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1 Klein-Gordon and Dirac equations

Klein-Gordon and Dirac equations

1 Klein-Gordon and Dirac equations

a) Write down the Klein-Gordon equation for a free relativistic particle (will all units explicitly shown).
Show that plane waves are solutions of the equation and derive the energy spectrum. What is the problem
with it?

b) Show that the Klein-Gordon equation satisfies a continuity equation and write down the explicit
expression of the 4-current j#(x). Be careful in making sure that it has the correct dimensions. What is
the problem here? Show it with a specific example.

c) Write down the free-particle Dirac equation (will all units explicitly shown) in the form

0
ih s (@) = Hp (),

where Hp is the Dirac Hamiltonian, and starting from the requirement that the relativistic relation
E? = p?c®+m?c* be satisfied, derive all relevant constraints on a; and 8. Write an explicit representation
of a; and f.

d) Show that the Dirac equation satisfies a continuity equation and write down the explicit expression of
the 4-current j*(x). Be careful in making sure that it has the correct dimensions. Show that this current
does not have the problem, which shows up for the current associated to the Klein-Gordon equation.

e) The free-particle Dirac equation still suffers from the problem of negative energy solutions. How
did Dirac propose to cure this problem? Why does it work for the Dirac equation, but not for the
Klein-Gordon equation? What does Dirac’s idea imply?

a) The Klein-Gordon equation (KGE) for a free relativistic particle of mass m is

2

(D n m;c ) o(z) =0,

where z = (ct, &) and O = 0"0,,. Let us consider a relativistic plane wave

d(a) = Ne #P"on,

where N is a normalization factor. To show that it satisfies the KGE, we plug it in:

<D ¥ m;CQ) é(z) = [(;)2 (f; p2> + m;f] ()
= (B 2~ m?e)o(a) =,

since we want the relativistic dispersion relation E? = p%c? +m?2c* to hold. Thus, the energy spectrum is
given by E = 4+/p2c2 + m2ct. The problem is that a free particle admits negative energies, in contrast
with the classical case. It is not clear what it means that a free particle has a negative energy.

b) Multiplying the KGE by ¢* and the conjugate KGE by ¢, we obtain

4" <D+ m2€2> ¢ =0, ¢>(D+ m202>¢>* =0.

h? h?
Subtracting the second from the first, we have

0=¢"0,0"¢ — ¢ 9,0"9" = [04(¢70" ) — (0u¢")(8"P)] — [0u(60"¢") — (90)(8"¢")]
= 0u(¢70"p — ¢ 0"¢").



1 Klein-Gordon and Dirac equations

Defining j* = %(qb*@”gﬁ — ¢ 0"¢*), we obtain the continuity equation 9,j" = 0.

In analogy with the Schrodinger equation, we would like to interpret j* as a probability current and
p = j°/c as a probability density. However we face the problem of negative probability. For example, let
¢ be a plane wave. Then

ola) % o) (-5 ) ole) - 0(0) () ')

NP,

me2

which is negative for negative-energy waves.

c¢) The free-particle Dirac equation (DE) is a linear first-order partial differential equation

zh%w(m) = (—ihca- V +mc?B) (z).

—Hp

The relativistic dispersion relation is satisfied if v is a solution of the KGE. We first notice that «;, 8
cannot be numbers, otherwise the DE would not be invariant under space rotations. Thus, they must be
N x N matrices. Now, the second time-derivative of 1) is

_hQﬁw( ) _ —h2 2 23: Qjly —|—O{k04_7 8 it 323: B"’ﬂ i 4 4ﬁ2 w( )
012 xr) = & 2 5 O2d Ok —ihmc . Oé] Oé] m & x),
J,k= Jj=

that is

0? {aj, o} 02 m2c B
S ];1 Wl i Z{aj,ﬂ}aj 07 | (@) = 0.

Comparing it with the KGE, we obtain the relations
{aj, Oék} = 25jk1
{O‘j’ /8} =0
a? =32 =1

This is the so-called Clifford algebra. Since we want Hp to be self-adjoint, then a;f = ayj, gt = B. Then
the matrices are diagonalizable. When squared, they give the identity matrix. Then their eigenvalues are

+1. Further, from the anticommutation relation, we have a; = —fa;3. Hence,
tr (o) = tr (—Ba;B)
= —tr(f%y)
=—tr (aj)a

that is, tr (o;) = 0. Traceless matrices with eigenvalues £1 must be of even dimension. The smallest
possible value is N = 2, but there exist only three anticommuting matrices of dimension 2 x 2 (namely,
the Pauli matrices ¢;), and they do not do the job. Thus, the smallest admittable dimension is N = 4.
A representation of the matrices is

-5 9 062

d) Multiplying the DE by 1 on the left and the conjugate DE by ¢ on the right, we obtain

th/)T w = (—ihcyta - Vip + mcyT )

—zh%f = (ihe VT - anp + mc*TByp).



2  Free-paricle solutions of the Dirac equation

Dividing both expressions by ihic and subtracting the second from the first, we obtain

oy oy

— — oty . _ T,
o) "oV T Ve Ve Velay.

¢T

By using Einstein’s summation convention, we can rewrite the above expression as follows

W1 (00v) + (@0v") +vla; (9;¢) + (9w = 0.
=080 (Y1) 8, (YTa;v)

Let us define the 4-current j = (cp,j) = (i, cypTarp). The we have the continuity equation
3" = 0.

The first component p of the 4-current is

4
p(x) = ¢ (@)(x) =D [, (x)]* > 0.

It is positive by construction, and can be safely interpreted as a probability density.

e) The free-particle DE still suffers the problem of negative-energy solutions, as the relativistic dispersion
relation holds true. Dirac proposed the following solution: all negative-energy states are occupied by
negative-energy particles with opposite spin and, thanks to Pauli’s exclusion principle, these states cannot
be occupied by any other particle. This is what we call the vacuum or ground state. All other particles
must then have positive energy, and form matter as we know it.

This solution does not apply to the KGE, since it refers to bosons and the Pauli principle does not
apply to them. The negative energy states cannot be filled in a stable way.

The vacuum corresponds to a many-body state in which all negative-energy particle states are occupied,
forming the so-called Dirac sea. Then the Dirac equation does not make sense as a single particle equation.
It makes sense as a many-particle equation. This is the first step towards Quantum Field Theory.

E

forbidden energy< -+ (0

virtual fermions NI

There is an important consequence of assuming the Dirac sea. A negative-energy particle can be promoted
to a positive-energy particle by giving it energy through some potential. We are left with a positive energy
particle coming out of the sea, and a hole in the sea. This hole can be seen as a new particle with positive
energy (since energy was required to create it) and opposite charge. Thus, the DE and the Dirac see
predict the existence of what we now call antiparticles.

2 Free-paricle solutions of the Dirac equation
a) Write down the free-particle Dirac equation (will all units explicitly shown) in the form
in 0 () = Hpuo(a),
ot
where Hp is the Dirac Hamiltonian. Consider a plane wave solution

Pp(r) = pr(p)ei%(Etipm)a



2  Free-paricle solutions of the Dirac equation

where N, is a normalization factor and w(p) a spinor, and show that it implies the relativistic dispersion
relation E? = p?c? + m2c?.

b) Derive the explicit expression for the four Dirac spinors w(p), so that the general solution of the Dirac
equation can be written as:

D (@) = Nyw, (p)e terErt=p®) =123 4,

with E, = \/p?c2 + m2c*, and ¢, = +1 for r = 1,2 and ¢, = —1 for r = 3,4.

c) Prove that the Dirac spinors (with the appropriate factor in front) satisfy the orthogonality relations

E
wi(erp)wr’ (er’p) = mié; 5r,r’
Wr(p)wr (p) = € Opp

d) Prove that the Dirac spinors satisfy the completeness relation

4

S lwleplalufen)ls = 2 bu
Zer[wr(p)}a[wr(p)}ﬁ = dap

e) Using the orthogonality relations, derive the explicit expression for the normalization factor N, so
that:

/ &Pz i (@)l (2) = 8,00 6P (p — p).

a) The free-particle Dirac equation (DE) is linear first-order partial differential equation

ih%z{;(ax) = (—ihca -V +mc?B) ¢(z),

=Hp

where the matrices o, 3 are self-adjoint matrices satisfying the Clifford algebra

{aj,ak} = 26jk1
{ajaﬁ} =0

a?:ﬁQZl.

