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Abstract

The properties of a resonant half wavelength mode, sometimes called a 4π mode, is
investigated in a toroidal cavity of large aspect ratio. No dividing wall is used but
instead the field is given a poloidal (in the direction of the smaller circumference)
twist. The toroidal cavity resonator equations are derived by bending a length of
cylindrical waveguide into a toroid and changing the field equations from cylindrical
to local toroidal. If the toroid aspect ratio is large the errors are small but the
equations must still be considered to be approximate and so in order to confirm the
stability and form of the resonant modes a finite difference time domain (FDTD)
program was written to model the propagation of the fields. This also confirms that
no false assumptions have been made, particularly regarding how the fields behave
where the two ends of the half wave join. This is believed to be the first confirmation
of the existence of a half wave toroidal mode without a dividing wall.

FDTD simulations of both a toroidal (in the direction of the larger circumference)
and a poloidal spinning 4π mode were also carried out. It was observed that the
presence of twist would prevent either a pure toroidal or poloidal spinning mode
being produced and that the poloidally spinning field produced a stable mode with
both spin and angular momentum.

1 Introduction

It might be thought that a half wave resonant mode in a toroidal cavity resonator without a
dividing wall could not exist as consecutive half cycles would be of opposite phase and cause
destructive interference, destroying any stable mode. However, it is shown in this paper that
if the half wave field is progressively twisted about the poloidal angle by π as the toroidal
angle increases from 0 to 2π then for some modes the second half wavelength has the same
phase as the first and results in a stable field being produced. See Appendix A for details
of toroidal cavity terminology and the local toroidal coordinate system used.

Cap and Deutsch, ref [1], found toroidal cavity fields using the scalar Helmholtz equation
and noted that the equations had a 4π solution. This was investigated further by Deutsch in
ref [2]. In later work, ref [3], Deutsch noted that many of the previously proposed solutions to
the Helmholtz equation did not satisfy all the boundary conditions and Maxwell’s equations.
Finally just one 4π mode was found to be a valid solution and this needed a conductive radial
separating wall completely blocking the toroid minor diameter cross section. It should be
mentioned that Deutsch was working on the problem of finding the resonant modes of
toroidal cavity resonators of any aspect ratio. This is difficult due to it not being possible
to separate the variables of the wave equation when written in toroidal coordinates. The
electromagnetic field configurations found vary depending on the aspect ratio and except
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at large aspect ratios are not usually pure transverse electric (TE) or transverse magnetic
(TM) modes.

For toroids with a large aspect ratio the above calculation difficulties do not apply and
the field equations become much simpler as the fields are almost the same as in a cylindrical
waveguide. These cylindrical solutions applied to a toroid have been called the cylinder or
infinite aspect ratio approximation. The cylindrical waveguide solutions are well known and
the field equations are shown in many textbooks, such as Balanis [4], and it is possible to
express these equations in local toroidal coordinates as shown in Appendix B.

To provide confidence that the infinite aspect ratio field equations are valid for the
toroidal modes being investigated and that a half wave mode is possible inside a toroidal
cavity a finite difference time domain (FDTD) computer program was used to confirm the
accuracy and stability of the field. FDTD programs are widely used to model how elec-
tromagnetic fields propagate. The difficulty with using them to model large aspect ratio
toroidal cavities in this application is that in order to obtain just one half wavelength in
the cavity the frequency used must be very near the cavity cut off frequency. In this condi-
tion a very small change in the toroid minor or major radius will cause significant changes
in the field amplitude and wavelength and probably differences between radial and z axis
polarisation results. It is not only individual cell smoothing (conformal modelling) which
is necessary but both minor and major radii must be exactly circular to high accuracy to
prevent such errors.

Initial attempts were made modelling the toroid using Cartesian coordinate FDTD pro-
grams but it was not found possible to eliminate these effects so an FDTD program was
written in local toroidal coordinates. This used the exact equations (A.1) given in Appendix
A for conversion from Cartesian to local toroidal coordinates so contained no approxima-
tions, unlike those to produce the initial fields in Appendix B. Maple 2016 was used and
although this is probably not the best language for running fast FDTD code the new co-
ordinates completely eliminated the spurious field variations. Increased computation speed
would be desirable but all the results shown in this paper were obtained using just a desktop
computer and a single processor core. In the FDTD simulations, for time step zero only, the
toroid was filled with either just the E or H field or both fields together depending on the
configuration it was required to test as a possible resonant mode. The simulation was then
run to see how these initial fields developed. Non resonant modes show large transients or
evolve into chaotic fields and only a resonant mode smoothly oscillates, periodically cycling
back to its initial state. Originally the time zero fields were obtained using a short program
written to produce toroidal field components directly from the cylindrical field equations
using the cylinder approximation. More recently they have been obtained using the toroidal
cavity field equations (B.33), in Appendix B.

To test the FDTD program it was necessary to have an initial field, the equations of
which were valid at small aspect ratios. This brings into play terms in the local toroidal
coordinate FDTD equations which are small at large aspect ratios but large at small aspect
ratios. If these terms were incorrect they could invalidate the results even at large aspect
ratios. Such fields are difficult to find in the literature so the Deutsch 4π field mentioned
above was invaluable, even though it needed a dividing wall to be temporarily modelled
in the program. A slight change was needed to the Deutsch equations to ensure the fields
joined around the toroid but the mode was stable even at small aspect ratios and provided
one of the best tests of the toroidal FDTD code.

2 A First Look at the TE11 Mode

The FDTD results being examined in this paper are restricted to just the TE11 mode and
Appendix B describes how these mode numbers are derived. There are, of course many
other modes which could be used but TE11 is the lowest frequency one which can exist in
a toroid of a particular minor radius. The electric field distribution of this mode across the
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toroid minor diameter is shown in Fig 1. This field can be rotated or spun poloidally so the
field can point at any θ angle.

Figure 1: Minor Diameter Cross Section Showing TE11 Electric Field

In all the field plots in this paper only the length of the arrows shows the field strength.
The density of the arrows is of no significance as it is just dependant on the the FDTD
program field calculation positions used and selected for the plot. Unless otherwise stated
all the FDTD simulations use a toroid with 8 grid squares across the minor diameter, 24 in
the theta direction and 136 in the phi direction and an aspect ratio of approximately 74.427.

The TE110 magnetic field is shown in Fig 2 and for the magnetic field a third mode
number of zero has been included. This defines the number of wavelengths around the
toroid in the φ direction and zero means the field has no variation in this direction. As the
figure shows the magnetic field for this particular mode has a simple form as only the Hφ

field component is present.
An important point the two figures illustrate is the θ angle phase relationship between

the electric and magnetic fields as the maximum and minimum field amplitudes are aligned.
This occurs because a theta direction spinning electromagnetic field has been plotted which
can be confirmed by checking the direction of the Poynting vector given by the ~E × ~H
vector. For the E and H fields shown this results in anti-clockwise spin. Spinning fields are
explained in more detail in ref [5] which examines spinning cylindrical and spherical cavity
fields. For the more usual non-spinning field one of them would be rotated 90 degrees from
its current position so that the maximum of one field lined up with the minimum of the
other as discussed in the next section.

Figure 2: Minor Diameter Cross Section Showing TE110 Magnetic Field
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3 FDTD Results For the Basic Non-Spinning Toroidal
Twisted Half Wavelength TE11 1

2
Mode

To create this mode the simulation was started using just the electric field of a twisted half
wave of the TE11 mode like that shown in Fig 3. References such as (C2=-1, F2=G2=1,
T=-0.5) shown in this figure refer to the values needed in appendix equations (B.33) to
produce the fields. Because the mode has one half wave in the phi direction the mode is
designated as TE11 1

2
. Initially there is no magnetic field but running the FDTD simulation

shows the electric field gradually collapses to zero magnitude and as it does it produces
a magnetic field similar to that in Fig 4. As the simulation continues the magnetic field
collapses and produces an electric field which, by the time the magnetic field is zero, has the
same magnitude as it did initially but is of opposite polarity, so is pointing in the opposite
direction to that shown. This marks the completion of the first half cycle and after another
half cycle the fields will have returned to their initial states. The 3D field plots shown were
actually taken after the initial electric field had gone through 99,994 FDTD timesteps and
the magnetic field 100021 timesteps which corresponded to approximately 925 cycles and
demonstrates the stability of the mode and the accuracy of the simulation.

Figure 3: 3D Plot of TE11 1
2

Electric Field With a Toroid Aspect Ratio of Approx. 74.4.

