 6, 7, 8 or 9 but (ii) P can only have their last digit ending in 1,
3, 7 or 9; and thus (iii) all Z with their last digit ending in 0, 2, 4, 5, 6 or 8 must be C.

For n = 1, 2, 3, 4, 5...[to an arbitrarily large number]; we apply probability theory to
the generated subsets of n-digit P as CIS-ALN-decelerating and n-digit C as CIS-IM-
accelerating. With probability 1, all randomly selected Z that has its last digit ending with 0,
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2, 4, 5, 6 or 8 must be almost surely C. This is equivalently stated as: With probability 0, all
randomly selected Z that has its last digit ending with 0, 2, 4, 5, 6 or 8 must be almost never
P. Thus, P(randomly selected Z is C with 100% certainty) = 0.6 [except for the isolated 1-
digit Z 0 and 1-digit P 2 and 5 which are not C]. The terms almost surely and almost never
can now be replaced with surely and never when we disregard the 1-digit P and 1-digit C.
Since the condition ”randomly selected Z that has its last digit ending with 0, 2, 4, 5, 6 or 8
must be surely C” will always apply to any chosen subsets of ≥2-digit Z, the consequently
derived equivalent condition ”60% of all Z being C with 100% certainty” will also always
apply to these same subsets. Then, with 60% of all Z being C with 100% certainty, there are
always more C than P for any chosen corresponding subsets of ≥2-digit P and ≥2-digit C.

Constraints on Prime numbers and Prime gaps: We define Prime gapi = Pi+1 − Pi. We
ignore P1 = 2 and P3 = 5. We convey the paired list of (last digit for Pi, last digit for Pi+1) as
full range of choices permissible for corresponding specified groupings of prime gaps:
CIS-ALN-decelerating Pi selected from Prime gapi = 2, 12, 22, 32...[to an arbitrarily large
number as CIS-ALN-decelerating] → (1, 3), (7, 9), (9, 1). The last digit of Pi with prime
gap having last digit ending in 2 cannot end in 3 or 5 but can end in 1, 7 or 9.
CIS-ALN-decelerating Pi selected from Prime gapi = 4, 14, 24, 34...[to an arbitrarily large
number as CIS-ALN-decelerating] → (3, 7), (7, 1), (9, 3). The last digit of Pi with prime
gap having last digit ending in 4 cannot end in 1 or 5 but can end in 3, 7 or 9.
CIS-ALN-decelerating Pi selected from Prime gapi = 6, 16, 26, 36...[to an arbitrarily large
number as CIS-ALN-decelerating] → (1, 7), (3, 9), (7, 3). The last digit of Pi with prime
gap having last digit ending in 6 cannot end in 5 or 9 but can end in 1, 3 or 7.
CIS-ALN-decelerating Pi selected from Prime gapi = 8, 18, 28, 38...[to an arbitrarily large
number as CIS-ALN-decelerating] → (1, 9), (3, 1), (9, 7). The last digit of Pi with prime
gap having last digit ending in 8 cannot end in 5 or 7 but can end in 1, 3 or 9.
CIS-ALN-decelerating Pi selected from Prime gapi = 10, 20, 30, 40...[to an arbitrarily large
number as CIS-ALN-decelerating] → (1, 1), (3, 3), (7, 7), (9, 9). The last digit of Pi with
prime gap having last digit ending in 0 cannot end in 5 but can end in 1, 3, 7 or 9.

The coprime numbers [and all prime numbers] are numbers whose HCF is 1. The differ-
ence between any two Odd Primes is always equal to 2, 4, 6, 8, 10... whereas the difference
between two coprime numbers can be any number. Odd Primes are always prime numbers,
whereas coprime numbers can also be composite numbers. As per the List above [which was
previously discussed under Axiom 1], it is a mathematical impossibility that, for instance,
twin primes Pi can be constituted by a random integer with last digit ending in 3 or 5 since
only the paired last digit combinations of (Pi+1, Pi) = (1, 3), (7, 9), (9, 1) are possible.

CIS-ALN-decelerating Pi having Prime gapi [given as multiples of 10] with last digit
ending in 0 is associated with four choices that are available arbitrarily often. Otherwise,
CIS-ALN-decelerating Pi having Prime gapi with last digit ending in 2, 4, 6 or 8 is each
associated with three choices that are available arbitrarily often. Statistically, the last digit of
Zi ending in 1, 3, 7 or 9 are more likely to be just Oi than [odd] Pi. At ever larger range of
numbers for the paired list of (last digit for Pi, last digit for Pi+1), we can intuitively surmise
that P associated with progressively larger prime gaps moving from left to right and from top
to bottom should occur relatively more often than P associated with comparatively smaller
prime gaps. However, both P associated with progressively larger prime gaps and P associated
with comparatively smaller prime gaps should generally occur less often at ever larger range

55



of numbers. Thus, although prime gap having last digit ending in 0 can be associated with
last digit of Pi ending in 1, 3, 7 or 9 as four choices [instead of just three choices]; these
prime gaps as a unique group will still always constitute larger prime gaps that will overall
intrinsically occur less often at ever larger range of numbers.

The crucial overall inference here is that all known last digit of Pi ending in 1, 3, 7 or 9
that literally represent all existing even Prime gaps must do so on in an eternal manner thus
confirming Modified Polignac’s and Twin prime conjectures to be true.
Definition 1. Our Modified Polignac’s and Twin prime conjectures can now be explicitly
defined here as ∥Set all even Prime gaps∥ = ∥Subset odd prime numbers associated with
each even Prime gap∥ = CIS-ALN-decelerating. Previously, Polignac’s and Twin prime con-
jectures were traditionally stated in a less informative manner as ∥Set all even Prime gaps∥
= ∥Subset odd prime numbers associated with each even Prime gap∥ = CIS.

Constraints on Composite numbers and Composite gaps: We define Composite gapi =

Ci+1 − Ci. For 1-digit P and 1-digit C that are members of 1-digit Z, there are always more
P than C except at Z = 9 which is C and whereby now ∥P∥ = ∥C∥ = 4. There will always be
more C as CIS-IM-accelerating than P as CIS-ALN-decelerating when Z ≥ 10 with ∥C∥ =
2 ∥P∥ at Z = 14 and ∥C∥ > 2 ∥P∥ at Z > 14.