0 gj o 1 0
vl %) o )

and consider a plane wave solution ¢¥p(z) = N, w(p)e’%p“"’”“. Inserting it into the DE, we obtain
B .
il (—Zh) Yp(x) = {—ihca- (f) + ch,B} Yp(x).

Writing w = (i) (omitting the dependence on p) we obtain

E @ —ca-p+md] (i) |

Let us take the representation



2  Free-paricle solutions of the Dirac equation

0 o-p
o-p 0

("o @ 08) ()=

In order to have non-trivial solution, it must be

The product « - p can be written as

and the equation becomes

(E-mc®>)l —co-p

0:‘ —co-p (E+mc?)l

’ = (E? —m?*c*) — (o - p)2.
Now, from (o - p)? = Zik:l %pjpk = p? 1, we obtain the relativistic dispersion relation

E2 :p202 _’_m204'

b) Let us write the plane wave solution as

U (@) = Nywy (pe” ferFnt =),

where F, is the positive energy solution. The system above becomes now

(erEp —mc?)1 —Ce 0P ) _o
—C€ 0P (erEp+mc®)l) \x/)
Let us consider the positive energy (r = 1,2). From the second row, we obtain

co-p

X= Ep—i—mc?(p'

The two-row complex vector ¢ is left undetermined. This means that we have two independent degrees
of freedom (¢ has four degrees of freedom, but one has to subtract the normalization factor and an

1) and one for

unimportant global phase). Thus, we have two independent solutions: one for ¢ = M, (0

p=M, <(1)>, where My, is an appropriate normalization factor. Since

D3 p1 — ip2
o-p= . ,
P <P1 + P2 —P3 )

setting p+ = p1 £ ips we have the two independent spinors

1 0
0 1
w1 (p) =Mp | _eps |, w2(p) = M, P
E,+mc? Ep+mc?
cp+ —Cp3
E,+mc? E,+mc?

Let us consider now the negative energy (r = 3,4). From the first row, we obtain
_ co-p
L E, + mc? X

Again, we have two independent solutions: the one for x = M, <(1)) and the one for x = M, ((1)> The

two corresponding independent spinors are

cps cp_

E,+mc? Ep+mc?

P+ —Cp3

2 2

) =0y | 857 | i -, |
0 1



2  Free-paricle solutions of the Dirac equation

We have chosen the spinors this way because they turn out to be orthogonal and complete.

c¢) Let us check the orthogonality relations. We do it for some meaningful cases. For r = ' = 1, we have
(note that p} = ps)

1
0
T _ 2 cp: cp_
o= 0 w2 wten) [ 4
cp4
E,+mc?
2.2
pc
= M2 (1+—£
(1 )
o BB e s
P (Ep + mc?)?
_ ‘M |2 2EP
Pl B, + me?
For r = 2,7 = 3, we have
—C¢p3
E,+mc?
e —CP+
e e R
0
CD+ CD+
= |Mp|* | - =0.
My ( E, + mc? * Ep+m02)
Finally, for r = 1’ = 4, we have
—cp—
Ep+mc?
—c cps3
wi(—p)ws(—p) = | Mp|* (Epﬁ;?cz Bptme 0 1) EPJE)mC2
1

2.2

pC
S VA N a—
Myl ((szvm:?)?+ )
2F.

2 2
= | M, .
| Pl Ep + mc2
.. E,+mc?
The other cases are similar. Then, we can choose M, = L= to have
E

wj’(e’fp)wr/ (GT'p) = m; 67"7” .

The other orthogonal relation can be obtained in a similar way. For r =1/ =1,

1

0
B Cp—
P (p) = [Mp2 (1 0 5 e A By ime?

cpt

Ep+mc?

2.2
p-c
— M2 (1 P
ol (1= i )

E2 + 2E,mc* + m?ct — p?c?

= |M,|?
| My (Ep + mc?)?

2mc?
=|M,?P=—" =1
| P| Ep+m62



2  Free-paricle solutions of the Dirac equation

For r = 2,7 = 3, we have

cp3
Ep+mc?
_ 2 0 1 cp+ —cp3 Ec—f:rncz
Ba(phws(p) = [Mpl* (0 1 5% mim) B | B
0
P+ P+
= M 2 — = 0.
My (Ep+m02 Ep+mc2>
Finally, for r = v/ = 4, we have
cp—
Ep+mc?
— 2 P+ —Cp3 —Fs 2
wa(pun(p) = Myl (525 mime 0 1) | B
1
2.2
poc
=|Mp?* | ——5 — 1
1 (5, e =)
—2mc?
= |M,|? —— = —1.
|My| E, +mc?
The other cases are similar and in general
Wy (€,P) Wy (€/P) = €0ppr.
d) Let us check the completeness relation. For « = =1
4 2,2 2(,2 2 E
T =M. 12(1+0 c'p3 c*(pi +p3) _
S ur(ep bl ) = M (140 T 4 P ) =

Fora=2,=3

4
i = |Mp|? (04 — 2% 2 0)=0
Z[wT(erp)]z[wr(ErP)]S | Mp| ( + E, + mc? + E, +mc? *

r=1
The other cases are similar. In general,

4

Ly
;[wr(Grp)]a[wi&Tp)}ﬁ = W(saﬁ'

The second completeness relation for a = 8 =1 is
2,2 20,2 | 2
7 - —c(p +13)

L w, N — M2 (140 C"P3 c(pt 2) ) _ 1
;”WWW@M'“(++@ﬁmm+@HWV
Fora =2,8=3
, o — |M. 2 0 —CP+ _ —CD+ 0)=0.
Ze [wr(p)h[wr(p)]i% ‘ P| < + Ep + mC2 Ep + mc2 +

r=1

The other cases are similar. In general,



3 Dirac equation and relativity

e) Let us evaluate the scalar product at equal-time ¢.
TNy — [ Bt "
< P pr’ > mwp ($)¢p, (l‘)
— N;Np/ wl(p)wT/ (p/)e_%(ErIEP/_ETEp)t/dg.lj €+%(Er,p'.m—eTp.m).