(C2=-1, F2=G2=1, T=-0.5)

In these 3D plots in order to try and display the field as clearly as possible just eight
different φ angle locations, equally spaced around the toroid, have been chosen and the field
there, across the minor diameter cross section, plotted. Although the toroid aspect ratio
for this FDTD run was still approximately 74.427 if shown to scale the minor diameter,
where the field is, would be too small to see any detail. To give a better view the 3D plot
is displayed with the fields positioned as if the aspect ratio was 10. The plot shows the
sin (φ) amplitude of the field and the clockwise twist with increasing φ angle, when viewed
in the direction of increasing φ angle (which is anti-clockwise when viewed from above).
This convention of viewing in the direction of increasing φ angle will always be used when
describing twist and spin rotations. The field ’join’ is at φ = 0 and either side of this the
field is of opposite phase which is correct for when two half waves join. Viewed from outside
the toroid the electric field lines are mainly pointing inward but as described above as the
cycle continues the field will reverse and point outwards so the electric field is sinusoidally
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Figure 4: 3D Plot of TE11 1
2

Magnetic Field With a Toroid Aspect Ratio of Approx. 74.4

oscillating positive and negative. Because the fields only vary in magnitude and switch
direction but do not rotate poloidally or toroidally they have no spin or orbital angular
momentum which can be confirmed by checking the direction of the Poynting vector.

4 FDTD Results For a Toroidally Spinning Twisted Half
Wavelength TE11 1

2
Mode

A toroidally spinning mode may be rotating in the positive or negative phi direction. Starting
with electric and magnetic fields which are the same as those in Fig 3 and 4 for the stationary
mode, they can be made to spin toroidally by rotating the starting magnetic field by 180
degrees (90 degrees electrical) in the ±φ direction. In this case it has been −φ rotated and
followed the theta twist to give the field shown in Fig 5. It may not be immediately obvious
why this field combination produces a toroidally spinning field as the Poynting vector seems
to have no resultant in the φ direction as the various components are equal and in opposite
directions. However it is apparent that the magnetic field does not completely go to zero at
the φ = 180 degree position, where the electric field is a maximum. The magnetic field at
this location is plotted in Fig 6 and as usual is shown viewed in the direction of increasing
φ angle. In conjunction with the electric field this does give a Poynting vector in the +φ
direction as required for anti-clockwise rotation when viewed from above in the 3D plots.

This anti-clockwise rotation is apparent in Fig 7 which has been plotted after 14 time
steps which is just over 1

8
th of a cycle after the FDTD starting E field in Fig 3. In 1

8
th of a

cycle a field might be expected to move 1
8
th of a revolution but has actually moved about

1
4 of a revolution, so is twice the rotation rate normally expected. That is an excitation
frequency of ω will give an apparent rotation rate of 2ω due to the field in the toroid being
only half a wavelength and the field only having to travel half a wavelength instead of a full
wavelength for a complete 360 degree phi rotation. It is for the same reason that after the
first revolution of half a wavelength the field direction has reversed and has a sign of minus
one and a further revolution is required for the field polarity to return to its initial state.
This gives the half wave toroid field similar properties to a Mobius strip and two revolutions
are required to return to the original state.
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Figure 5: 3D Plot of TE11 1
2

Starting Magnetic Field Used to Produce Toroidal Spin

(C2=-1, F2=G2=1, T=-0.5)

Figure 6: Plot at Phi Angle of 180 Degrees of TE11 1
2

Magnetic Field Across the Toroid

Minor Diameter. (C2=-1, F2=G2=1, T=-0.5)

Further examination shows that the polarity of the electric field reverses 180 degrees as
it passes through zero, so although the plot shows the electric field at the same theta angle
at a particular φ position its amplitude is varying sinusoidally and its direction continually
reversing. Next it will be shown that even these fields, which over a small timescale are at
the same reversing theta angle, are actually slowly toroidally rotating at the group velocity.

The field toroidal rotation initially discussed was occurring at the phase velocity and this
could be many times the velocity of light as toroids are being considered which have large
aspect ratios and are operating very near their cut off frequency. The formula for finding
the phase velocity in metres per second is:-

Vp = c
λg
λe

(1)
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Figure 7: 3D Plot Of TE11 1
2

Electric Field After Approximately 1
8
th Of a Cycle.

Where:-
c is the velocity of light in metres per second.
λe is the wavelength of the toroid excitation frequency measured in air.
λg is the wavelength of the field in the toroid which for a half wavelength is 4πR with R
being the toroid major radius. Near cut off frequency this will be many times λe.

The energy in the field is travelling at the group velocity which will be less than c and
this is given, in metres per second, by the formula:-

Vg =
c2

Vp
(2)

The phi angle travelled (measured in degrees) in a given number of FDTD time steps
(Ntimesteps) due to this group velocity can then calculated using:-

φdeg = Vg∆tNtimesteps
360

2πR
(3)

Where:-
∆t is the time represented by a single FDTD timestep in seconds.

It is actually possible to see this group velocity rotation if the FDTD simulation is run for
a sufficient number of time steps. Fig 8 is plots of the radial, Er (red), and theta direction,
Eθ (turquoise), field strengths around the toroid in the φ direction at a position inside the
toroid which is where θ = 0 degrees and the minor toroid radius r = 2 FDTD grid squares
(with the cavity wall at r = 4). Plot 8(a) is the initial starting electric field at time step zero
and plot 8(b) is after 99,996 time steps, or approximately 925 cycles later. It is apparent
that the two plots are similar but in the later plot the field distribution has moved slightly
to the right, which is the plus phi direction.
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(a) t=0 (b) t=99996

Figure 8: Amplitude Variation of Er and Eθ Electric Field Components With φ Angle

A more accurate measurement of the amount of movement can be obtained by examining
a field magnitude against phi angle plot similar to Fig 8 but which is basically produced with
a much smaller phi angle range. To reduce errors the techniques shown in Appendix C were
used which can include measurements of both the Er and Eθ fields and select different theta
angle measuring positions as well. This allows alternative measurements of the field toroidal
travel to be compared to give confidence in the accuracy of the result. The phi angle travel
distances found in Appendix C are summarised in Table 1 below. The calculated distances
have been compared with that which would be expected if the field was travelling at the
group velocity, calculated using eqn (3) as 8.89 phi degrees. The percentage error is shown
in the last column of the table and these results confirm that within experimental limits the
field is rotating at the theoretically calculated group velocity.

Table 1: Long Term Phi Direction Movement of Toroidally Spinning 4π Field
(Theoretical Group Velocity Movement 8.89 degrees)

Measuring Position Result

Field Component Time Step Approx. Phi Theta Phi Angle Error Compared
Used Number Angle Angle Travelled With Theory

(degrees) (degrees) (degrees) (percent)

Eθ 99996 189 0 & 180 8.82 -0.79
Er 99996 189 90 & 270 8.84 -0.56
Eθ 100021 9 90 & 270 8.97 +0.90
Er 100021 9 0 & 180 8.97 +0.90

The reason the methods of Appendix C were adopted to measure the field movement is
that although the field shows no sign of instability the exact form of the mode is changing
slightly over time. The effects are too small to be visible in the 3D field plots but the
increased sensitivity of the phi angle plots shows changes which have taken place to the
initial starting field. The Appendix C techniques show there has been a small amount of
poloidal movement which is apparent as it causes the phi angle at which a field component
goes to zero to vary slightly over a half cycle. A method of choosing a time step which
reduces the error due to this cause was used to more accurately measure the group velocity.
The technique also clearly showed there was a very slight offset of the field from the centre of
the minor diameter along the line of the major radius. Because of these field changes noticed
in the plots it would be desirable to increase the number of FDTD time steps calculated in
order to check if the form of the field continued to evolve. A run was carried out to a million
time steps but it would also be necessary to reduce the time step length and increase the
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number of grid squares used in the FDTD runs to check that any changes are not due to
inaccuracies in the simulation and unfortunately the speed of the program used is not really
sufficient to do this in a reasonable time at the moment.

5 FDTD Results For a Poloidally Spinning Twisted Half
Wavelength TE11 1

2
Mode

The usual way to produce a poloidally spinning field in the laboratory would be to start with
the TE11 1

2
electric field of Fig 3 and add to it a second electric field 90 degrees poloidally

displaced from it, with its peak occurring a quarter of a cycle later in time. This is not
possible using an FDTD simulation as all fields must be present at time step zero when the
simulation starts and this second field would be zero then. Instead, still starting with the
electric field of Fig 3, the second field is produced by including an initial magnetic field which
is in phase with the initial electric field and as this decays it produces the required electric
field displaced poloidally by ninety degrees and with the correct quarter cycle time delay.
This initial magnetic field can be obtained by moving the whole of the twisted magnetic
field poloidally by ninety degrees relative to the electric field, compared with its position in
Fig 4. This will give the field shown in Fig 9.