Let P(certain C) denote P(randomly selected Z is C with 100% certainty). Then, P(certain
even C) = 0.5 for all subsets ≥2-digit C having elements with their last digit ending in 0, 2, 4,
6 or 8 [as CIS-IM-linear] and P(certain odd C) = 0.1 for subset ≥2-digit C having elements
with their last digit ending in 5 [as CIS-IM-linear].

One can more closely analyze P-C identifier grouping which was defined in section 5.
Event 1: P(uncertain even C with last digit ending in 0, 2, 6 or 8) [as CIS-ALN-decelerating]
can represent Gap-2-E-C1 that always occur before every O-Pi with last digit ending in 1,
3, 7 or 9. Event 2: P(uncertain even C with last digit ending in 0, 2, 4 or 8) [as CIS-IM-
accelerating] can represent Gap-1-E-C2 that always occur after every O-Pi with last digit
ending in 1, 3, 7 or 9. Event 3: P(uncertain odd C with last digit ending in 1, 3, 5, 7 or 9) [as
CIS-IM-accelerating] can represent Gap-1-O-C3 that always occur after Gap-1-E-C2. Event
4: P(uncertain even C with last digit ending in 0, 2, 4, 6 or 8) [as CIS-IM-accelerating] can
represent Gap-1-E-C4 that always occur after Gap-1-O-C3. Event 5: P(uncertain odd C with
last digit ending in 1, 3, 5, 7 or 9) [as CIS-IM-accelerating] can represent Gap-1-O-C5 that
always occur after Gap-1-E-C4... until Event 6: P(uncertain even C with last digit ending in
0, 2, 6 or 8) [as CIS-ALN-decelerating] can represent Gap-2-E-Cn that always occur before
every O-Pi+1 with last digit ending in 1, 3, 7 or 9.

Only Events 1 and 6 [but not Events 2, 3, 4 and 5] can occur for twin primes. In Event
2, there are four choices for Gap-1-E-C [because O-Pi generally cannot have their last digit
ending in 5] as opposed to Event 4 whereby there are, instead, five choices for Gap-1-E-C.
With only the solitary 1-digit Odd P 5 existing, we deduce odd numbers with last digit ending
in 5 are almost always Gap-1-O-C [or almost never Odd P].

Computed data on n-digit prime numbers including their average prime gaps are supplied
in Appendix C. CIS-ALN-decelerating Subsets Gap 2i-Odd P, CIS-ALN-decelerating
Gap 2-Even C, CIS-IM-accelerating Gap 1-Even C and CIS-IM-accelerating Gap 1-Odd
C present in P-C identifier grouping must obey Constraints on Prime numbers & Prime
gaps and Constraints on Composite numbers & Composite gaps.
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Fig. 9 Prime-Composite mathematical (graphed) landscape for x = 2 to 64.

Remark 10. Summary of major statistical deductions on Primes and Composites based on
last digit of the chosen number ending in even or odd numbers.
· (I) P(certain Even C with last digit ending in 0, 2, 4, 6, 8) = 0.5 when contextually based

on ”Apart from the even Prime number 2, all even numbers cannot be prime numbers [or must
be either Gap 1-Even composite numbers or Gap 2-Even composite numbers] with 100%
certainty”. P(certain Odd C with last digit ending in 5) = 0.1 when contextually based on
”Apart from the 1-digit Odd prime number 5, all other odd numbers with last digit ending in 5
cannot be prime numbers [or must be Gap 1-Odd composite numbers] with 100% certainty”.
Then P(certain C with 100% certainty) = 0.5 + 0.1 = 0.6 total.
· (II) P(uncertain Gap 1-Odd C with last digit ending in 1, 3, 7, 9) + P(uncertain Gap

1-Even C with last digit ending in 0, 2, 4, 6, 8) + P(uncertain Gap 2-Even C with last digit
ending in 0, 2, 6, 8) + P(uncertain Gap 2i-Odd P with last digit ending in 1, 3, 7, 9) = 0.4
when contextually based on P(uncertain C with < 100% certainty) + P(uncertain P with
< 100% certainty) = 0.4 total, whereby
P(uncertain Gap 1-Even C) + P(uncertain Gap 1-Odd C)

∝
1

P(uncertain Gap 2-Even C) + P(uncertain Gap 2i-Odd P)
. As x → ∞, P(uncertain Gap 1-

Even C) + P(uncertain Gap 1-Odd C) approaches 1 [but never becomes 1] and P(uncertain
Gap 2-Even C) + P(uncertain Gap 2i-Odd P) approaches 0 [but never becomes 0].

8 Anatomy of Prime-Composite Varying Loop
The tabulated and graphed Prime-Composite finite scale mathematical landscape are pro-
vided in Table 2 and Figure 9. Figure 10 geometrically depict Incompletely Predictable
Prime-Composite Varying Loops. This allows visual representation of two algorithms in
action; viz, Sieve-of-Eratosthenes algorithm that generate all primes and Complement-Sieve-
of-Eratosthenes algorithm that generate all composites.

Let N = natural numbers, P = prime numbers, and C = composite numbers. Based on
the innovative Dimension (2x - N) system with N = 2x - ΣPCx-Gap and x = all integers
commencing from 1; Dimension (2x - N) when expanded is numerically just equal to ΣPCx-
Gap since Dimension (2x - N) = 2x - 2x + ΣPCx-Gap = ΣPCx-Gap. Definition for this system
is explained using position x = 31 and 32. For i and x ∈ N [in Table 2]; ΣPCx-Gap = ΣPCx−1-
Gap + Gap value at Pi−1 or Gap value at Ci−1 whereby (i) Pi or Ci at position x is determined
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x Pi/Ci Gaps ΣPCx-Gaps Dim x Pi/Ci Gaps ΣPCx-Gaps Dim
1 N/A 0 2x-2 33 C21, 1 58 2x-8
2 P1, 1 0 2x-4 34 C22, 1 59 2x-9
3 P2, 2 1 2x-5 35 C23, 1 60 2x-10
4 C1, 2 1 Y 36 C24, 2 61 2x-11
5 P3, 2 3 Y 37 P12, 4 67 Y
6 C2, 2 5 Y 38 C25, 1 69 Y
7 P4, 4 7 Y 39 C26, 1 70 2x-8
8 C3, 1 9 Y 40 C27, 1 71 2x-9
9 C4, 1 10 2x-8 41 P13, 2 75 Y