We know that
/de ef%(er,p/,mferpw) _ (2’/Th)3 5(3)(€rp . 67A/p/)'
If |p| # |p'|, then everything is zero. If p = —p’, then ¢, and ¢,» must have opposite sign (r # ') in order

for the Dirac delta not to vanish. But in this case w] (p)w, (—p) = 0. Thus, the only case that survives
is p = p’, therefore one can write:

. E
(W gy ) = NGl 8 (2h)* 5 (p = ),

N - L me
P/@rn)3\ By

3 Dirac equation and relativity

that is

a) Write down the free-particle Dirac equation (will all units be explicitly shown) in the form

.0
ihu(z) = Hob (),

where Hp is the Dirac Hamiltonian. Using the minimal-coupling prescription, write the corresponding
equation for a Dirac particle interacting with an electromagnetic field. Show that at the non-relativistic
limit, it gives the Pauli equation.

b) Using the v matrices, write the free-particle Dirac equation in a covariant form. Given the relation
P (a') = S(A)p(x)

for the Dirac spinor expressed in two different inertial frames connected by a Lorentz transformation A,

derive the conditions S must satisfy, in order for the Dirac equation to be Lorentz invariant.

c¢) Consider an infinitesimal Lorentz transformation and derive the explicit (infinitesimal) expression of
S in terms of the infinitesimal parameters defining A and of the ~ matrices.

d) Derive the (finite) expression for S for a rotation of an angle ¥ along the z axis. Generalize it to the
case of a rotation along an arbitrary direction fi (without proof). Derive also the (finite) expression for S
for a boost along the x axis. Generalize it to the case of a boost along an arbitrary direction n (without
proof).

e) Consider the free-particle solution of the Dirac equation with p = 0:

() = Now,(0)e~#erBrot =123 4,

with
1 0 0 0
0 1 0 0
wo =2 wo=| ] wo=]"] wo-=|
0 0 0 1

Using the previous results, derive the (correctly normalized) free-particle solution for an arbitrary mo-
mentum p.




3 Dirac equation and relativity

a) The free-particle Dirac equation (DE) is a linear first-order partial differential equation

ih%w(ax) = (—ihca -V +mcB) ¢(z),

=Hp

where the matrices o, 8 are self-adjoint matrices satisfying the Clifford algebra

{aj, an} = 2051
{O‘J"B} =0
af =p%=1.

The minimal coupling prescription
pu_”-[u:p#,fAu
c

can be written in operatorial form in time as
z’hg, —iheV | — ihg —eA% cI1 ).
ot ot
Thus, the DE for a charged particle interacting with an electromagnetic field is
zh%qb(m) = (ca -TI+mc?B + eA°) (z).

Let us separate the rest energy:

Then 5 5 @) @
- — P —%mczt 2 [P\ —%cht
zh—atw(x) zh—at ( ) e + me (X( ) e )

(ca-TI+mc?B +eA%) ¥(z)

Il
| — |

o

R

=
A~
—~
8 8
S—
N’

_|_

3

(o}

[ V]
T
=5
= =2
S~—
_

_|_

[y

o

[}
A~

S
—~
8 8
S—
N’
_

D

|

Sl

3

QM

'H~

Hence, the equation becomes

e 90(1‘)> [ (‘P(@) 2 ( 0 ) 0 (@(@)}
th— =lca-II —2mc +eA .
ot (x(x) x(x) x(x) x(x)
From the second equation, using the non-relativistic assumptions [ih 2 y(z)| < |me*x(z)| and [eA%x(z)| <
|me?x(x)| (i.e, kinetic and potential energy respectively much smaller than the rest energy), and using

the fact that
0 o-1I1
a-H—(o_.H 0 )’

x(@) = T o).

2me

we obtain

This means that x represents a small component of the wave function (x ~ (v/2¢)¢), and can be neglected.
Inserting it in the first equation, we get

o) = e (o T Z o) + eA(a)

Finally, from
(o M) =11 + io - [(—mv - ZA) X (_mv - SA)}

=1 = [0 (VxA) +o- (Ax V)],



3 Dirac equation and relativity

and by applying the operators to ¢(x)

(o T?0(x) = Pp(x) - [0 (V x A) + 0+ (A x V) ]g(a)

= Pp(a) ~ 0 (V x Ag(a)) + 0 (A x Vi(a)]
= Pp(a) ~ [0 (V x A)p(a) + 0 (Vola) x A) +0- (A x Vila)) ],

=0
we get the Pauli equation

., 0 1 . e \2 ke 0

b) Let us define v° = 3, 49 = Ba;. We can write the DE in terms of the v matrices by multiplying on
the left by 8/c as

z’moazt)w(x) = (—ihvy -V +mc)y(z).

The y-matrices satisfies the algebra
{77} =291
Since v - V = 4%9;, we can write the DE in the covariant notation as

(il 8y, — me)(z) = 0

or, setting @ = Y0, p
(thd — me)(x) = 0.

Let us consider now a Lorentz transformation

ot — = A v

Let us suppose that the spinor ¢(z) transforms according to a linear transformation:
¥'(2') = ¢/ (Az) = S(A)¢(a),

where S(A) is a 4 x 4 matrix. Since also the opposite transformation is possible according to special
relativity, then S(A) must be invertible, with S(A)~! = S(A™1); in fact:

Y(@) = P(A™a") = S(ATH)Y/(2).
Imposing the covariance of the DE, we have
(il 8, — me)(a) = 0
(my’“a,; —me)'(z') = 0.

Since different representations of the Clifford algebra (with self-adjoint matrices) are related by unitary
transformations which do not change the physics, we can suppose that v* = ~4'#. Now, let us take the
first equation multiplied on the left by S(A). Expressing 1 (x) as S(A)~1¢’(z'), we have

(ihS(A)y*S(A) ™9, — me)y' (2') = 0.
On the other hand, for the chain rule,

axll’ / v /
Op = 5oy = N, 0,

Thus, the equation becomes

(ihS(A)Y"S(A)'AY ,0;, — me)y' (z) = 0.

10



3 Dirac equation and relativity

Comparing it with the DE for ¢’(z"), we obtain the fundamental relation
SA)YS(A) TN, =1,

or equivalently
S(AS(A)! = A",

The covariance of the DE is demonstrated once we have found a solution S(A) of the equation above.
c) Let us consider an infinitesimal Lorentz transformation
AF, =68 +wh,.
By the fact that A7, A_* = 6%, we derive that
oh =60 +w!, +w,* +ho.t.

(where h.o.t. means “higher order terms”), that is w*, = —w,* or equivalently w*” = —w"#*. Let us
suppose now that S(A) is of the form

S(A)=1— %a,w W,

with 0, 4 X 4 matrices such that o,, = —o,,. We note that, with this assumption, we can obtain a
finite transformation by summing infinitesimal ones, in the following way:

7; W#u N 3 nv

where w”” /N represents the infinitesimal term of the transformation.
Since (A™1)#, = ¥ — wH,, the fundamental relation becomes

(l - iaalgwaﬁ) ~H <1 + ioa,gwo‘ﬁ> = (08 +w, ") v".

This can be reduced to )
—iwaﬁ [0, Y]+ hoo.t. = w, 9",

that is
w0, Y] = 4in"\w, Ny
= 44 77”)\(«0”/\%,.
Thanks to the antisymmetry 2w"* = —(w* — w"*), we have
W0 ap, "] = —2i(*\ W™y — 1w )

= —2iw* (", 78 — 1" 57a),

where in the last step we have changed the indices (A, v) — (a, 8) in the first addendum and (v, \) — («a, )
in the last one. Since w®” is arbitrary and multiplies an antisymmetric expression on both sides (and we
sum over « and ), they must be the same. Thus, we have the commutation relation

[0ag, ] = =2i(n" 78 — 1" 57a)-

This relation follows from the fundamental one for the S(A) matrices, in the case of infinitesimal transfor-
mation. The problem is now reduced to that of determining the six matrices 0,5. The natural candidate
is: )
i

2["/@”7ﬁ]~

OaB =

11



3 Dirac equation and relativity

As a proof of it:

i
[O-ozﬁa ’Y‘UI] = 5 [[7(17 ’Yﬁ]? ’YM}
i
= 5([%75,7“] — [v8Yar ")
i
= 5([%%7“] — [=Ya¥8 + 21051,7"])
= i[vav8,7"]-

where we have used the anticommutation relations {ya, 73} = 2n431. On the other hand, we have

Va8, 7] = Ya¥87Y" — Y Ya V8
= 7787 + Ya¥" V8 — 20" V8
= =2(1"78 — 1" g7a)-

Therefore, we have obtained the commutation relation above

[Uaﬁy’)’“] = —2@'(77”04’)% - nMB’Ya)~

d) As follows from the last paragraph, for rotation and boost transformations, the finite transformation
can be recovered by infinitesimal ones.
A rotation of an angle ¥ around the z-axis can be written as

1 0 0 0 00 0 O
0 cosd —sind O 0 0 =9 0
A=10 sinw coso o “tt|o 9 o of Thot
0 0 0 1 00 0 O
Since 9¥'2 = —9?! = ¢ are the only non-zero element of ¥, we only need to calculate
%
012 = )

o D) %) (o ) )]
Cr s-Co o)
- _% <[01602] [m?@])

_ g3 0 _
- (O 03>_ 23.