Figure 9: 3D Plot of TE11 1
2

Magnetic Field Required to Produce a Poloidally Spinning

Field. (D2= E2=G2=1, T=-0.5)

As can be seen this completely aligns the maximums and minimums of the electric and
magnetic fields i.e. they are in phase. At the surface of the toroid Eθ will be zero and as
both Er and Hφ have cos θ and sinφ amplitudes the Er/Hφ amplitude ratio will be constant
over the whole surface of the toroid. Calculating the direction of the Poynting vector from
Figs 3 and 9 confirms it is anti-clockwise, which is the same direction as the observed field
spin. The field is spinning poloidally at the toroid energising frequency, fe. This results in
cyclical reversal of the field with time so although at the instant plotted the electric field
lines are predominantly pointing inward the field spin will make the field direction change
to outward after half a cycle. The rotation is shown in Fig 10 which has been plotted 27
FDTD time steps after the initial E field, which is approximately 1

4 cycle later.
Another significant difference between this and the toroidally spinning field in the pre-

vious section is that as this field spins it maintains a constant amplitude. It is the electric
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Figure 10: 3D Plot of TE11 1
2

Electric Field After Approximately 1
4 Of a Cycle.

field changing position and not a change in amplitude of a stationary field with time which
maintains the magnetic field and this magnetic field is also spinning and of constant ampli-
tude. Both the E and H fields are twisted clockwise with increasing φ angle in this example.
Reversal of the direction of spin can be done by moving the initial magnetic field poloidally
by 180 degrees relative to the electric field. There is no relation between the direction of
spin and twist so spin can be in the same or opposite direction to the twist.

As was done for the toroidally rotating field in section 4, plots of the field magnitudes
from φ equals 0 to 360 degrees have been taken such as that for the electric field shown in
Fig 11. This compares the field position at time step zero with the same fields after 99,994
time steps. Because of the poloidal spin the only reference points where the field magnitudes
are zero over a short time period are at a phi angle of zero or 360 degrees. These can be
used to assess field movement over longer timescales. The zero Eθ field point located near
φ = 180 degrees is an invalid reference as it moves from phi equals 0 to 360 degrees in
just half a cycle. Comparing plots in Fig 11a and 11b it can be seen that there is a slight
movement of the field by about 9 degrees in the phi direction but the amplitudes of both
the field components are almost the same. The movement is small and there are no high
frequency components or rapid field changes which would occur if this was an invalid mode.

To obtain a more accurate value for the movement a plot of Eθ and Er can be done
over a small phi angle range at the point where the field goes to zero, as in Fig 12 . This is
similar to the plot technique used in section 4 but only the valid field zero reference point
near φ = 9 degrees must be used.
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(a) t=0 (b) t=99994

Figure 11: Amplitude Variation of Er and Eθ Electric Field Components With φ Angle

Figure 12: High Resolution Plot of Eθ and Er Field Zero Magnitude Positions For t=99994.
(Turquoise Eθ Rising Line at θ = 180 degrees, Falling Line at θ = 0 degrees)

(Red Er Rising Line at θ = 270 degrees, Falling Line at θ = 90 degrees)

The two Eθ field lines cross at zero field magnitude as do those for Er. This shows that
in this case, unlike for toroidal rotation, there is no offset of the field along the line of the
major radius. There is also good agreement of the phi angle value of both the Eθ and Er
field zero points. Fig 12 gives a value for the phi direction movement of 8.90 degrees and
this is similar to the movement previously obtained for the toroidally spinning field and
the theoretical value of 8.89 degrees, confirming that this field is also moving at the group
velocity.

It may be noticed that although this reading was taken at 99,994 time steps, other fields
have been measured at 99,996 time steps. The reason for the difference is that these were the
time steps selected using the measuring technique described in Appendix C. For the initial
time step zero field it is zero magnitude everywhere across the whole of the minor diameter
cross section for this measuring point, which would be positioned at phi=0 initially. For a
small change in time step number therefore, the field zero would still be at phi=0. However,
after almost 100,000 time steps very small changes have occurred to the field during the
FDTD calculation. These cause the zero field position to oscillate over a cycle and this has
some affect on the result. The alteration it makes to the value of the phi angle obtained is
slight and it was checked that for this field the phi angle changed by only about 0.02 degrees
per time step, i.e. a phi angle measurement of 8.86 degrees at time step 99,996.

More concerning is that for the poloidally spinning field the reason for any toroidal
movement is not immediately apparent. It has already been confirmed that the Poynting
vector for the main field visible in the 3D field plots points in the poloidal direction. If the
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field is examined at the φ = 0 position the E field is zero there and a plot of the magnetic
field is shown in Fig 13. The magnetic field either side of this position has a similar form
apart from the addition of a Hφ component, but this component could only result in poloidal
rotation, not toroidal.

Figure 13: Magnetic Field Across Minor Diameter at φ = 0 Degrees.

The electric field is examined either side of the φ = 0 degrees zero field position in
Fig 14. Looked at in conjunction with the Fig 13 magnetic field this does give rise to
Poynting vectors in both the ±φ directions but these are in opposite directions in alternate
quadrants at a particular φ angle and also in opposite quadrants for φ angles either side
of zero. This means all the φ direction Poynting vector components cancel out and so can
cause no toroidal rotation. There is another possible source of toroidal movement and this
is the twist which was introduced to enable either side of the half wave fields to join and
this is investigated in the next section.

(a) φ =2.65 degrees (b) φ = 357.35 degrees

Figure 14: Electric Field Across Minor Diameter Either Side of φ = 0 Degrees Position.

6 Investigation of the Effect of Twist

It is well known that a circularly polarised light beam has spin and hence spin momentum.
Similarly introducing a twist to the light from a laser beam such that it has, in r, θ, z
cylindrical coordinates, an eilθ amplitude distribution, where l is an integer defining the
amount of twist, is found to give it additional angular momentum. As rotational momentum
is defined by a vector along the axis of rotation this vector will be in the z direction and is
called optical or alternatively orbital angular momentum (OAM). See for example Allen et
al ref [6] or for more papers the book Optical Angular Momentum ref [7]. The amplitude of
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this OAM is proportional to l and to the energy in the beam and if the energy is considered
to be in photons then the angular momentum can be calculated to be lh̄ per photon. It has
to be acknowledged that the twisted light beam has helical wavefronts and a zero intensity
field along its central axis so has a different form from the field in the toroidal cavity. but
it does show that twist can introduce additional momentum to a field.

In a toroid and using toroidal coordinates this would correspond to a beam travelling in
the φ direction being given a twist l, called T using our nomenclature, in the θ direction.
This should then cause angular momentum in the θ direction and hence an additional φ
direction OAM vector. That situation is represented by a toroidally spinning field such as
that in section 4 but the identification of what part of the momentum is spin and what is
angular momentum being used there is not the same. In a toroid it seems natural to use the
centre of the toroid, where R = 0, as the reference position and in that case poloidal rotation
is spin and toroidal rotation is angular momentum. It was found that toroidal rotation did
give rise to poloidal spin after a sufficient number of time steps. This was visible after a
million time steps and the reason for requiring a high number is most likely because the
large toroid aspect ratio results in a group velocity of less than 0.05% c and the very small
amount of poloidal rotation this produces needs many time steps before it is sufficient to be
detected in that FDTD simulation.

The situation with the poloidally spinning field discussed in section 5 although some-
what similar is different as the electromagnetic wave can initially be considered to be only
travelling in the θ direction and this is a highly rotational, not linear, movement. The group
velocity of this motion varies with r but is near the velocity of light. Despite the obvious
differences compared with the laser beam OAM example it is possible that in this case also
twist is responsible for the φ direction motion found to occur with the the poloidally spin-
ning toroidal field. To test this, FDTD simulations were carried out using a TE111 mode
which has one complete wavelength around the toroid instead of just a half wavelength. The
advantage of this is that a stable full wavelength mode can exist without requiring any twist
at all and so any φ direction movement in this zero twist case can be compared with the
same field having ±1 twist.

The toroid major radius and aspect ratio were initially kept the same as for all previous
plots and the results of the tests are shown in Table 2. The time step at which to measure
the group velocity φ angle was found using the method described in Appendix C. For the
test with no twist the movement was only 0.01 degrees whereas for +1 twist it was +17.51
degrees and for −1 twist -17.50 degrees. This confirms that the toroidal direction movement
is indeed due to the presence of twist. Looking at the results from Tables 2 and 3 it is
apparent that movement is in the plus phi direction if theta twist and spin are in opposite
directions and in the minus phi direction if they are in the same direction.