10 C5, 2 11 2x-9 42 C28, 2 77 Y
11 P5, 2 15 Y 43 P14, 4 79 Y
12 C6, 2 17 Y 44 C29, 1 81 Y
13 P6, 4 19 Y 45 C30, 1 82 2x-8
14 C7, 1 21 Y 46 C31, 2 83 2x-9
15 C8, 1 22 2x-8 47 P15, 6 87 Y
16 C9, 1 23 2x-9 48 C32, 1 89 Y
17 P7, 2 27 Y 49 C33, 1 90 2x-8
18 C10, 2 29 Y 50 C34, 1 91 2x-9
19 P8, 4 31 Y 51 C35, 1 92 2x-10
20 C11, 1 33 Y 52 C36, 1 93 2x-11
21 C12, 1 34 2x-8 53 P16, 6 99 Y
22 C13, 2 35 2x-9 54 C37, 1 101 Y
23 P9, 6 39 Y 55 C38, 1 102 2x-8
24 C14, 1 41 Y 56 C39, 1 103 2x-9
25 C15, 1 42 2x-8 57 C40, 1 104 2x-10
26 C16, 1 43 2x-9 58 C41, 1 105 2x-11
27 C17, 1 44 2x-10 59 P17, 2 111 Y
28 C18, 2 45 2x-11 60 C42, 2 113 Y
29 P10, 2 51 Y 61 P18, 6 115 Y
30 C19, 2 53 Y 62 C43, 1 117 Y
31 P11, 6 55 Y 63 C44, 1 118 2x-8
32 C20, 1 57 Y 64 C45, 1 119 2x-9

Table 2 Prime-Composite mathematical (tabulated) landscape for x = 2 to 64. Legend: C =
composite, P = prime, Dim = Dimension, Y = 2x - 7, N/A = Not Applicable.

Fig. 10 Prime-Composite Varying Loops. This figure is a geometric representation of prime and composite numbers
computed for prime numbers {2, 3, 5, 7, 11, 13 and 17}.
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Fig. 11 Close-up view of virtual Origin points when σ = 1
3 . OUTPUT for σ = 1

3 [σ < 1
2 situation] as virtual

Gram points. Polar graph of ζ( 1
3 + ıt) plotted along non-critical line for real values of t running between 0 and 100,

horizontal axis: Re{ζ( 1
2 + ıt)}, and vertical axis: Im{ζ( 1

2 + ıt)}. Total absence of all Origin intercept points at ”static”
Origin point. Total presence of all virtual Origin intercept points (as additional negative virtual Gram[y=0] points on
x-axis) at ”varying” [infinitely many] virtual Origin points.

by whether relevant x value belongs to a P or C, and (ii) both ΣPC1-Gap and ΣPC2-Gap = 0.
Examples: For position x = 31: 31 is P (P11). Desired Gap value at P10 = 2. ΣPC31-Gap (55)
= ΣPC30-Gap (53) + Gap value at P10 (2). For position x = 32: 32 is C (C20). Desired Gap
value at C19 = 2. ΣPC32-Gap (57) = ΣPC31-Gap (55) + Gap value at C20 (2).

Plus-Minus Gap 2 Composite Number Alternating Law refers to rhythmic patterns of
alternating presence and absence for relevant Gap 2 Composite Numbers. Mathematically,
it has built-in intrinsic mechanism to automatically generate all prime numbers from prime
gaps ≥ 4 appearances in a consistent ad infinitum manner. Plus Gap 2 Composite Number
Continuous Law refers to (non-)rhythmic patterns with continual presence for relevant Gap
2 Composite Numbers. Mathematically, it has built-in intrinsic mechanism to automatically
generate all prime numbers from prime gap = 2 appearances in a consistent ad infinitum
manner. These two deduced Laws that crucially involve both prime and composite num-
bers being dependently and algorithmically tabulated together with subsequent analysis
on their [combined] corresponding gaps will qualitatively confirm Modified Polignac’s and
Twin prime conjectures to be true.

9 Anatomy of Nontrivial Zeros-Gram Points Varying Loop
Let Origin intercept point = nontrivial zero (or NTZ) = Gram[x=0,y=0] point (or
G[x=0,y=0]P); x-axis intercept point =Gram[y=0] point (or G[y=0]P aka the ’usual’ / ’tradi-
tional’ Gram point); and y-axis intercept point = Gram[x=0] point (or G[x=0]P). We follow
the peculiar choice of the index n used for Gram points and NTZ [depicted in order of their
initial appearances for σ = 1

2 and positive t values]: n = –3 for 1st –ve G[y=0]P, n = –1 for
1st –ve G[x=0]P, n = –2 for 2nd +ve G[y=0]P, n = –1 for 3rd +ve G[y=0]P, n = 1 for 1st NTZ,
n = 0 for 2nd +ve G[x=0]P, n = 0 for 4th +ve G[y=0]P, n = 1 for 3rd –ve G[x=0]P, n = 2 for
2nd NTZ, n = 1 for 5th +ve G[y=0]P, n = 3 for 3rd NTZ, n = 2 for 4th +ve G[x=0]P, n = 2 for
6th +ve G[y=0]P, n = 3 for 5th –ve G[x=0]P, and so on. Thus, we observe different varieties
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Fig. 12 Simulated dynamic trajectories showing Origin intercept points when σ = 1
2 and virtual Origin intercept

points when σ = 2
5 and σ = 4

5 . Horizontal axis: Re{ζ(σ + ıt)}, and vertical axis: Im{ζ(σ + ıt)}. Total presence of all
Origin intercept points at the [static] Origin point. Total presence of all virtual Origin intercept points as additional
negative virtual Gram[y=0] points on the x-axis (e.g. when using σ = 2