Then, thanks to the fact that 2" = 1 and %3""! = %3, we have

MO | .

S(A) = e39%s
SO
> (3) et () e

¥ 0,
:cos§1+isin523.

In general, for a rotation of an angle ¥ around the direction 72, we have 33 — n - 3, where
o 0
(7 2)

12
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that is 9 9
S(A) :COS§l+iSin§ﬁ~2.

A boost of rapidity w along the z-axis can be written as

coshw —sinhw 0 0 0 —w 0 0
—sinhw coshw 0 O —w 0 0 0
A= 0 0 1ol = 1+ 0 o o ol h.o.t.
0 0 0 1 0 0 00
Since w' = —w!% = w are the only non-zero element of w"¥, we only need to calculate
_ i _ i o B _tro. 1
oo = 500 ] = gmamslr®, 7] = =507 7]

6 ) 5)- (96 5)

Then, thanks to the fact that a?” = 1 and o2" ™! = oy, we have

S(A) = e 5w

I
[~]e
S|~

|
| €
N—
3

2

= nz:;) (231)! (_%)% 1+ m (‘%)Ml x

n=0

In general, for a boost of rapidity w along the direction n, we have a; — n - a;, that is

S(A) :coshgl—sinhgh-a.

2
e)
t/ t
A
/_\ /
. o P
o’ ' @) z

Let A be the boost which transforms the 4-momentum (mc, 0) to the 4-momentum (%, p). By using the
relations Ez = p2c? + m2c* and cosh? w - sinh? w = 1 we can define the rapidity w such that

E
coshw:fy:—p2 sinhw:ﬁyz_ﬁ,
me me

since the reference frame moves with velocity opposite to the particle. We will also need the following

13



3 Dirac equation and relativity

relations

E
coshWZ\/WZ m52+1:\/m,
9 2 2 2mc?
tanh © = sohe _ _ E_% == 2"
2 coshw + 1 41 E, +mc
By setting p4+ = p1 £ ips,
0 0 ps p-
1 . -
py+ —p3 0 0
Hence,
1 0 —P tanh § 71}77 tanh £
0 1 —P-tanh ¥ B2 tanh ¥
S(A) = cosh = : ’
2 | —2tanh¥ —E= tanh$ 1 0
p p
—% tanh ¢ £ tanh § 0 1
1 O cp3 cp—

Ep+mc? E,+mc?

P+ —cp3
/ Ep + m02 0 1 E,+mc? E,+mc?
= 2 cp3 cp—
2me E,+mc? Ep,+mc? 1 0

P+ —C¢p3 0 1
E,+mc? E,+mc?

The transformed wave function will be
v (2) = S(M)yg (A a).

Since w,(0) are the standard basis, we have that w,(p) is the r-th column of S(A):

1 0
E, +mc? 0 E, +mc? 1
w1 (p) = 2 2 cp3 ) WQ(p) = ) _ - 9
mce Ept+mc? 2me Ept+mc?
P+ —cCp3
E,+mc? Ep+mc?
cp3 cp—
E,+mc? E,+mc?
2 cpt 2 —Cp3
o) = B [ B | ) = (Bt e | i
2mc? 1 2mc? 0
0 1
On the other hand,
e—%eﬂnczt’ _ e—%eﬂ)"‘x; _ e—%erp“xu7

so that the final expression for the wave function is

W () = Ny w, (p)e” her"on,

14



4 Classical Field Theory and Noether’s theorem

Classical Field Theory and Second Quantization

4 Classical Field Theory and Noether’s theorem

a) Present a concise review of classical field theory: Lagrangian formalism, Euler-Lagrange equations,
Hamiltonian formalism, Hamilton equations, Poisson brackets. In particular, discuss the Poisson brackets
between the fields and their conjugate momenta.

b) In the previous review, you have used functional derivatives. Explain what they are (in the simplified
formulation, which is sufficient for this course), and describe their main properties.

c¢) Counsider the classical Klein-Gordon (KG) equation as an example of how classical field theory works
(repeat the main steps of (a)). Write down the prescription to quantize the KG field, according to the
canonical quantization scheme.

d) State and prove Noether’s theorem.

e) Apply Noether’s theorem to the case of an action invariant under translations and define the energy-
momentum tensor. What are the conserved quantities in this case? Repeat the same analysis in the case
of an action invariant under phase rotation (internal symmetry).

b) Let F[¢] be a functional of the variable ¢ = ¢(x): R* — R. Two remarkable examples are
Fly] = ¢(x)
Flvl = [ deglo(a).

In the second case F[¢] can be interpreted as the action, g as the Lagrangian density and v as the field.

We define gi([f% as the functional derivative of F[¢)] with respect to ¢ (z). We want the functional

derivative to satisfy the following properties.

e The functional derivative is a derivation, i.e. it is linear and satisfies the Leibniz rule.

S(aF[Y] + BGW]) _ SF[¥] +B5G[w]
() dip(x) ~ o1(x)
SFIIGIY] _ 6F[Y] 5G[Y]

op(x)  o(x)

e Normalization: for the functional ¥ — ¥(y),

W) .
o) =6 (z—y).

e Compatibility: for a functional of the form “composition” ¥ — g(¥(y)), the functional derivative is
essentially the usual partial derivative

39(W(y)) _ 99(¥(y)) sy

oS A WE A S

We define the variation of F[¢)] to be
OF
SF) = Flo+ ov] - Flv] = [ dogBouto)
We can now calculate, for example, the variation of F[¢] = [ dx g(¢)(z))

7101 = [ de (9(0(e) + 50(e) - g(6(w) = [ o 202

y=1(z)

15



4 Classical Field Theory and Noether’s theorem

so that
SF[Y] — 9g(y)

op(z) Oy ly=v(@)’
The definitions can be generalised to the multiple variables case when F[¢,,] is a functional of the variables
V= P (z): R* =+ R, m =1,..., M. For the functional

Fln, ., toad] = /dmg<w1<x>7...,wnf<x>>,

we find 94 )
g Ytis- -5 YMm
yeeey dzr o m\T ),
Sl ] = [ 3 SR 2
so that
Flgy, ¥l 09(ys- - - ym)
6Ym () OYm y=y(x)
a) Let us consider a Lagrangian _
L(t) = L¢n, dnl,
where ¢, = ¢p(x,t): R* = R are fields (n = 1,...,N). So L is a functional on the function variables

G, dn. The action is: f
S[n, én) =/ dt L(t).