Table 2: Phi Direction Movement of Poloidally Spinning One Wavelength Field
(Radius of 1R)

Twist Theta Twist Theta Spin Measure At Phi Direction Movement
(T) (degrees) Direction Timestep (degrees)

0 0 clockwise 99993 +0.01
+1 360 anti-clockwise clockwise 99995 +17.51
−1 360 clockwise clockwise 99995 −17.50

Equations are given in this paper for the magnitude of the group velocity and the number
of degrees of phi direction movement this produces for a toroidally spinning field. It is now
possible to check if the experimental results for the group velocity movement of the twisted
poloidally spinning field give the same result. Using eqn (3) for the phi direction movement in
degrees and substituting for Vg using eqn (B.27) in Appendix B, remembering that Vg = cvg,
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Table 3: As Table 2 But Major Radius Increased From R to 2R

Twist Theta Twist Theta Spin Measure At Phi Direction Movement
(T) (degrees) Direction Timestep (degrees)

+1 360 anti-clockwise clockwise 99982 +4.42
+1 360 anti-clockwise anti-clockwise 99982 −4.42

results in the relationship:-

φdeg =
180c2

π

pt

ωeR2
(4)

Where t is now the FDTD simulation time in seconds which has replaced ∆tNtimesteps in
eqn (3).

As all the phi distance measurements were carried out at the same value of t to within
2 parts in 10,000 and the same excitation frequency ωe was also used, eqn (4) becomes:-

φdeg ∝
p

R2
(5)

The phi angle movement for the poloidally spinning half wave field was found to be 8.90
degrees in Fig 12. The Table 2 fields have the same value of R but double the wavelength
and hence double the p value so eqn (5) predicts twice the phi direction movement which is
17.80 degrees. Table 3 also has twice the p value but twice R value too so the calculated phi
movement is just 17.8

22 or 4.45 degrees. The measured values in Tables 2 and 3 are all within
1.7% of these predicted values and, within the limits of the experiments, the group velocity
movement is the same for the twisted poloidal spinning fields as for toroidal spinning ones.

The twist for these simulations was one complete phi direction twist per wavelength,
hence for a half wavelength field just half a twist. A test was also carried out using a 9R
radius toroid containing 5 half waves, firstly with one twist per wavelength (2.5 twists) and
then with just 1

5 twist per wavelength (0.5 twists). The 2.5 twist field travelled 5 times
the phi distance compared with the 0.5 one. Although this was only a single comparison it
indicates the phi distance travelled by poloidally spinning fields is actually proportional to
the twists per wavelength (Tp ).

7 Conclusion

The FDTD computer simulations which are reported here have confirmed the existence of
the half wave toroidal modes and that they do not go unstable, although they can change
the detailed form of their mode. The poloidally spinning mode is the most stable though.
Further tests are desirable to investigate long term stability but a faster FDTD simulation
would be necessary to do this.

David Hestenes has published a number of papers, such as ref [8] and [9] analysing the
Dirac equation and the sort of physical system the mathematics is describing. He favours
a model having a point electron on a lightlike toroidal vortex but in the first reference also
comments that the Dirac equation could be describing a similar distributed electron. The
poloidally spinning field in this paper appears to be a good fit for a Hestenes distributed
model which, due to its twist, has both spin and angular momentum. Poloidal spin results
in a mode with a constant Er to Hφ field magnitude ratio which only varies with frequency
and this gives it the potential to satisfy its own boundary conditions. The conversion of the
oscillating polarity toroidal charge to either positive or negative is an interesting problem
but if time permits it is hoped to publish a further paper looking at the properties of such
a self trapped toroidal cavity electron.
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APPENDIX A

A - Toroidal Coordinates and Toroid Nomenclature.

Only local toroidal coordinates are used in this paper. These are also sometimes called simple
toroidal coordinates, quasi toroidal coordinates, normal toroidal coordinates or poloidal
coordinates but all are the same. They are based on cylindrical coordinates as the outer
tube of the toroid can be treated as a bent cylinder. The distance measured from the centre
of the toroid to the centre of the outer cylinder is known as the major radius (R) as shown
in Figure A.1. The radius of the cylinder (r0) is the minor radius and the ratio R/r0 is called
the aspect ratio. The inverse of this (r0/R) is the inverse aspect ratio. For a large aspect
ratio the bent toroidal cylinder could be considered to be almost straight and the results
obtained by treating the toroid as a cylinder are known as the cylinder or infinite aspect
ratio approximation.

Figure A.1: Diagram of Toroid Including Local Toroidal Coordinates

Note that the convention adopted here is the same as in Cap and Deutsch [1] and the
θ angle is zero when r points towards the centre of the toroid and increases in a clockwise
direction when looking along the cylinder in the direction of increasing φ. When referring to
directions, motion following the larger toroid circular ring, which involves changes in only
the φ angle, is commonly known as toroidal or azimuthal. Motion following the smaller
toroid circumference, which changes just the θ angle, is poloidal.

The above figure also shows the Cartesian coordinate axes with the origin at the centre
of the toroid. It is often needed to translate between toroidal and Cartesian coordinates and
the equations to do this are:-

x = (R− r cos(θ)) cos(φ) (A.1a)

y = (R− r cos(θ)) sin(φ) (A.1b)

z = r sin(θ) (A.1c)
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APPENDIX B

B - Field Equations For a Toroidal Cavity Resonator in Local Toroidal
Coordinates Using the Cylinder Approximation

B.1 Conversion of Equation Coordinates From Cylindrical to Local Toroidal.

The cylindrical coordinate system is well known and the axes are usually labelled r, θ and z or alternatively ρ, φ and
z. If the cylinder is bent to form a toroid these become r, θ and φ respectively, as shown in Appendix A. The toroid
major radius, R, also needs to be specified and the relationship between the cylindrical and local toroidal coordinates
using the cylinder approximation is then:-

Cylindrical to Toroidal (B.1)

r OR ρ = r

θ OR φ = θ

z OR z ≈ Rφ
An equation written in cylindrical coordinates can be changed to local toroidal coordinates by making the above
substitutions. This is only approximately valid as more accurately z = (R− r cos (θ))φ which is why these toroidal
equations only apply to large aspect ratio toroids where R� r and the r cos (θ) term becomes negligible. The resulting
approximate equation is still applicable when using the the coordinate convention shown in Appendix A where θ is
measured from what would be the -x cylindrical axis and increases in a clockwise direction rather than using the
cylindrical coordinate convention where θ would be zero along the +x axis and increase in the anti-clockwise direction.
Both are right handed coordinate systems.

B.2 Initial TE Field Equations For a Large Aspect Ratio Toroidal Cavity

The field equations for a cylindrical waveguide can be found in many text books and one such source, which, like
this paper, uses SI units is Balanis [4]. Another much earlier book is H.R.L. Lamont [10] which uses cgs units so the
equations are slightly different and for our identical mnp Balanis mode parameters it uses nmν so comparison can
be confusing. Nevertheless its concise yet thorough treatment of waveguide and cavity modes makes it a very helpful
reference. In this paper only TE fields are being considered, not TM, and making the above substitutions in the
Balanis equations gives the initial toroidal cavity field equations in local toroidal coordinates for the TEmn modes.
The equations will be developed further when the field boundary conditions and the use of field twist and spin are
taken into account later in this appendix:-

Er = −Amn
m

e0 r

(
Jm (k r)

)[
− C2 sin (mθ) +D2 cos (mθ)

]
e−jβRφ e+jωt (B.2a)

Eθ = +Amn
k

e0

(
−Jm+1 (k r) +

mJm (k r)

k r

)[
C2 cos (mθ) +D2 sin (mθ)

]
e−jβRφ e+jωt (B.2b)

Eφ = 0 (B.2c)

Hr = −Amn kβ

ω µ0 e0

(
−Jm+1 (k r) +

mJm (k r)

k r

)[
C2 cos (mθ) +D2 sin (mθ)

]
e−jβRφ e+jωt (B.2d)

Hθ = −Amn
mβ

ω µ0 e0 r

(
Jm (k r)

)[
− C2 sin (mθ) +D2 cos (mθ)

]
e−jβRφ e+jωt (B.2e)

Hφ = −Amn k2

ω µ0 e0

(
Jm (k r )

)[
C2 cos (mθ) +D2 sin (mθ)

]
je−jβRφ e+jωt (B.2f)

Note:

1) Compared with Balanis the following changes have been made in the above equations:-

1.1) Expressions involving partial differentials of Bessel functions have been replaced with equivalent ones containing
none differentiated Bessel functions using the relationship:-

J ′m (k r) =

∂

(
Jm (k r )

)
∂ (k r)

=

(
−Jm+1 (k r) +

mJm (k r)

k r

)
(B.3)
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1.2) In addition to the ρ, φ and z coordinate substitutions some of the other symbols used in the Balanis equations
have been changed:-

a) βz is now β.

b) β is now k.

c) ε0 and µ0 are used instead of ε and µ as the relative permittivity and permeability are assumed to be
equal to one. This is only strictly correct for a toroid containing a vacuum but the difference with air is
extremely small.

d) e−jβzz has been replaced by e−jβRφ. This uses the βz substitution, item a) above, and replaces the Balanis
distance along the cylinder (z) by the corresponding distance around the toroid, Rφ.

e) An e+jωt term is explicitly shown for each field component to denote how it changes with time. This term
is omitted in most texts but its presence is always assumed.