5 value) at the [infinitely many varying] virtual
Origin points; viz, these negative virtual Gram[y=0] points on the x-axis cannot exist at the solitary Origin point
since the two trajectories form two co-lines.

of Nontrivial Zeros-Gram Points Varying Loops commencing from 1st NTZ: (A) NTZ, +ve
G[x=0]P, +ve G[y=0]P, –ve G[x=0]P, NTZ; (B) NTZ, +ve G[y=0]P, NTZ; (C) NTZ, +ve
G[x=0]P, +ve G[y=0]P, –ve G[x=0]P, NTZ; (D) NTZ, +ve G[y=0]P, NTZ; (E) NTZ, +ve
G[x=0]P, +ve G[y=0]P, –ve G[x=0]P, NTZ; (F) NTZ, +ve G[y=0]P, –ve G[x=0]P, NTZ; (G)
NTZ, +ve G[y=0]P, (H) NTZ; (I) NTZ, +ve G[x=0]P, +ve G[y=0]P, –ve G[x=0]P, NTZ; etc.

We geometrically depict σ = 1
2 as Gram points in Figure 3, Close-up view of virtual

Origin points when σ = 1
3 in Figure 11, and Simulated dynamic trajectories showing Origin

intercept points when σ = 1
2 and virtual Origin intercept points when σ = 2

5 and σ = 4
5 in

Figure 12. As demonstrated in Figure 12, two different trajectories as specified by two dif-
ferent σ values will always form two colinear lines (colines) [which is conveniently defined
as two parallel curved lines that will never cross over]. We crucially note the unique tra-
jectory formed by solitary σ = 1

2 value will also always form colines with other trajectories
formed by any arbitrarily chosen σ , 1

2 values. Since only the trajectory formed by σ = 1
2

value will intersect with Origin point thus giving rise to Origin intercept points [nontrivial
zeros], all other trajectories formed by σ , 1

2 values will never intersect with Origin point.
In Figure 11 for σ = 1

3 [σ < 1
2 situation], there are relatively more virtual Gram[x=0]

points existing as y-axis intercept points. On the contrary σ > 1
2 situation e.g. σ = 2

3 , there
will instead be virtual Origin intercept points (as additional positive virtual Gram[y=0] points
on x-axis) at the ”varying” [infinitely many] virtual Origin points with relatively less virtual
Gram[x=0] points existing as y-axis intercept points. Then proof for Riemann hypothesis can
be stated as fulfilling two conditions: The position of Origin point when σ = 1

2 is uniquely
a solitary point, and the positions of virtual Origin points for any σ values when σ , 1

2 are
non-uniquely infinitely many points but these cannot include the position of Origin point.

The Incompletely Predictable Nontrivial zeros-Gram points Varying Loops (NTZ-GP
VL), indicating NTZ gaps as geometrically depicted in Figure 6, are dynamically defined by
the line tracing joining nth NTZ to (n+1)th NTZ with the [solitary] Origin point acting as the
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unique σ = 1
2 -Attractor. The four boundaries in a usual NTZ-GP VL on the short range scale

will typically consist of the two sequential patterns nth NTZ, then a [alternatingly] positive
and negative G[x=0]P (or vice versa), then a positive G[y=0]P, and finally (n+1)th NTZ. The
area enclosed by each NTZ-GP VL can be obtained by integrating the relevant equation for
each Varying Loop in interval from 0π to 2π.

10 Conclusions
Godel’s incompleteness theorems are two theorems of mathematical logic concerning the
limits of provability in formal axiomatic theories. The first incompleteness theorem states
that no consistent system of axioms whose theorems can be listed by an effective procedure
(i.e., an algorithm) is capable of proving all truths about the arithmetic of natural numbers.
For any such consistent formal system, there will always be statements about natural numbers
that are true, but that are unprovable within the system. The second incompleteness theorem,
an extension of the first, shows that the system cannot demonstrate its own consistency. Thus
Godel’s incompleteness theorems may apply to the first Hardy-Littlewood conjecture.

Side Note: The second Hardy-Littlewood conjecture states that Prime-π(x + y) ≤ Prime-
π(x) + Prime-π(y) for all x, y ≥ 2 whereby Prime-π(x) is the prime counting function; viz, the
number of primes from x + 1 to x + y is always less than or equal to the number of primes
from 1 to y. These two Hardy-Littlewood conjectures[11] were subsequently proven to be
incompatible with each other[12] with an arbitrarily large number of violations. The first such
violation is expected to likely occur for very large values of x; for example, an Admissible
Prime k-tuplet of 447 primes [with smallest possible diameter = 3158] can be found in an
interval of y = 3159 integers, while Prime-π(3159) = 446. Although unproven, the first Hardy-
Littlewood conjecture is generally considered by most people to likely be true. If that is the
case, it implies that the second Hardy-Littlewood conjecture, in contrast, is false.

Gap 1-Composites as Even and Odd Composites belong to CIS-IM-accelerating. Gap 2-
Composites as Even Composites [and Gap 2i-Odd Primes as All Odd Primes (with i = 1, 2,
3, 4, 5...)] belong to CIS-ALN-decelerating. Therefore, not least to preserve homogeneity in
all cardinality to be ”CIS” [and not be partially or fully ”CFS”]; Total Gap 2i-Odd Primes as
ALN of Subtotals Gap 2-Odd Primes, Gap 4-Odd Primes, Gap 6-Odd Primes, Gap 8-Odd
Primes, Gap 10-Odd Primes... must logically all belong to CIS-ALN-decelerating.

In 2013, Yitang Zhang proved a landmark result showing some unknown even number N
< 70 million such that this condition holds: There are CIS-ALN-decelerating Odd Primes that
differ by N between each other[32]. Aesthetically, this solitary N < 70 million value as an
even Prime gap is insufficient since its generated CIS-ALN-decelerating Odd Primes simply
cannot exist alone in the large range of prime numbers. Hence there must be at least two, if
not three, existing even Prime gaps that generate their corresponding CIS-ALN-decelerating
Odd Primes. Modified Polignac’s and Twin prime conjectures equates to all even Prime gaps
2, 4, 6, 8, 10... will generate their corresponding CIS-ALN-decelerating Odd Primes.