t1

The variation of the action with respect to ¢, gi)n as functions of the space coordinates, is:
3 oL
ss= [ ar [ a ch —5% 55, 0
oL 0 0L
— [Tt [ @ < - ) 5o
/tl / 2 5o, " aisg, )

in the last line, we have integrated by parts with respect to time, using the fact that S = %6(;5” and
the boundary conditions d¢,,(x,t1) = d¢,(x,tz) = 0. For the last action principle, the variation of the
action along classical trajectories is zero. Since the variation of the fields is arbitrary, we have obtained

the Euler-Lagrange equations
oL 0 0L

3¢, Ot 5,
Let us suppose now that the Lagrangian can be written as the space integral of a Lagrangian density of
the form

- / 4z L (S (@, 1), Vo (. 1), du(@, 1))

Thus, for the Lagrangian

6L:/d3x6£
oL oL -
/ d*x Z( tawg OVt 8%5%)

\ or ) or ]
/ @ wan Vo Ve ) 00T 5 00n)

where we have integrated by parts with respect to the space coordinates, using the fact that 0V ¢,, = Vi,
and the boundary conditions d¢,(x,t) = 0 for  on the boundary of the integration volume. On the

other hand, by definition
oL .
djl‘ < 75 n) .
/ Z 6% Sn, i

16




4 Classical Field Theory and Noether’s theorem

Hence, we have obtained the functional derivatives for the Lagrangian in terms of the Lagrangian density
as

oL oL o oL SL _ oL
5¢n 8¢n 6V¢n ’ 6(,2571 a¢n .

The Euler-Lagrange equations become

0L o L DI _

0¢n  OVé, OLd,
which can be written in a covariant form as
oc o
Obn  "00,0n

We can see that the assumption on the form of the Lagrangian as an integral over space of a Lagrangian
density (which is a function of ¢, and 9,¢5,) is crucial for obtaining the covariant Euler-Lagrange equa-
tions.

For a general Lagrangian, let us introduce the conjugate momenta

oL

(X, t) = 5

and the Hamiltonian

H(t) = /d312ﬂn(m,t)q5n(m,t) — L(1).

Thus, we have
0 4L oL

T Biod, e

because of the Euler-Lagrange equations. If L can be expressed in terms of a Lagrangian density, we have
H(t) = /deH(¢n(w,t),V¢n(:c,t),wn(w,t),an(w,t)),
where H =" Tnby — L is called the Hamiltonian density. The variation of the Hamiltonian is
§H = /d% > (b + $nom,) — 6L
. . oL oL _.
= /dgzzn: (7n5¢n + @0y — Eéﬁbn - mé(bn)
= /d?’z Z(d.)néﬂ'n — T 0.
On the other hand, by definition,
oH o0H
_ 3
o= [ 8 (Gartont 5.).

which leads to the Hamiltonian system

é _ O0H
n T g,
- O0H
Tn = — 55

With the same procedure of above, we conclude that in the case of Hamiltonian density

(bn:(%'-l_v OH

D oV,
- OH OH
™= =54, TV awgn-

17



4 Classical Field Theory and Noether’s theorem

Given two functionals F, G of the functions ¢,,, m,, we can define the Poisson brackets to be

(£ Ges = [ d 2> (6% amf ) 5&:) 5¢i(<;m>> |

Then, if F' does not depend explicitly on time, we have

B(t) = {F, H}pg.

In fact,

Fit) = / > (65@ ot 5721(2)7*")

s SF 6H  6F  6H
= / ¢ ;(5%(;.:) Sra(@)  Smn(@) 5%(@)
— (F, H}pp.

We have also the fundamental Poisson brackets for the functionals ¢, — ¢, (x,t) and m, — m, (2, ):

3 0 (x,t) 6 (2, 1) ngn(:c,t) Ot (2, 1)
{onta b D = [ ' Z(ém T~ e Tt

_ / 2" S 6,100 (@ — @) 80P (2! — 2")
k

= O 0 (z — '),

5¢n (@, 1) dm(a',t)  Odn(,t) 5¢m (2, 1)
! _ 3.1 _ —
{0n(@. 1), ém(' 1)}pp = /d ! Zk: ( Spr(x") om(x”)  om(x”) O¢r(x”) v
and similarly {m,(z,t), 7, (2, t)}pg = 0. Furthermore, we can write the canonical system as
b = {¢n, H}p
’fl’n = {ﬂ'n, H}pB.

c¢) Let us consider the KGE (in natural units h = ¢ = 1)
(O+m?) ¢(z) = 0.
It can be derived by the least action principle, from the Lagrangian density
1
£(6,0,0) = 5 ("0 96 — m?6?)
The Euler-Lagrange equation % = GH% immediately leads to the KGE, since

oL oL

== _m? Tl =0
55 = 0 Ougp g =006 =00
Thus, we can define the conjugate momentum
oL .
A d))
o9

the Hamiltonian density

and the Hamiltonian

18



4 Classical Field Theory and Noether’s theorem

The canonical system can be written as

| oM OH  _

¢=G9r ~Vigva =T

- __ __OH OH  _ 2 2
which is equivalent to the KGE. The fundamental Poisson brackets are

, B u (00(x,t) om(x',t)  dp(ax,t) om(a’ 1)\ ,
19 £, n( )len _/ d'e <5¢>(m”) Su(@”)  on(x") 0o ) =P -a)

and similarly

{(;5(337 t)v ¢($/7 t)}PB = {ﬂ'(iL', t)? 7T(:E/7 t)}PB =0.

We quantize the field, following the prescription of canonical quantization
d)7 ™ — q;7 7Ar
{'7 '}'PB — _Z[a ']7
Thus, we obtain the equal-time commutation relations

[p(x,t), 7(x' )] =i 0P (x — )

b, 1), (' 1)] = [#(z, 1), 7 (', 1)] = 0.

=

The Hamiltonian will be 1
H= /d?’x 3 [7?2 + (Vo) + mQéQ}
and the canonical system '
¢ =—ilp, H
# = —i [, H].

Let us compute the commutators using the fundamental commutation relations (omitting the equal-time
dependence).

ba). B = [ 5 ([8e).7(@)] + @), (9'6(a)”] + m?[3(e). 3*(a)])

On the other hand,

that leads to
[p(x), H] =i / B 7(2') 03 (@ — a') = i 7t ().

In a similar way, from the commutators

[#(x), (V’q?)(a:’)f] = 2iV'(x) - V6P (& — ') = 20 V(') 6 (@ — ')
[7(@), &*(2")] = —2id(') 6P (w — &),

we can see that



4 Classical Field Theory and Noether’s theorem

Thus, the canonical system is formally as the KG one:

ASNY
Il
>

(x

V2g(x) —m’o().

~

-
1

d) A symmetry of a system is defined as a transformation of the coordinates and/or the fields such that
the action does not change:

ah — P
On(@) — ¢r,(2")
implies that
AS = [ d*a' L'(2) - / d*z L(z) =
30 b
for an arbitrary integration volume. Noether’s theorem can be expressed as follows: for every symmetry
of a system, there exists a conserved quantity. We prove the theorem for infinitesimal transformations:

ot — 2'* = 2t + Szt
Pn(2) — & (2") = P () + 30 ().