2) Further explanation of equations:-

2.1) Amn is just a constant which can be set to give the desired amplitude of the field. Defining it using the mn mode
parameters allows different amplitudes to be selected for each mode.

2.2) Usually either θ phase selection constant C2 or D2 is put equal to one and the other constant put equal to
zero. D2 = 1 rotates the field 90 degrees plus theta, which is clockwise relative to C2 = 1. If a value were given to
both constants the field could be positioned at any desired θ angle. This will also usually alter the field component
amplitude but if necessary this could be corrected by dividing each field component by

√
(C2)2 + (D2)2

2.3) The e−jβRφ and je−jβRφ terms could be replaced by sine and cosine terms using the trig expansion:-

e−jβRφ = cos (βRφ)− j sin (βRφ) (B.4)

je−jβRφ = j cos (βRφ) + sin (βRφ) (B.5)

Taking the real part of this expression would give a cos (βRφ) replacement term for Er, Eθ, Hr and Hθ but due to the
presence of the j term in the equation for Hφ this would select a sin (βRφ) term for this field component. Alternative
replacement terms could be obtained by first multiplying all field components by j in which case the terms would be
sin (βRφ) for Er, Eθ, Hr and Hθ and − cos (βRφ) for Hφ.

To summarise, if additional new phase selection constants E2 and F2 are added to select the possible terms then
alternative replacement expressions for e−jβRφ (and je−jβRφ for Hφ) are:-

For Er, Eθ, Hr and Hθ = E2 cos (βRφ) + F2 sin (βRφ) (B.6)

For Hφ = E2 sin (βRφ)− F2 cos (βRφ) (B.7)

2.4) For a waveguide operating above its cut off frequency the field will travel along it. This can be more easily seen
in the equations by combining the the waveguide βRφ distance exponential term with that for time to give:-

e−jβRφ e+jωt = e−j(βRφ−ωt) (B.8)

A position on the wave of constant magnitude will require to satisfy the condition that:-

βRφ− ωt = Constant (B.9)

Differentiating this expression with respect to t gives:-

βRφ

dt
− ω = 0 (B.10)

Rφ
dt is an expression of distance over time so is the velocity of points of constant magnitude or phase. This phase

velocity, Vp, in metres per second is therefore:-

Vp =
ω

β
(B.11)

Frequently the phase velocity is expressed as a multiple of the velocity of light instead, in which case it has no units
and is just a numeric value the expression for which is:-

vp =
ω

βc
(B.12)

Before the equations (B.2) can be used to plot the field it is necessary to know the values of all the parameters in them.
The field boundary conditions at the cylinder wall determine m, n and k and this is the case for a cylindrical waveguide,
cylindrical cavity or toroid. The process is well known and described in many text books but for completeness a brief
summary is given in the next section.
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B.3 Field Boundary Conditions at the Cylindrical Waveguide or Toroid Wall

The exact form of the field is determined by the boundary conditions it must satisfy and these are that at a conducting
wall the electric field must be normal (ie perpendicular) to it or zero and the magnetic field must be parallel to it or
zero. These conditions will be the same for both the cylindrical waveguide and the toroid wall. Considering the E
field components Er is perpendicular to the wall and the field equations have Ez, (Eφ for the toroid), set to zero so
these two field components always satisfy the boundary condition.

For Eθ to be zero at the circular cylinder or toroid wall, from the field equation (B.2b) it can be seen that the
differentiated Bessel function J ′m(k r) must be zero when r equals r0. Plots of two differentiated Bessel functions are
shown in Figure B.1 and for m equal to one the first zero of the Bessel function occurs at approximately kr equal to
1.8. A more accurate value can be found in tables of differentiated Bessel function zeros such as given in Balanis and
is more precisely equal to 1.8412. This first zero is said to be when n equals one so the equation to determine the
value of k needed to satisfy the boundary condition at the cylinder wall for a TE11 mode is:-

k =
1.8412

r0
(B.13)

Figure B.1: Plot of Bessel Functions J ′m (for m=1 and m=2)

Again looking at the plot the second zero (when n equals two) of J ′1(k r) occurs at kr equal to about 5.3 or more
accurately 5.3315 so for the TE12 mode the boundary conditions are satisfied when k r0 = 5.3315.

Considering the H field equations (B.2d to B.2f), Hθ and Hz(Hφ) are parallel to the curved cylinder (toroid) wall
so always satisfy the boundary conditions. Hr contains a J ′1(k r) term so the Eθ boundary condition, which requires
the differentiated Bessel function to be zero when r is equal to r0, will also make Hr zero. Having found the values of
m and n this is sufficient to meet all the field boundary conditions at the circular cylinder/toroid wall and to determine
the modes. If the waveguide/toroid energising frequency is too low no mode will be able to travel along it and the
the frequency at which this occurs is known as the cutoff frequency. There are some common formulae derived in
waveguide/cavity textbooks which are very useful and one of these enables the cut off frequency fco to be found:-

fco =
c k

2π
(B.14)

As λ = c/f this corresponds to a wavelength at cut off frequency (λco) of:-

λco =
2π

k
(B.15)

Another textbook formula is for β:-

β =

√
ω2
e

c2
− k2 (B.16)
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Where ωe is at the excitation angular frequency. There are two further wavelengths it is useful to know, λg, the
wavelength in the cylinder or toroid and λe, the excitation frequency wavelength in free space (not in the waveguide):-

λg =
2π

β
λe =

c

fe
(B.17)

Substituting the three expressions for the various wavelengths in the equation for β gives the relationship between the
three of them, which is:- (

1

λg

)2

=

(
1

λe

)2

−
(

1

λco

)2

(B.18)

This equation shows that if the excitation wavelength is only slightly shorter than the cutoff frequency wavelength, so
1/λe is only slightly greater than 1/λco, then 1/λg will be very small and the wavelength in the cylinder (λg) becomes
very long. This is the condition in which a large aspect ratio toroid containing one, or just a half, wavelength will be
operating.

B.4 Toroidal Cavities

Although the boundary conditions for toroidal cavities are mostly the same as those of a cylindrical cavity they are
different at the position of the end wall. For a toroid where the wall is absent it is only necessary that the field is not
cancelled by destructive interference at this location, a requirement which is most easily satisfied by having a whole
number of wavelengths around the circumference of the toroid. This will also ensure that each field component is
identical at zero and 360 degrees and there will be no field discontinuity where the wave ”joins”. Looking at eqns
(B.6) and (B.7) in note 2.3 for the (B.2) toroidal field equations, it is apparent that all the field components present
have a sin (βRφ) or cos (βRφ) amplitude in the φ direction. If p is the number of wavelengths around the toroid then
each wavelength occupies a φ angle in radians of:-

φ =
2π

p
(B.19)

The sine and cosine terms must repeat after this angle so it is necessary that when φ has this value the argument of
these trig functions is 2π. That is:-

βRφ = βR

(
2π

p

)
= 2π (B.20)

Therefore:-

β =
( p
R

)
p = 0, 1, 2, 3 ... (B.21)

The p=0 option makes β = 0 and therefore e−jβRφ = 1. All the field components present (Er, Eθ and Hφ) have a
constant amplitude in the toroidal (φ) direction and this is a toroidal TE110 mode. The mode is not possible in a
cylindrical cavity because the fields cannot satisfy the boundary conditions at the cavity end wall.