Treated as Incompletely Predictable problems, we provide a comparatively elementary
algorithm-type proof for Modified Polignac’s and Twin prime conjectures [whereby this could
now be dubbed Modified Polignac’s and Twin prime Theorem]. This statement can also be
phrased as Plus-Minus Gap 2 Composite Number Alternating Law and Plus Gap 2 Composite
Number Continuous Law that are applicable on the finite (small) scale, are also applicable on
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the infinite (large) scale. There is zero probability that any particular prime gaps from eternal
repeated groupings of small and/or large prime gaps that faithfully generate all the countably
arbitrarily large number of Odd Primes will abruptly terminate or disappear.

Treated as Incompletely Predictable problems, we provide a comparatively elementary
equation-type proof on Riemann hypothesis [whereby this could now be dubbed Riemann
Theorem] while explaining the existence of mutually exclusive three types of Gram points
and two types of virtual Gram points. There is zero probability that any of the countably
infinitely many nontrivial zeros can be located away from [geometrical] Origin point, which
is equivalent to [mathematical] critical line.

With methods historically based on the blends of computational, analytic, algebraic
and geometric number theory; the geometrical-mathematical unified approach used in all
our proofs is analogically similar to the algebra-geometry unified approach of geometric
Langlands program that was formalized by Professor Peter Scholze and Professor Laurent
Fargues[3]. Our Algebra and Number Theory achievements represent solving the overall
complex (meta-) properties on Incompletely Predictable problems.

Author’s Personal Note In perspective, there are also Completely Unpredictable entities
(Completely Random entities) [e.g. obtained from true Random Number Generator with
maximum entropy] as well as Completely Predictable entities and Incompletely Predictable
entities [→ Mathematics for Incompletely Predictable Problems]. In increasing order of
complexity, we have the following previously derived Laws as outlined on p. 49 of [26]:

Law I: Simple Elementary Fundamental Law for ”simple” Nonliving Things with simple properties
Law II: Complex Elementary Fundamental Law for ”complex” Nonliving Things with complex properties

Law III: Simple Emergent Fundamental Law for ”simple” Living Things with simple properties
Law IV: Complex Emergent Fundamental Law for ”complex” Living Things with complex properties
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A Gram’s Law and Rosser’s Rule
Named after Danish mathematician Jørgen Pedersen Gram (June 27, 1850 – April 29, 1916),
[’traditional’ / ’usual’] Gram points or (mathematical) Gram[y=0] points or (geometrical) x-
axis intercept points are other conjugate pairs values in Riemann zeta function ζ(s) on σ = 1

2
critical line. Then s = 1

2 + ıt gives rise to ζ( 1
2 + ıt) on critical line; and Gram points when

defined in terms of ζ(s) is given by
∑

ReIm{ζ(s)} = Re{ζ(s)} + 0, or simply Im{ζ(s)} = 0.
Alternatively defined using expression denoting ζ(s) on critical line ζ( 1

2 + ıt) = Z(t)e−ıθ(t)

whereby Hardy’s function, Z, is real for real t, and θ is Riemann-Siegel theta function given

in terms of gamma function as θ(t) = arg
(
Γ

(
1
4
+

it
2

))
−

ln π
2

t for real values of t; we note

that ζ(s) is real when sin(θ(t)) = 0. This implies that θ(t) is an integer multiple of π which
allows for location of Gram points to be calculated easily by inverting the formula for θ. As
already alluded to in section 3, Gram points are historically [crudely] numbered as gn for n
= 0, 1, 2, 3,..., whereby gn is the unique solution of θ(t) = nπ. Here, n = 0 is the [first] g0
value of 17.8455995405... which is larger than the smallest [first] positive nontrivial zeros
(NTZ) value of 14.13472515.... Thus, n = -3 correspond to g−3 = 0, n = -2 correspond to g−2
= 3.4362182261..., and n = -1 correspond to g−1 = 9.6669080561....

Paired [infinite-length] integer sequences with prestigious connections:
A100967+0, which is A100967[15], is precisely defined as ”Least k such that binomial(2k+1,
k-n-1) ≥ binomial(2k, k) viz. (2k+1)!k!k! ≥ (2k)!(k-n-1)!(k+n+2)!”. The terms commencing
from Position 0, 1, 2, 3,... of A100967+0 are 3, 9, 18, 29, 44, 61, 81, 104, 130, 159, 191, 225,
263, 303, 347, 393, 442, 494, 549, 606, 667, 730, 797, 866, 938, 1013, 1091, 1172, 1255,
1342, 1431, 1524, 1619, 1717, 1818, 1922, 2029, 2138, 2251, 2366, 2485, 2606, 2730, 2857,
2987, 3119, 3255, 3394, 3535,....

A100967+1 is precisely defined as ”Add 1 to each and every terms from A100967+0”.
The terms commencing from Position 0, 1, 2, 3,... of A100967+1 are 4, 10, 19, 30, 45, 62,
82, 105, 131, 160, 192, 226, 264, 304, 348, 394, 443, 495, 550, 607, 668, 731, 798, 867, 939,
1014, 1092, 1173, 1256, 1343, 1432, 1525, 1620, 1718, 1819, 1923, 2030, 2139, 2252, 2367,
2486, 2607, 2731, 2858, 2988, 3120, 3256, 3395, 3536,....

A228186[25] is defined as ”Greatest natural number k > n such that calculated peak

values for ratio R =
Combinations With Repetition

Combinations Without Repetition
=

(k + n − 1)!(n − k)!
n!(n − 1)!

belong to max-

imal rational numbers < 2”. It is also defined as ”Smallest natural number k > n such that
(k+n+1)!(k-n-2)! < 2k!(k-1)!”. The terms commencing from Position 0, 1, 2, 3,... of A228186
are 4, 9, 18, 29, 44, 61, 81, 104, 130, 159, 191, 226, 263, 304, 347, 393, 442, 494, 549, 607,
667, 731, 797, 866, 938, 1013, 1091, 1172, 1256, 1342, 1432, 1524, 1619, 1717, 1818, 1922,
2029, 2139, 2251, 2367, 2485, 2606, 2730, 2857, 2987, 3120, 3255, 3394, 3535,....
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Unexpected connection [and unrelated to NTZ and Gram points]: A228186 can be con-
sidered an innovative [infinite-length] ”Hybrid integer sequence” identical to ”non-Hybrid
integer sequence” A100967+0 except for the interspersed [finite] 21 ’exceptional’ terms
located at Position 0, 11, 13, 19, 21, 28, 30, 37, 39, 45, 50, 51, 52, 55, 57, 62, 66, 70, 73, 77,
and 81 with their corresponding 21 values exactly specified by [infinite-length] ”non-Hybrid
integer sequence” A100967+1.