It is important to note that 6 and 9,, do not commute, since ¢ is a variation of both the coordinates and
the fields. Thus, it will be useful to define the modified variation

3¢ (x) = &, () — dn(),

which has the property to commute with the derivative: 8H(5~¢n (x) = 56,,% (). The two types of variation
are related at first order through

e )— (@) = dn(2)
On () = & (2) + 7, (2) — P (2)
= 5d>n( ) — 0, (x) dz* + h.o.t.
= 0¢p(x) — Opdn(x) 62" + h.o.t.
(here h.o.t. means “higher order terms”), where in the last step we have used the fact that at first order
Oudl, (z) 6t = O,¢n(x)dxt. Let us work out the conserved quantity, starting from the variation of

the action. Introducing the variation of the Lagrangian density and with the change of variable in the
integral, we find

/

58 = //d4x’(£(x)+5£(x)) f/zd‘lxﬁ(:z:)
det a—x

= [ e faet S2| (2o + o200 - [ (o

On the other hand, the Jacobian at the first order will be

1+ 80(5580 816$0 (92(S$0 (935$0
8.13/ _ (906581 1+ 3151’1 826581 83(;581 _ m
det % = 806.’E2 (916.@2 1+ 8251'2 635.’E2 =14+ 8M(5$ + h.O.t.,
0p0x? 01023 09023 14 85023

which is positive. Hence,

6Sz/d4x(1+6uéx“)( (z) + 0L(x /d%ﬁ
/d4x6£ /d4x£ ) 0,0zt
_ / a'e (5L(x) +0,L(x) 67 ) + / d*z L(z) 9,62"
3 >

- /Ed‘*x (Sﬁ(x) + 0, (E(x)5x“))~

20



4 Classical Field Theory and Noether’s theorem

Finally, we can express the modified variation of the Lagrangian density in terms of the variation of the
coordinates and the fields.

32@) = 55000+ S5 5006, 0)
= S 50() + 9 50n()
OL(x) OL(x) . [ OL(x)
:< a6, aa~¢n)5¢"( )+8 (68~¢>n5¢"< ))'

Here we have used the summation convention also for the index n. Thus, if the fields satisfy the Euler-
Lagrange equations, we obtain

35S = / diz aﬂ< o @)La(z)n( ) + L(a )5%)

/d4 " <g§j¢) (6 (2 )8V¢>n(:c)5x")+£(x)5x#>

= [t aﬂ(@@wi On(@) = (ggfzi@%(x)—%ﬁ(x)) 6:c").

Now, the variation of the action must be zero, since we are dealing with a symmetry. Thus the arbitrariness
of the volume ¥ implies that the integrand must be zero:

. , oL oL .
M, =0, Ju = 83*‘(231 S () — (38*‘(;7), Oy () — n,u,ﬁ(as)) ox”.

This is a continuity equation for the Noether charge j,,, which expresses a conservation law as we can see
by integrating over space and by using Gauss’ theorem:

djo d B)
— 3 \va 3 _ 3.
O*Ad x(at > at/ &z jo /avd“ I= 5 d ©J0-

Since the fields are assumed to fall off fast at infinity, we obtain the conservation of the Noether charge
Q= / d3z jo(z)

e) Let us consider a system invariant under (infinitesimal) translations

at — al 4 €.
Here the values e* are independent from each other. Thus, the variation of fields is zero and the Noether
current, having taken away the constant factors €”, becomes

oL

O = Sond,

8y¢n(m) - nuuﬁa

which is called the canonical energy-momentum tensor.
The four conserved quantities are expressed by the continuity equations 0#©,, = 0. The four con-
served quantities will be the energy and the momentum vectors

P, = /d3x Oo = /de <Z Ty Oy br — 770,,/3> .
Py = /d% (Zw,Lgi)n —c> —H

21
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5 Second quantization of the Schrédinger equation

is the Hamiltonian, while
P= —/d?’xZﬂnV(bn,
n

Let us consider now a system invariant under (infinitesimal) phase rotation
bn(@) — Gy(@) = S0 (@) + i€ 3 Aumbm(@)
m

Here the values \,,, are independent from each other. Thus, the variation of the coordinates is zero and
the Noether current, having split off the constant factor e, becomes

.IL (98“4& Z/\nm¢7n = Z 86“¢ nm(bmv

where in the last step we have made the sum over n explicit. Hence, the conserved Noether charge will
be
Q= i/d?’xan)\nm(pm.
m,n

5 Second quantization of the Schrédinger equation

a) Write the Lagrangian for the Schrodinger field. Using Euler-Lagrange equations, show that it gives
the Schrédinger equation. Determine the conjugate momentum and write the Hamiltonian. Write down
the Poisson brackets.

b) Following the prescription of canonical quantization, quantize the Schrodinger field. Write the Heisen-
berg equations for the field and its conjugate momentum, and show that they give again the Schrodinger
equation. What is the difference between the Schrodinger equation now derived, and that derived in (a)?

c) Cousider the expansion of the Schrodinger field
= Z ln, (t)un ()

where u,, () form a complete orthonormal set of the Hilbert space, while a,,(¢) are suitable time-dependent
operators. Starting from the equal-time commutation relations among the field and its conjugate mo-
mentum, derive the commutation relation between a,(t) and its adjoint.

d) In the particular case where u,(x) are the eigenstates of the stationary Schrodinger equation (with
a time-independent potential), show how the operators a,(t) and their adjoints evolve in time. In this
case, how do the commutation relations between a,, and their adjoints simplify?

e) Define the vacuum state and, starting from it, construct the Fock space. Explain its structure, and
the role of the operators a,, and their adjoints. Why is QFT is a many-body theory?

a) The Lagrangian density of the Schrodinger field is

.OR2
L(, 0", 0", 0M4*) = ilp™p — %Vi//* - Vip = V(z)p™.

We have that

oL . oL _ oL m_, .
oc or oL K,
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5 Second quantization of the Schrédinger equation

So the Euler-Lagrange equations
. h?
—V(2)y* —ip* + —V?* =0
2m
. B2
— V()Y +ilp + —V?h =0
2m

are the Schrédinger equation and its conjugate.
The canonical conjugate momenta are

77,1,:71':8—/%:%1#*
o

— oc

P 8¢*

Since £ has two independent dynamical variables, it could be expected that one of the conjugate momenta
is zero. Setting my, = 7, the Hamiltonian density will be

2
H=mp — L =ilap*y) — ihp* o + ;—mvw* SV 4+ V(x)*y
ﬁ2
" 2m

Then the Hamiltonian will be

H = /dst(x) = /d% (;;WJ* Vi + V(x)w*w>

V™ - Vi + V(z)yp*.

3 h? n? 2
= /d z <2mv (V) — %w*v Y+ V(w)w*w>

h2
= /d?’x Y (—v2 - V(x)) ¥,
2m
since the fields are assumed to vanish at the boundary.
The Poisson brackets are defined as:

{(z,t),m(x' 1) }pp = 0 (z — &)
{(z,t), (' ) }pp = {7(x, 1), 7(x, ) }ps = 0.

b) We quantize the Schrédinger field, following the rules for bosons:

Y, — b, T

R . O]

Thus, we obtain the equal-time commutation relations
[(w, 1), 7 (@, 1)] = ih 6 (x — 2')
[ (@, ), 9 (@', 6)] = [(e, 1), 7 (2, )] = 0.

The Heisenberg equations of motion are:

where the second one is the hermitian conjugate of the first one (up to a factor if). Thus, we need only
to compute [¢, H], where

a) = /d% O (@, 1) (-Zv? + V(x)) O, )

=Dg
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5 Second quantization of the Schrédinger equation

B ( (@, t) Do [V(, 1), (2, )] + [(, 1), T (', £)]| D (', t))
a2, 1), (@ 1] Dar (@1
P26 (@ — 2\ Dyrip(2', 1)
= Dyi)(, 1),
where we have used the fact that D, commutes with 1[)(:B, t). Thus, the Heisenberg equation becomes

Zh(/; = Dm{l[)(wat)v

which is formally the Schrédinger equation. The difference between the the one derived in (a) is that this
one involves operators, and therefore it is the Heisenberg equation.

c) Let us plug the expression for the Fourier coefficients of the Schrodinger field
an(t) = / Pz (z, tyu,(x)
into the commutation relations.
n(8). ()] = [ @, ) (1), D' ), ()
= / BPad [Pz, 1), P2, )] wl(t)ul, () = 0.