After substituting p/R for β, the e−jβRφ terms in field equation (B.2) become:-

e−jβRφ = cos (pφ)− j sin (pφ) (B.22)

or, using phase selection constants as in note 2.3 of eqns (B.2):-

e−jβRφ = E2 cos (pφ) + F2 sin (pφ) (B.23)

To find the resonant frequency formula for the toroid, starting with eqn (B.16) for β, replace ωe by 2πfe and substitute
for β using eqn (B.21). Then re-arrange the resulting equation to obtain:-

fe =
c

2π

√( p
R

)2
+ k2 (B.24)

For a wave travelling in the φ direction the equation for β in eqn (B.21) also enables it to be shown that the ratio of
the wavelength in the toroid λg to that in free space λe is equal to the phase velocity. It is just necessary to use the
wavelength equations (B.17) and substitute ωe/(2π) for fe. The final terms are then the same as in the phase velocity
equation (B.12):-

λg
λe

=
2π

β

ωe
2πc

=
ωe
cβ

= vp (B.25)

A useful relationship can be obtained from eqn (B.25) by substituting vg for vp using:-

vg = 1/vp =
cβ

ωe
(B.26)

and then substituting p
R for β:-

vg =
cp

ωeR
(B.27)
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B.4.1 Half-wave Toroidal Cavities

With the field configurations which have been looked at so far a half wavelength resonant mode could not occur as the

fields include cos (pφ) terms, or more precisely they will be cos
(
φ
2

)
terms for a half wavelength. Such a cosine field

will not join at φ equals zero and 360 degrees because one side will be positive and the other negative but if the field
is twisted 180 degrees in the θ direction between φ equals zero and 360 degrees there is the possibility it will join. The
most obvious way to do this might seem to be by creating a circularly polarised field. However, this no longer has a

cos
(
φ
2

)
waveform but is of constant magnitude at all φ positions and a circularly polarised half wave twist makes the

field point in the opposite theta direction after half a wavelength so this will not join either. The other way is to just
twist the original fields in the θ direction and this can be done by changing the θ terms in eqn (B.2) as follows:-

sin (mθ) becomes sin (mθ + Tφ) (B.28)

cos (mθ) becomes cos (mθ + Tφ) (B.29)

The minimum necessary twist of 180 degrees between φ equals 0 and 360 degrees is obtained with a twist parameter
(T) of one half. Greater twists of 540, 900, 1260... degrees are also valid and so the complete possible range of values
is:-

T = ±1

2
, ±3

2
, ±5

2
, ±7

2
... (B.30)

The ± sign allows twist in the negative or positive θ direction.

For completeness it is worthwhile noting that a multiple of 2π radians of twist could be used with one of the full
wavelength modes. In this case permitted values of T would be:-

T = 0, ±1, ±2, ±3 ... (B.31)

Having half wave resonant modes and if required 3/2, 5/2 etc wavelength modes around the toroid allows p to
have not only the positive integer values previously given for the whole wavelength modes but now also half integer
values of:-

p =
1

2
,

3

2
,

5

2
... (B.32)

It is necessary to confirm that this twisted field does join and still satisfies Maxwell’s equations and this has been
done using an FDTD computer simulation of the field within a toroidal cavity resonator. The exception to this is for
the p=0 toroidal mode which is valid for integer twists but not for half integer ones which prevent the field joining.

B.4.2 Toroidal Cavity Field Equations

The set of equations (B.2) can now be modified by using the expansion given in note 2.3 of those equations on both
the e−jβRφ and e+jωt terms and including the T, twist parameter. This gives the following form of the TE resonant
mode field equations suitable for finding solutions for large aspect ratio toroidal cavities:-

Er = −Amn
m

e0r

(
Jm (kr)

)[
− C2 sin (mθ + Tφ) +D2 cos (mθ + Tφ)

][
E2 cos (pφ) + F2 sin (pφ)

]
[
G2 cos (ωt) +H2 sin (ωt)

]
(B.33a)

Eθ = +Amn
k

e0

(
−Jm+1 (kr) +

mJm (kr)

kr

)[
C2 cos (mθ + Tφ) +D2 sin (mθ + Tφ)

]
[
E2 cos (pφ) + F2 sin (pφ)

][
G2 cos (ωt) +H2 sin (ωt)

]
(B.33b)

Eφ = 0 (B.33c)

Hr = −Amn
kβ

ωµ0e0

(
−Jm+1 (kr) +

mJm (kr)

kr

)[
C2 cos (mθ + Tφ) +D2 sin (mθ + Tφ)

]
[
E2 cos (pφ) + F2 sin (pφ)

][
G2 cos (ωt) +H2 sin (ωt)

]
(B.33d)
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Hθ = −Amn
mβ

ωµ0e0r

(
Jm (kr)

)[
− C2 sin (mθ + Tφ) +D2 cos (mθ + Tφ)

]
[
E2 cos (pφ) + F2 sin (pφ)

][
G2 cos (ωt) +H2 sin (ωt)

]
(B.33e)

Hφ = −Amn
k2

ωµ0e0

(
Jm (kr)

)[
C2 cos (mθ + Tφ) +D2 sin (mθ + Tφ)

]
[
E2 sin (pφ)− F2 cos (pφ)

][
G2 cos (ωt) +H2 sin (ωt)

]
(B.33f)

Note: In the above equations the values of the parameters and constants can be obtained as follows:-
1) Those parameters required to produce some typical TEmnp modes are:-

a) For a normal full wave resonant TE111 mode with no twist:-

m = 1, n = 1, p = 1 and T = 0 (B.34)

b) For a circularly polarised one wavelength mode:-

m = 1, n = 1, p = 0 and T = −1 (B.35)

c) The field which has usually been modelled in this paper is a half wave resonant TE11 1
2

mode with 180 degree
clockwise twist which has:-

m = 1, n = 1, p =
1

2
and T = −1

2
(B.36)

2) A positive value of T will give a field that twists in the −θ direction as φ increase i.e. twists anticlockwise with
increasing φ angle. A negative T value field will twist clockwise as φ increases.

3) Amn, e0 and µ0 are the same constants referred to in the notes for eqns (B.2).

4.1) The exact field form, such as whether it is stationary, rotating, the direction of rotation and the field orientation
in the toroid is determined by the value given to the phase constants. Using the same values for both the E and H
fields will give a toroidal travelling field moving in the +φ direction. Some examples of the effect of different phase
constants for the half wave TE11 1

2
mode with T= − 1

2 are described below.

a) For this first example, when t = 0, the E field maximum will be at φ = 0 and be pointing towards θ = 90 degrees.
The H field will be a minimum at φ = 0 and be pointing towards θ = 180 degrees :-

E field: C2 = 1, E2 = 1, G2 = 1 (D2 = F2 = H2 = 0) (B.37)

H field: C2 = 1, E2 = 1, G2 = 1 (D2 = F2 = H2 = 0) (B.38)

b) Starting with field 4.1.a above for both the E and H fields change E2 to 0 and F2 to +1 which will give both fields
plus 90 degrees electrical (plus 180 degrees mechanical) phi rotation. Due to the theta rotation following the twist,
the fields will also be rotated plus 90 degrees theta. The E field maximum will be at φ = 180 degrees and pointing
towards θ = 180 degrees and the H field minimum at φ = 180 degrees and pointing towards θ = 270 degrees:-

E field: C2 = 1, F2 = 1, G2 = 1 (D2 = E2 = H2 = 0) (B.39)

H field: C2 = 1, F2 = 1, G2 = 1 (D2 = E2 = H2 = 0) (B.40)

c) Starting with field 4.1.b above in both the E and H field equations change C2 to −C2 for 180 degree theta rotation.
This will give the electric field shown in Fig 3 and the magnetic field of Fig 5:-

E field: C2 = −1, F2 = 1, G2 = 1 (D2 = E2 = H2 = 0) (B.41)

H field: C2 = −1, F2 = 1, G2 = 1 (D2 = E2 = H2 = 0) (B.42)

d) All the above fields can be made to travel in the minus phi direction by rotating the magnetic field by 180 degrees
theta which can be done by reversing the polarity of its second constant which will be E2 or F2 i.e. reverse the sign
of whichever of these phase constants has a value of 1. For example using the field c) above change the value of the
magnetic field F2 to −1:-

E field: C2 = −1, F2 = 1, G2 = 1 (D2 = E2 = H2 = 0) (B.43)

H field: C2 = −1, F2 = −1, G2 = 1 (D2 = E2 = H2 = 0) (B.44)
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4.2) It is also possible to obtain a field poloidally spinning in the ±θ direction by selecting different phase selection
parameters for the E and H fields.
a) The anti-clockwise (−θ) spinning field in section 5 used the E field of Fig 3 and the H field of Fig 9. This moved
with group velocity in the +φ direction and was obtained using the parameters:-

E field: C2 = −1, F2 = 1, G2 = 1 (D2 = E2 = H2 = 0) (B.45)

H field: D2 = 1, E2 = 1, G2 = 1 (C2 = F2 = H2 = 0) (B.46)

b) To have above field, 4.2.a, spinning in the +θ clockwise direction rotate just the magnetic field through 180 degrees
theta by changing the sign of D2:-