A114856-”bad”-Gram-points, which is A114856[30], is precisely defined as ”Indices n
of Gram points gn for which (-1)nZ(gn) < 0 with Z(t) being Riemann-Siegel Z-function [and
full given range of values n = 0, 1, 2, 3,...]”. The terms of A114856-”bad”-Gram-points are:
126, 134, 195, 211, 232, 254, 288, 367, 377, 379, 397, 400, 461, 507, 518, 529, 567, 578,
595, 618, 626, 637, 654, 668, 692, 694, 703, 715, 728, 766, 777, 793, 795, 807, 819, 848,
857, 869, 887, 964, 992, 995, 1016, 1028, 1034, 1043, 1046, 1071, 1086,....

A114856-”good”-Gram-points, given by ”total”-Gram points minus A114856-”bad”-
Gram-points, is precisely defined as ”Indices n of Gram points gn for which (-1)nZ(gn) > 0
with Z(t) being Riemann-Siegel Z-function [and full given range of values n = 0, 1, 2, 3,...]”.
The derived terms of A114856-”good”-Gram-points: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38,
39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,....

A216700[7] is precisely defined as ”Violations of Rosser’s rule: numbers n such that
the Gram block [gn, gn+k] contains fewer than k points t such that Z(t) = 0 with Z(t) being
Riemann-Siegel Z-function [and full given range of values n = 0, 1, 2, 3,...]”. The terms of
A216700 are 13999525, 30783329, 30930927, 37592215, 40870156, 43628107, 46082042,
46875667, 49624541, 50799238, 55221454, 56948780, 60515663, 61331766, 69784844,
75052114, 79545241, 79652248, 83088043, 83689523, 85348958, 86513820, 87947597,....

Note: All NTZ (as conjectured by Riemann hypothesis) and Gram points (by definition)
are located on the same critical line of Riemann zeta function. Counting NTZ can be validly
reduced to counting all Gram points where Gram’s Law is satisfied and adding count of NTZ
inside each Gram block. With this process, we need not locate NTZ but just have to accurately
compute Z(t) to show that it changes sign.

Gram’s Law: there is [usually] exactly one NTZ (Gram[x=0,y=0] points or Origin inter-
cept points) between any two ”good” Gram points. Examples of closely related statements
equivalent to Gram’s law are: (−1)nZ(gn) is [usually] positive or Z(t) [usually] has opposite
sign at consecutive Gram points. Thus, a t-valued Gram point is called a ”good” Gram point
if ζ(s) is positive at 1

2 + ıt with (−1)nZ(gn) > 0 and a ”bad” Gram point if ζ(s) is negative at
1
2 +ıt with (−1)nZ(gn) < 0. The indices of ”bad” Gram points where Z has the ’wrong’ sign are
given by A114856 in OEIS. A Gram block [gn, gn+k] is a half-open interval bounded by two
”good” Gram points gn and gn+k such that all Gram points gn+1,..., gn+k−1 between them are
”bad” Gram points. A refinement of Gram’s Law is known as Rosser’s Rule[19] which stated
that Gram blocks [usually] have the expected number of NTZ in them (identical to number
of Gram intervals), even though some of the individual Gram intervals in the block may not
have exactly one NTZ in them. Example, the interval bounded by g125 and g127 is a Gram
block containing a unique ”bad” Gram point g126 and expected number 2 of NTZ although
neither of its two Gram intervals contains a unique NTZ.

Gram’s Law and Rosser’s Rule both imply that in some sense NTZ do not stray too far
from their expected positions, and that they hold most of the time but are violated infinitely
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often (in an Incompletely Predictable manner)[28], [29]. Professor Timothy Trudgian in 2011
explicitly showed that both Gram’s Law and Rosser’s Rule fail in a positive proportion of
cases. In particular, it is expected that in about 73% [≈ 3

4 ] one NTZ is enclosed by two suc-
cessive Gram points [and thus Gram’s Law fails for about 27% ≈ 1

4 of all Gram intervals to
contain exactly one NTZ], but in about 14% no NTZ and in about 13% two NTZ are in such
a Gram interval on the long run.