=0

Similarly, [a], (), al,(t)] = 0. Further,

n(0) 31,0 = [ o (e, (@), 6 (@ O (@)
— [ b 0.6 @ Ol @) (@)
_ / P dz 6O (@ — 'Y (@)um ()
_ / B (@) () = .

Here (and above) we have used the Heisenberg picture, where the operators evolve in time, while the
states, like u, (), do not depend on t.

d) Since the potential does not depend on time, we can speak of stationary eigenstates of the Schrodinger

differential operator. We insert the expansion of the Schrodinger field into the Heisenberg equation. On
the left-hand side, we find

Zﬁ¢ x, t Zlhan un

while on the right-hand side we have
t) = an(t)Daun(a)

Using the fact that Dyuy, () = Epu,(x), we find

Dai)(w, 1) = ZEan U (@
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5 Second quantization of the Schrédinger equation

since the functions u,, () form an orthonormal basis, the coefficients of the expansion must be the same:
ihn () = Enan(t),

so we have

and the adjoint equation _
af(t) = e*Fntal (0).

Let us set a,,(0) = a,, and a (0) = a). Then the commutation relations for a,, and their adjoints become
equivalent to those of G, (t) and af (). One implication is trivial, since @, = a,(0). For the second one,
we find

[0 (1), am (t)] = e~ F Py, e~ 7 Pmta,]

= 67%(E7L+Em)t[dn,dm] = 0

and similarly [a], (1), af, (1)] = 0, while
a0 (0), 85, (0)] = [e7# €750 tal

—+(En—Em)tis ot 1
= ¢l ) [an,a:fn] = Opm-

e) The operators a,, and their adjoint operators satisfy the harmonic oscillator algebra

The above algebra implies the existence of a vacuum state, defined by
an [0y =0 Vn.

This is a consequence of the fact that the ith number operators

commute among themselves and that, in a Hilbert space, the norm is positive definite. The Hilbert space,
called Fock space, is spanned by the basis of common eigenstates |n1 ns...). They are orthonormalized,
in the sense that

(nyny...[niny...) = Onint Opgny -

This ket represents a state with n; particles of energy F;.
The dz operators act on the vacuum as

Coym. (@) (@3)™2 -4 10) = [ny nay .Y

where Cy,n, ... is the normalization factor, while the a; operators act on |njng...) as

R DnL nlng...ni—l...> if n; >0
ai|n1n2...>:

where D,,, is a normalization factor. Furthermore, we can see that
H= / Pzl (2)Dath(z) = / &Pz al (t)u} (%) Doy (t)u; ()
1]
=> / &z B; 6l (t)aq () u) (x)ui(x) = > B ala; oy
ij ij

=> E;ala;
7
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6 Second quantization of the Schrédinger equation: Bose and Fermi statistics

Hence,

Thus, the operator @, can be seen as a creation operator for particles of energy F,,, while its adjoint is
an annihilation operator for the same energetic particles. In this sense, QFT can be seen as a many-body
theory.

6 Second quantization of the Schrodinger equation: Bose and Fermi statistics

a) Consider the second-quantized Schrodinger field and its decomposition
O(x,t) = Zdn(t)un(m),

where u, (x) are the eigenstates of the stationary Schrodinger equation. Write down the equal-time com-
mutation relations between the Schrédinger field and its conjugate, and the corresponding commutation
relations between the operators d, and their conjugate (note the absence of time-dependence here on a,;
explain why). Consider the normalized state of the Fock space

|n13n2a . > = C’nl,nz,...(a"]l:)nl (a‘iQ-)n2 st |0>

Explain what it represents, and the physical role of the operators @, and their adjoints. Determine the
normalization constant Cy,, n, ...

b) Consider the state

O @) P (@2) ... 0T (20)]0).

|e1, o, ... xn) =

Sk

Explain what it represents, and the physical role of the operator () and its adjoint. Compute the
explicit expression of

$M(@) = (x[ln),
gbg}m(azha&) = <331,£B2|11’L, 1m>7
gbgi),ng,...nk(mlvm%-~--73k) = <CL'1,.’L'2,...mk|1n1,1n2,...lnk>.

What is the significance of having chosen the commutation relations, to quantize the Schrédinger field?

c) Prove that rj)%kl)nznk (x1, T2, ... xyk) satisfies the many-particle Schrédinger equation.

d) Now write down the equal-time anti-commutation relations between the Schrodinger field and its con-
jugate, and the corresponding anticommutation relations between the operators a, and their conjugate.
Describe the structure of the Fock space in this case: start from the ground state and arrive at describing
the generic state. What is the significance of having chosen the anticommutation relations, to quantize
the Schrédinger field?

e) Compute the explicit expression of

¢£11)(33) = (x|ln),
¢%2,2n(331, x3) = (@1, z2|ln,1m),
¢£L]i),n2,...nk($17w2;...m]q) = (¢1,%a,...xx|1ng, Ing, ... 1ng),

also in the form of a Slater determinant. What can be said about the fact that the Schrédinger field can
be quantized either as a Bose field or as a Fermi field? What happens in a relativistic setting?
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6 Second quantization of the Schrédinger equation: Bose and Fermi statistics

a) The equal-time commutation relations for the Schrodinger field are

[QZJ(w, t), 7%(1/7 t)] = ih5(3)(:ﬂ - CBI)
[1/}(:1},25),1[}(:13/,15)] = [ﬁ'(ib,t),ﬁ'(:]?/,t)] =0,

since 7t = 7, = ifah’ and #yt = 0, while the commutation relations for a,(t) and af (t) are

the dependence of G, (t) on time is trivial:
dn(t) = e~ # B, (0).

Setting @,,(0) = d,, we obtain that the commutation relations for a,,(¢) and af () are equivalent to those
of @, and af,. The normalized states of the Fock space

Cnan'”(&J{)nl (&g)nz ce ‘0> = |n1 no .. > s

which actually form a basis of the Hilbert space, represent a system of ny particles of energy FEy, no
particles of energy Eb, etcetera. They are also eigenstates of the density number operators 7n; = G, a; .

The operators a; and their adjoints are interpreted as annihilation and creator operators respectively
of particles of energy F;. In fact,

|n1n2...ni—1...> ifn; >0

a; lning...) x
iz ) {0 if n; =0,

while

Let us evaluate the normalization factor in the first case. Taking the norm of @; |n1 na ...), we have
<n1n2|&1dl|n1n2> = <n1n2|ﬁl|n1n2> :ni<n1n2...|n1n2...> = Ny,

so that a; [ning...) = \/ng|n1...n; —1...). This is useful to evaluate the normalization factors Cy p.....
Indeed, taking the norm of |nins...), we find
1=(mng...|ning...) = Cpin,.. (nang...|(@H)" (@) - - |0)
= Chyny.. /N1 (N1 —1ng... |(di)”1_1(&£)"2 )
= Criny. /11! (0ng .. .| (@d)"2 (@)™ - - - |0)
= Cuyna...V/mal ! - {0[0)
= Chypo.V/malma! .