E field: C2 = −1, F2 = 1, G2 = 1 (D2 = E2 = H2 = 0) (B.47)

H field: D2 = −1, E2 = 1, G2 = 1 (C2 = F2 = H2 = 0) (B.48)

c) To have above field, 4.2.b, moved so its initial E and H field maximums are at φ = 0 instead of φ = 180 degrees
could be done by rotating the fields 180 degrees mechanical (90 degrees electrical) in the plus or minus phi direction.
Each of these options will give different fields because as it is phi rotated the field will also theta rotate in the same
direction as the twist. For −φ rotation the E field will point towards θ = 270 degrees when it reaches φ = 0 whereas
for +φ rotation it will point towards θ = 90 degrees. Similarly if the H field is −φ rotated, when it reaches φ = 0
degrees it will point towards +φ from θ = 0 to 180 degrees and towards −φ from θ = 180 to 360 degrees, whereas
for +φ rotation its direction will be reversed and point towards −φ from θ = 0 to 180 degrees and towards +φ from
θ = 180 to 360 degrees. The fields will all still spin in the +θ, clockwise, direction and because spin and twist are in
the same direction the group velocity movement will be in the −φ direction
For −φ rotation use:-

E field: C2 = −1, E2 = 1, G2 = 1 (D2 = F2 = H2 = 0) (B.49)

H field: D2 = −1, F2 = −1, G2 = 1 (C2 = E2 = H2 = 0) (B.50)

For +φ rotation use:-

E field: C2 = −1, E2 = −1, G2 = 1 (D2 = F2 = H2 = 0) (B.51)

H field: D2 = −1, F2 = 1, G2 = 1 (C2 = E2 = H2 = 0) (B.52)

The difference between the two sets of fields above, which are produced by either + or - φ direction rotation of field
4.2.b, is just that the final theta angle is different. Specifically the −φ rotated field (B.49)/(B.50) is at +180 degrees
theta relative to the +φ rotated field (B.51)/(B.52). It is therefore possible to produce the above −φ rotation field by
turning the +φ rotation field through 180 degrees theta and this can be done by changing just the sign of the C2 and
D2 phase selection constants as follows.
To produce the −φ rotation field from the +φ rotation (B.51) and (B.52) fields, change parameters to:-

E field: C2 = 1, E2 = −1, G2 = 1 (D2 = F2 = H2 = 0) (B.53)

H field: D2 = 1, F2 = 1, G2 = 1 (C2 = E2 = H2 = 0) (B.54)

To produce the +φ rotation field from the −φ rotation (B.49) and (B.50) fields, change parameters to:-

E field: C2 = 1, E2 = 1, G2 = 1 (D2 = F2 = H2 = 0) (B.55)

H field: D2 = 1, F2 = −1, G2 = 1 (C2 = E2 = H2 = 0) (B.56)

It interesting to note that the two sets of −φ rotation field phase selection constants (B.49)/(B.50) and (B.53)/(B.54)
have different signs although the fields they produce are identical. The same applies with the two +φ rotation fields.

B.4.3 To Find the Remaining Unknowns for the Toroidal Cavity Field Equations

Equations have previously been given for finding k and β but for convenience they are repeated here:-

Eqn (B.13) gives the value of k for the TE11p mode. This is only applicable when n = 1:-

k =

(
1.8412

r0

)

Eqn (B.21) for β:-

β =
( p
R

)
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B.4.3.1 To Find The Resonant Frequency When R and r0 Are Known. With the notes to eqns (B.33)
and the above formulae all the toroidal field equation unknowns can be found once ω,R and r0 are assigned values.
The relationship between them can be obtained from eqn (B.24) which was for the toroid resonant frequency:-

fe =
c

2π

√( p
R

)2
+ k2

Substituting in the above equation for k using eqn (B.13) results in the required relationship to enable the resonant
frequency of a toroid of known size and containing p wavelengths to be obtained:-

fe =
c

2π

√( p
R

)2
+

(
1.8412

r0

)2

(B.57)

The ω used in the (B.33) field equations is just 2πfe.

B.4.3.2 To Find r0 When the Resonant Frequency and Aspect Ratio Are Known. Alternatively, if
the resonant frequency and the required toroid aspect ratio (AR=R/r0) are known instead, then putting R equal to
(AR r0) in eqn (B.57) and solving for r0 results in the following solution:-

r0 =
c

2πfe

√√√√( p2

(AR)
2 + 1.84122

)
(B.58)

Having found r0 and knowing the aspect ratio enables R to be found and hence all the parameters for the field
equations are again known.

B.4.3.3 To Find r0 When the Resonant Frequency and R Are Known. Solving eqn (B.57) for r0 gives
the required formula directly:-

r0 =
1.8412√(

2πfe
c

)2

−
( p
R

)2 (B.59)

B.4.3.4 To Find the Required Toroid Size For a Desired Resonant Frequency and Phase Velocity. It
is often useful to have a toroid with a known phase velocity The additional equations needed to do this are:-
Eqn (B.12) :-

vp =
ω

βc

Eqn (B.16):-

β =

√
ω2
e

c2
− k2

Squaring eqn (B.16) and dividing the result by β2 gives:-

1 =
ω2
e

c2β2
− k2

β2
(B.60)

Use eqn (B.12) to substitute v2p for
ω2

e

c2β2 , eqn (B.13) to substitute for k2 and eqn (B.21) to substitute for β2 in the last
term:-

1 = v2p −
1.84122R2

r20p
2

(B.61)

R/r0 is the toroid aspect ratio (AR), so solving eqn (B.61) for this results in the required relationship:-

AR =
p

1.8412

√
v2p − 1 (B.62)

The toroid aspect ratio and resonant frequency are now known and once again eqn (B.58) can be used to give the
complete solution of all the unknowns.
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APPENDIX C

C - Some Techniques For Measuring Toroidal Field Parameters

Time animations of 3D plots of the electric and magnetic fields are usually the most useful way to get an overall
view of the form of the toroidal cavity field and how it is changing with time. This is particularly important when
needing to identify if say toroidal or poloidal rotation of a twisted field is occurring and in this case consideration of
the direction of the Poynting vector is also very helpful. However, a 3D plot often does not show the field precisely
enough to take accurate measurements and if only a small change to the field occurs this may not even be visible.
There are a large number of alternative plots which could be taken but the one which has frequently been used here is
of the magnitude of each individual vector field component, particularly those of the electric field, plotted against the
phi toroidal angle. It is not intended to cover all the many different possibilities but instead to give more information
on how the toroidal field measurements quoted have been obtained. The description refers specifically to the results
for the toroidally spinning TE11 1

2
field of section 4 in the main document but the general method can also be applied

to other modes.

C.1 Field Measurement Reference Points

To determine the movement of the field structure more accurately over time a plot of the magnitude of the individual
field components against phi angle has certain features which can be used to establish reference points. If further plots
are taken at consecutive time steps it becomes obvious that some of the field zero points are moving rapidly in the
phi direction over just a few time steps whilst others appear stationary but move slowly over a longer time period.
Fast movement is likely to be associated with phase velocity movement and slow movement with group velocity. For
a perfect theoretical TE11 field, assuming the measuring point is at θ = x degrees and r is not at the toroid wall or at
r equals zero then typical reference points could be:-

Ref 1) If, at the measuring point theta angle, both Er and Eθ are zero at some phi angle then both these electric
fields are zero magnitude across the complete toroid minor cross section at this phi location.

Ref 2) If just Eθ is zero at a particular phi angle the electric field is aligned pointing along the theta equals x+0
to x+180 degree minor diameter.

Ref 3) If just Er is zero at a particular phi angle the electric field is aligned pointing along the theta equals x+90
to x+270 degree minor diameter.

In Fig 8 of the main document the electric field measuring position is at θ = 0 degrees so x is zero. Reference points
1 at φ = 0 degrees and 2 at φ = 180 degrees are visible and these numbers are marked on that figure. A similar
plot, Fig C.1, taken at t=14 time steps, which is after just over 1

8
th of a cycle electrical or 1

4 of a revolution, after the
start of the FDTD program, shows that in fact all three reference points are present. Point 1 which was previously
combined with point 3 has now moved at phase velocity to just beyond the φ = 90 degree position, revealing both
points. Looking at the 3D electric field plot Fig 7, which is also at time step 14, confirms the validity of the reference
point 2 and 3 field alignments and the movement of the zero field magnitude reference point 1. Alignment along axes
at different theta angles can be found using reference points 2 and 3 by changing the value of the theta angle measuring
point, x. Additional reference points may also be found if the magnetic field is plotted instead.