B The 18 patterns of Admissible Prime 25-tuplets
The 18 patterns for the [randomly-selected] Prime 25-tuplets are depicted as cummulative
prime gaps and progressive prime gaps. Frequency of patterns [that are progressively decreas-
ing by 8, 4 and 2 as related by 2−1] containing prime gap 8 = 16/18, prime gap 10 = 8/18,
prime gap 12 = 4/18, and prime gap 14 = 2/18. Frequency of patterns [that are progressively
increasing by 8, 4 and 2 as related by 2−1] NOT containing prime gap 8 = 2/18, prime gap 10
= 10/18, prime gap 12 = 14/18, and prime gap 14 = 16/18.
Pat-1 (0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36, 42, 48, 50, 56, 62, 68, 72, 78, 86, 90, 96, 98, 102,
110) ≡ (0, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 6, 6, 4, 6, 8, 4, 6, 2, 4, 8); #Gap 8 = 2, #Gap 10
= 0, #Gap 12 = 0, #Gap 14 = 0
Pat-2 (0, 2, 6, 8, 12, 20, 26, 30, 36, 38, 42, 48, 56, 66, 68, 72, 78, 80, 86, 90, 92, 96, 98, 108,
110) ≡ (0, 2, 4, 2, 4, 8, 6, 4, 6, 2, 4, 6, 8, 10, 2, 4, 6, 2, 6, 4, 2, 4, 2, 10, 2); #Gap 8 = 2, #Gap
10 = 2, #Gap 12 = 0, #Gap 14 = 0
Pat-3 (0, 2, 6, 8, 12, 20, 26, 30, 36, 38, 42, 48, 50, 56, 66, 68, 72, 78, 80, 86, 90, 92, 98, 108,
110) ≡ (0, 2, 4, 2, 4, 8, 6, 4, 6, 2, 4, 6, 2, 6, 10, 2, 4, 6, 2, 6, 4, 2, 6, 10, 2); #Gap 8 = 1, #Gap
10 = 2, #Gap 12 = 0, #Gap 14 = 0
Pat-4 (0, 2, 6, 8, 12, 20, 26, 30, 36, 38, 42, 50, 56, 66, 68, 72, 78, 80, 86, 90, 92, 96, 98, 108,
110) ≡ (0, 2, 4, 2, 4, 8, 6, 4, 6, 2, 4, 8, 6, 10, 2, 4, 6, 2, 6, 4, 2, 4, 2, 10, 2); #Gap 8 = 2, #Gap
10 = 2, #Gap 12 = 0, #Gap 14 = 0
Pat-5 (0, 2, 6, 8, 12, 20, 26, 30, 36, 38, 42, 50, 56, 62, 66, 68, 72, 78, 80, 86, 90, 92, 96, 108,
110) ≡ (0, 2, 4, 2, 4, 8, 6, 4, 6, 2, 4, 8, 6, 6, 4, 2, 4, 6, 2, 6, 4, 2, 4, 12, 2); #Gap 8 = 2, #Gap
10 = 0, #Gap 12 = 1, #Gap 14 = 0
Pat-6 (0, 2, 6, 8, 12, 20, 26, 30, 36, 38, 42, 48, 56, 62, 66, 68, 72, 78, 80, 86, 90, 92, 96, 108,
110) ≡ (0, 2, 4, 2, 4, 8, 6, 4, 6, 2, 4, 6, 8, 6, 4, 2, 4, 6, 2, 6, 4, 2, 4, 12, 2); #Gap 8 = 2, #Gap
10 = 0, #Gap 12 = 1, #Gap 14 = 0
Pat-7 (0, 2, 6, 8, 12, 18, 20, 26, 30, 32, 36, 42, 50, 56, 62, 68, 72, 78, 86, 90, 92, 96, 98, 102,
110) ≡ (0, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 8, 6, 6, 6, 4, 6, 8, 4, 2, 4, 2, 4, 8); #Gap 8 = 3, #Gap 10
= 0, #Gap 12 = 0, #Gap 14 = 0
Pat-8 (0, 2, 6, 12, 14, 20, 24, 26, 30, 32, 42, 44, 54, 56, 60, 66, 72, 74, 80, 86, 90, 96, 102,
104, 110) ≡ (0, 2, 4, 6, 2, 6, 4, 2, 4, 2, 10, 2, 10, 2, 4, 6, 6, 2, 6, 6, 4, 6, 6, 2, 6); #Gap 8 = 0,
#Gap 10 = 2, #Gap 12 = 0, #Gap 14 = 0
Pat-9 (0, 6, 8, 14, 20, 24, 30, 36, 38, 44, 50, 54, 56, 66, 68, 78, 80, 84, 86, 90, 96, 98, 104,
108, 110) ≡ (0, 6, 2, 6, 6, 4, 6, 6, 2, 6, 6, 4, 2, 10, 2, 10, 2, 4, 2, 4, 6, 2, 6, 4, 2); #Gap 8 = 0,
#Gap 10 = 2, #Gap 12 = 0, #Gap 14 = 0
Pat-10 (0, 2, 8, 12, 14, 18, 24, 30, 32, 38, 42, 44, 50, 54, 60, 68, 72, 74, 78, 80, 84, 98, 102,
108, 110) ≡ (0, 2, 6, 4, 2, 4, 6, 6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4, 2, 4, 14, 4, 6, 2); #Gap 8 = 1,
#Gap 10 = 0, #Gap 12 = 0, #Gap 14 = 1
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Pat-11 (0, 2, 8, 12, 26, 30, 32, 36, 38, 42, 50, 56, 60, 66, 68, 72, 78, 80, 86, 92, 96, 98, 102,
108, 110) ≡ (0, 2, 6, 4, 14, 4, 2, 4, 2, 4, 8, 6, 4, 6, 2, 4, 6, 2, 6, 6, 4, 2, 4, 6, 2); #Gap 8 = 1,
#Gap 10 = 0, #Gap 12 = 0, #Gap 14 = 1
Pat-12 (0, 8, 12, 14, 18, 20, 24, 32, 38, 42, 48, 54, 60, 68, 74, 78, 80, 84, 90, 92, 98, 102, 104,
108, 110) ≡ (0, 8, 4, 2, 4, 2, 4, 8, 6, 4, 6, 6, 6, 8, 6, 4, 2, 4, 6, 2, 6, 4, 2, 4, 2); #Gap 8 = 3,
#Gap 10 = 0, #Gap 12 = 0, #Gap 14 = 0
Pat-13 (0, 8, 12, 14, 20, 24, 32, 38, 42, 48, 54, 60, 62, 68, 74, 78, 80, 84, 90, 92, 98, 102, 104,
108, 110) ≡ (0, 8, 4, 2, 6, 4, 8, 6, 4, 6, 6, 6, 2, 6, 6, 4, 2, 4, 6, 2, 6, 4, 2, 4, 2); #Gap 8 = 2,
#Gap 10 = 0, #Gap 12 = 0, #Gap 14 = 0
Pat-14 (0, 2, 12, 14, 18, 20, 24, 30, 32, 38, 42, 44, 54, 60, 68, 72, 74, 80, 84, 90, 98, 102, 104,
108, 110) ≡ (0, 2, 10, 2, 4, 2, 4, 6, 2, 6, 4, 2, 10, 6, 8, 4, 2, 6, 4, 6, 8, 4, 2, 4, 2); #Gap 8 = 2,
#Gap 10 = 2, #Gap 12 = 0, #Gap 14 = 0
Pat-15 (0, 2, 12, 18, 20, 24, 30, 32, 38, 42, 44, 54, 60, 62, 68, 72, 74, 80, 84, 90, 98, 102, 104,
108, 110) ≡ (0, 2, 10, 6, 2, 4, 6, 2, 6, 4, 2, 10, 6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4, 2); #Gap 8 = 1,
#Gap 10 = 2, #Gap 12 = 0, #Gap 14 = 0
Pat-16 (0, 2, 12, 14, 18, 20, 24, 30, 32, 38, 42, 44, 54, 62, 68, 72, 74, 80, 84, 90, 98, 102, 104,
108, 110) ≡ (0, 2, 10, 2, 4, 2, 4, 6, 2, 6, 4, 2, 10, 8, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4, 2); #Gap 8 = 2,
#Gap 10 = 2, #Gap 12 = 0, #Gap 14 = 0
Pat-17 (0, 2, 14, 18, 20, 24, 30, 32, 38, 42, 44, 48, 54, 62, 68, 72, 74, 80, 84, 90, 98, 102, 104,
108, 110) ≡ (0, 2, 12, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 8, 6, 4, 2, 6, 4, 6, 8, 4, 2, 6, 2); #Gap 8 = 2,
#Gap 10 = 0, #Gap 12 = 1, #Gap 14 = 0
Pat-18 (0, 2, 14, 18, 20, 24, 30, 32, 38, 42, 44, 48, 54, 60, 68, 72, 74, 80, 84, 90, 98, 102, 104,
108, 110) ≡ (0, 2, 12, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 8, 4, 2, 6, 4, 6, 8, 4, 2, 4, 2); #Gap 8 = 2,
#Gap 10 = 0, #Gap 12 = 1, #Gap 14 = 0