24



Figure C.1: Amplitude Variation of Er and Eθ Electric Field Components With φ Angle.
Shown After Just Over 1

8
th Of a Cycle.

C.2 Example of Reference Point Measurements of Section 4 Toroidally Spinning Field
at Phi ≈ 189 Degrees.

It is useful to plot the fields not only at θ = x but also at the diametrically opposite position θ = x+ 180 degrees. A
typical plot is shown in Fig C.2. Considering first the Eθ field, which is the turquoise blue lines, it can be seen that
this is an alternative plot of Fig 8b taken over a very small phi angle range and shows with much greater accuracy
the amount of movement of the phi equals 180 degree reference point 2. The measuring points are now at r = 2 and
the θ = 0 and 180 degree positions. Both pass through zero at the same phi angle with remarkably and somewhat
unexpectedly good agreement.

Some readers will be aware that in FDTD programs the field calculation positions are not at the points where the
grid lines intersect but half way along the grid squares. This needs to be taken into account when plotting or calculating
field values and if not considerable errors would be introduced in the high resolution phi direction plots being used.
To prevent this all plots in this paper use field values which have been calculated at the grid line intersection positions
using linear interpolation between the half grid square locations. This can introduce interpolation errors but generally
these will be small.

Figure C.2: High Resolution Plot of Eθ and Er Field Zero Magnitude Positions For t=99996.
(Turquoise Eθ Rising Line at θ = 0 degrees, Falling Line at θ = 180 degrees)

(Red Er Rising Line at θ = 90 degrees, Falling Line at θ = 270 degrees)
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A different potential difficulty still arises with this measurement though because the use of twist is likely to result
in a mode with toroidal rotation also producing poloidal rotation and vice versa, as shown in section 6 of the main
paper. Any poloidal movement can cause the reference point field zero to no longer be at a fixed phi angle over the
short term but instead the phi angle changes slightly over a single cycle. To check for this it is easiest to produce a
time animation of Fig C.2, the reference position plot. Although a time animation can not be shown in this paper
looking at Fig 8a it can be seen that the ’hidden’ reference point 3, Er field, is at a tangent to the phi angle axis. This
situation normally occurs whenever reference point 1 is at the same phi angle as reference points 2 or 3 and is very
easily identified in a time animation and the time steps at which this takes place can be found very accurately. The
number of time steps between consecutive tangent events at one particular reference point will be exactly half a cycle,
corresponding to one mechanical field revolution. Using the time step midway between these events to find the phi
angle for the mean position of the reference point largely eliminates errors due to short timescale poloidal movements.
Fig C.2 was actually obtained in this way and and taken at the midway time step, which was found to be number
99996. This plot shows a travel of 8.82 phi degrees which compares with a calculated value of 8.89 degrees using eqn
(3) and is a -0.79% difference. The potential poloidal rotation likely with this mode and the effect it has of moving
the Eθ and Er field line intersection points in the plus or minus phi directions in a time animation means that this
can also be used to detect small levels of theta direction rotation.

The red lines in Fig C.2 are similar plots of the Er field. This is a reference point 3 plot but with the measuring
points at theta equals 90 and 270 degrees, which is using an x value of 90 degrees and is an alternative way of finding
when the E field is aligned along the 0 to 180 degree axis. Interestingly the two measuring point lines no longer cross
the zero field value at the same phi angle. Calculating the phi angle value at a position midway between the two zero
field phi angle positions gives the mean value for the phi angle travel of the field which in this case is 8.84 degrees. If
the two Er lines had the same slope the mean value would be where the two lines cross which is nearly the case as the
crossing point is at a travel of 8.86 phi degrees. The 8.84 degree travel is an error of -0.56% compared with eqn (3).
and this and the above result for Eθ confirm that the long term toroidal rotation of the field is at the group velocity.

The reason for the two Er field lines not crossing zero at the same phi angle was found to be because the centre of
the E field is slightly offset from the centre of the minor diameter. It is known that in toroids the field centre can move
inward or outward along the direction of the major radius although there is not always agreement in the literature
on which direction is correct. Compare for example Kark [11] (outward) and Keil [12] (inward). Where the two Er
lines cross at point 3 in the figure the field values at θ = 90 and 270 degrees are the same so this is the phi angle at
which the main electric field direction is parallel to the 0 to 180 degree line. To find out the direction and magnitude
of the field offset it is necessary to interpolate between the actual FDTD calculated field values, including allowing
for these values often being found half a grid square away from the grid intersection in an FDTD program. Details
of this calculation are not shown but the offset was found to be inward along the major radius but of a very small
distance of just 1.5% of the theta length of a grid square positioned at r = 2. It is reference points measured along
the theta=90 to 270 degree line which should be most affected and one along the theta=0 to 180 degrees line should
show no offset due to this cause, which is what is shown for the Eθ field line crossing point in Fig C.2.

C.3 Example of Reference Point Measurements of Section 4 Toroidally Spinning Field
at Phi ≈ 9 Degrees.

A similar plot can be made of the Er field, which at the start of the simulation is at phi equals zero degrees. In this
case, as Fig 8b shows because the Er field approaches zero at a tangent the exact zero crossing position is hard to
measure accurately. Using the above technique, though, it is the time midway between two time steps which have the
field tangent to the zero line which should be used instead. In this case the exact Er tangent was found to occur at
99994 (not 99996) and 100048 giving the midway position time step as 100021. This is approximately one quarter of a
cycle (electrical) later where the zero crossing is steep and easily measured. The additional time steps when calculating
movement at t=100021 instead of 99996 will slightly increase the theoretical calculated movement but to two decimal
places should still be 8.89 degrees. As shown in Fig C.3 the measured movement in this case is 8.97 degrees which is
an error of +0.90%.

The Eθ field can also be plotted around the phi=9 degrees position but because the 3D field is aligned pointing
along along the 90 to 270 degree axis, x needs to be 90 degrees giving theta angles of 90 and 270 degrees for the
measurement instead of 0 and 180 degrees as was used for the Er measurement. It can be seen that it is the Eθ field
crossing, which no longer takes place at zero field angle, and as this is being measured along the 90 to 270 degree line
it supports the theory that it is the main field being offset along the major radius which is responsible for having field
component lines not crossing each other at zero field magnitude.

The discrepancy between the group velocity measurements at the approximately 9 and 189 phi degree locations
seems to be due to very slight poloidal movement of the field starting to occur however the agreement is good enough
to confirm that the field is moving toroidally at the group velocity.
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Figure C.3: High Resolution Plot of Eθ and Er Field Zero Magnitude Positions For t=100021.
(Turquoise Eθ Rising Line at θ = 90 degrees, Falling Line at θ = 270 degrees)

(Red Er Rising Line at θ = 180 degrees, Falling Line at θ = 0 degrees)

C.4 Results of Investigating the Polarity of the Field Component Crossing and Direc-
tion of Main Field Offset

It was the need to find the reason for the field components not always crossing at zero field amplitude in the high
resolution phi direction plots which led to investigating the offset of the main field inward or outward along the major
radius. However, the offset is small and although an interesting effect it so far seems to be of limited importance
and therefore has not been fully investigated. Whilst not wishing to excessively examine the matter it was thought
worthwhile to give the results of the measurements actually taken and these are summarised in Table C1. They
comprised four measurements and calculations which were taken over a complete electrical cycle, which was two
mechanical revolutions of the field.

Table C1: Relation Between Field Component Crossing Polarity and Main Field Offset

Time Step Field Approx. Phi Field Crossing Main Field Points Offset Offset
Number Component Angle (Deg) Polarity To θ Degrees Direction Amount

99967 Eθ 9 +ve 270 Inward 0.88%
100021 Eθ 9 -ve 90 Inward 0.47%
99996 Er 189 -ve 0 Inward 1.5%
100048 Er 189 -ve 180 Outward 2.1%

There are several things worth noting, for example, whether the offset is inwards or outwards is not determined
just by looking at the sign of the electric field at the crossing point in the high resolution plots. This is because the
field sign at the crossing point is also effected by the sign of the main electric field and that is dependant upon the
direction in which the total electric field points. This relationship is also different for Er and Eθ fields.

A more surprising feature is that the direction of the main field offset varies and although it is normally inwards,
at time step 100048 when the main field points outwards, the offset at the θ=180 degrees was found to change and
become outwards. To confirm this further checks would be necessary such as checking the accuracy of the FDTD
calculation by using a finer FDTD grid with more grid squares and seeing if this changed the result. It would also be
interesting to check the measurement for the simpler case of the basic stationary field with say radial and then z axis
polarisation directions and also using toroids with different aspect ratios. It seems to be a more complicated issue
requiring more investigation than might first be assumed.
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