C Computed data on n-digit primes with average prime gaps
Examples of computed data on n-digit prime numbers that include their average prime gaps:
Corresponding subsets 1-digit P {2, 3, 5 and 7} and C {4, 6, 8 and 9} that are derived from
subset 1-digit Z {0, 1, 2, 3, 4, 5, 6, 7, 8 and 9} with cardinality of 10 have both equal cardi-
nality of 4. First 1-digit Pi occurs at i = 1 (odd position) and last 1-digit Pi ends at i = 4 (even
position). Average P gap for 1-digit P = 10/4 = 2.5.
Corresponding subsets 2-digit P {11, 13, 17, 19, 23...} with cardinality of 21 and C {10, 12,
14, 15, 16...} with cardinality of 69 together form subset 2-digit Z {10, 11, 12, 13, 14,..., 99}
with cardinality of 90. There are 60% of 90 Z = 54 Z being C with 100% certainty. Con-
sequently, there are 21 P and 69 - 54 = 15 C that together constitute the P(uncertain P +
uncertain C) = 0.4 whereby we note that there are more uncertain P [21/36 = 58.3%] than
uncertain C [15/36 = 41.7%]. First 2-digit Pi starts at i = 5 (odd position) and last 2-digit Pi

ends at i = 25 (odd position). Average P gap for 2-digit P = 90/21 = 4.29.
Corresponding subsets 3-digit P {101, 103, 107, 109, 113...} with cardinality of 143 and C
{100, 102, 104, 105, 106...} with cardinality of 757 together form subset 3-digit Z {100, 101,
102, 103, 104..., 999} with cardinality of 900. There are 60% of 900 Z = 540 Z being C with
100% certainty. Consequently, there are 143 P and 757 - 540 = 217 C that together consti-
tute the P(uncertain P + uncertain C) = 0.4 whereby we note that there are less uncertain P
[143/360 = 39.7%] than uncertain C [217/360 = 60.3%]. First 3-digit Pi starts at i = 26 (even
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position) and last 3-digit Pi ends at i = 168 (even position). Average P gap for 3-digit P =
900/143 = 6.29.
Corresponding subsets 4-digit P {1009, 1013, 1019, 1021, 1031...} with cardinality of 1061
and C {1000, 1001, 1002, 1003, 1004...} with cardinality of 7939 together form subset 4-digit
Z {1000, 1001, 1002, 1003, 1004..., 9999} with cardinality of 9000. There are 60% of 9000
Z = 5400 Z being C with 100% certainty. Consequently, there are 1061 P and 7939 - 5400 =
2539 C that together constitute the P(uncertain P + uncertain C) = 0.4 whereby we note that
there are less uncertain P [1061/3600 = 29.5%] than uncertain C [2539/3600 = 70.5%]. First
4-digit Pi starts at i = 169 (odd position) and last 4-digit Pi ends at i = 1229 (odd position).
Average P gap for 4-digit P = 9000/1061 = 8.48.
Corresponding subsets 5-digit P {10007, 10009, 10037, 10039, 10061...} with cardinality of
8363 and C {10000, 10001, 10002, 10003, 10004...} with cardinality of 81637 together form
subset 5-digit Z {10000, 10001, 10002, 10003, 10004..., 99999} with cardinality of 90000.
There are 60% of 90000 Z = 54000 Z being C with 100% certainty. Consequently, there are
8363 P and 81637 - 54000 = 27637 C that together constitute the P(uncertain P + uncertain
C) = 0.4 whereby we note that there are less uncertain P [8363/36000= 23.2%] than uncertain
C [27637/36000 = 76.8%]. First 5-digit Pi starts at i = 1230 (even position) and last 5-digit
Pi ends at i = 9592 (even position). Average P gap for 5-digit P = 90000/8363 = 10.76.
Corresponding subsets 6-digit P {100003, 100019, 100043, 100049, 100057...} with cardinal-
ity of 68906 and C {100000, 100001, 100002, 100004, 100005...} with cardinality of 831094
together form subset 6-digit Z {100000, 100001, 100002, 100003, 100004..., 999999} with
cardinality of 900000. There are 60% of 900000 Z = 540000 Z being C with 100% certainty.
Consequently, there are 68906 P and 831094 - 540000 = 291094 C that together consti-
tute the P(uncertain P + uncertain C) = 0.4 whereby we note that there are less uncertain P
[68906/360000 = 19.1%] than uncertain C [291094/360000 = 80.9%]. First 6-digit Pi starts
at i = 9593 (0dd position) and last 6-digit Pi ends at i = 78498 (even position). Average P gap
for 6-digit P = 900000/68906 = 13.06.
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