Thus, Cnl na... — (nll nal- - )7%

b) The state
1. . @) = %wm) (@) [0)

represents a system of n particles in the positions @y, ...,z, (in a fixed instant ¢). Thus, the operator
T (x) creates a particle in the position x, while its adjoint ¢)(x) destroys such a particle. This fact can
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6 Second quantization of the Schrédinger equation: Bose and Fermi statistics

be seen by using the commutation relation

(@) @1 @p) = (@) (1) - ' () [0)

1/3
= (59— 20) (@) @) [0) 40 (@) @) () ) )
m\mz &)

3\ 3\

1 . ) )
\f ; (x — ;) |x1. . . imy Tig1. . xp) + ﬁw(ml) . w’r(wn)w(m) |0).
Expanding t(z) in the basis of u, (z), it can be easily seen that ¢(z)]0) = 0, so that

R 1 &
(@) |ey. . .xp) = % E §® (x—x;) |T1.. . Tim1 Tig1. . . Tp) -
i=1

The usual QM wave functions can be obtained by projecting a k-particles state formed of one particle of

energy F, , one particle of energy FE,,,, etcetera onto a position state |x1...xx):
¢£L]€1)nk($1, cooyxp) = (2. xg|1ng ... Ing) .
We can see that
o) () = (0ld(z)al|0)
Z (0]l |0) wp, ()
Z nm (0]0) 4 (0@ 6m|0)) wm () = un ().

m

Similarly, if n # m,

¢$L2)7n(m1; m2)

%\

1 A At
<0|¢(w2) P(1)aal,| >:\ﬁ;<0|aja¢ala1n,\0>Ui(wl)Uj(wz)

JZ( (0131 |0) + 8o (0151, 10) ) (1 ) ()

Z( (01a 8} 1} 410) -+ (01a50410) + G (014510) + G s (1 ) ()
\/> =0 =0

\f Z( - azoj 0) +Gim i + Bin Sy ) (1)1t (2)
= ﬁ %: (5im5jn + (5m(5jm)ui(ac1)uj (x2) = % (Un(ﬁcl)um(mQ) + Um(xl)un(mQ))'

In the case n = m, that is |1n 1m) = |2n), we should consider the normalization factor Ca, = % t00, so
that

1 1
( - =
W01 22) = 5 (un(@1)un(2) + wn(@)un(22))
= Uup(x1)un(T2)
In general,
1
¢§’l’i)nk (mlv s amk) \/7% \/* Z una(l) © Ung gy (mk)
T oeBy
Uny (1) Uny (T2) o0 Un,y (k)
1 1 Ungy (wl) Uy (282) Tt Ung (xk)
= 771 Tl Vi perm . )
Un,y, (5131) Uy, (:132) T Uny (mk)
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6 Second quantization of the Schrédinger equation: Bose and Fermi statistics

which is a complete symmetric wave function. This means that such theory treats identical bosonic
particles and this is a consequence of having chosen the commutator to quantize the fields.

c) Let us show now that the wave function ¢§1’?nk (x1,..., Tk, t) satisfies the many-particle Schrodinger
equation.

O (zk, t)- - by, )] Ing. . . Ing)

Q’)‘Q_;

k
¢() k($17...,$k7t) T

ot

3\

k
Z (.t M...@(ml,m Ing...dng).

Since (2, t) satisfies the Schrodinger equation

0 - - K2 )
Zhalﬁ(wl,t) = Dml¢($l7t), Da:l = _7v + V( )
we have
k
gy O8] (@1 @) = < (O]'S Do)+ Dy bl b)) L. )
R
o 1 R R
= —=Da (O (w. ) - (1, 8)| 1. . Iny,)

since D, commutes with 1[)(.71:]», t) for j # 1.

d) We now quantize the Schrédinger field with the equal-time anticommutation relations:

(@), (@, )} = B (2,0), 0 (@', 1)} = 0
{7(z,t),7(x', 1)} =0

{61 (@, 1), 7@ 1)} = 0

{dla, ), 7@ 1)} = ihd® (@ - '),

since 7 = 1y = ihz/}T and 7+ = 0, while the anticommutation relations for a, and dIL are
{dn’dm} = {diuain} =0

An immediate consequence of the anticommutation relations is that the square of a creation and annihi-

lator operator is the zero operator: a2 = (a})? = 0. Thus, the number density operators are idempotent:

An idempotent operator has eigenvalues 0 or 1. The Fock space is generated by the eigenstates of the
number density operators |njns...), where ny = 0,1. Starting from the vacuum, which is the state
destroyed by every annihilator operator

we can create the states applying the creator operators

s ) = (@)™ (@) ---10),  my=0,1.

29



6 Second quantization of the Schrédinger equation: Bose and Fermi statistics

The creation operator creates a particle with energy Fj if the kth level is empty:

aj [ny ... 0 ...y = al (@)™ @h)"= - -10)

while it destroys states with the kth level already occupied

af [n1 ... 1. = (~)Z=i m@d)m@h)m - (af)? 10y = o.

Thus, the Pauli exclusion principle is satisfied. Hence, by using the anticommutation relation, we find
fermionic identical particles.

e)

Similarly,
¢n m($1,3}2) \[ <0|¢)(:B2) (xl)d;rldin|0>
=—= Z (0layasaf,al, |0) wi(@: Ju;(as).
\@ v J J

Since n # m, the only non-zero contribution to the sum is given by the terms with ¢ = n, j = m with
a plus sign or ¢ = m, j = n with a minus sign (otherwise, we can anticommute the operators and apply
the annihilator operators on the vacuum). Hence

i (un(ml)um(wQ) - Um(xl)“n(wQ))'

O (@1, m2) = 7

In general,
6B (@, @) = % S s g 1)t (20)
€S
Up, (1) Un, (T2) U, (Tk)
_ L det unQ(ml) un’z(mQ) un2(mk)
Vk! : : ’
Uny (T1) Uy (T2) - Uy (Th)

which is a complete antisymmetric wave function. This means that such theory treats identical fermionic
particles and this is a consequence of having chosen the anticommutator to quantize the fields.

The fact that the Schrodinger field can be quantized with either the Bose or Fermi rules is a consequence
of the non-relativistic framework of the equation. In a relativistic theory, the spin-statistics applies: only
one type of quantization rule can lead to a consistent theory, i.e. Bose rules for integer spin and Fermi
rules for half-integer spin.
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7 Quantization of the Klein-Gordon field

Quantum Field Theory: Klein-Gordon, Dirac and Maxwell fields

7 Quantization of the Klein-Gordon field

a) Write down the Lagrangian for the free Klein-Gordon field ¢(z), with all constants explicitly expressed.
Then set i = ¢ = 1 for the subsequent calculations. Compute the conjugate momentum m(x) and the
Hamiltonian density H(z). Quantize the field following the prescription of canonical quantization. Write
down the Heisenberg equations of motion for the field and its conjugate momentum and show that they
reproduce the Klein-Gordon equation.

b) Show that the quantized field qAS(x) can be decomposed in plane waves as follows:

(b(mﬂf) = /d?’p Np (dpei(P'w—wpt) + dl‘)e—i(pw—wpt)) )

Derive the corresponding expression for the conjugate field 7(z). Derive the commutation relations among
the operators a, and d; (and among themselves) and compute the explicit expression of the normalization
factor IV, in order for the commutation relations among a, and d;f, to be in the standard form.

c¢) Starting from the quantized Hamiltonian H expressed in terms of the field é(m) and its conjugate
#(z), and using the plane wave decomposition, derive the corresponding expression in terms of a, and
&L. Discuss the meaning of the expression thus derived, and why one has to introduce the normal ordering
prescription (explain what it consists of).

d) Repeat the same procedure of point (c¢), for the total momentum p. Why is it not necessary to use
the normal ordering in this case?

e) Introduce the vacuum state |0) and, starting from it, construct the Fock space for the quantized
Klein-Gordon field. Explain the role of the operators a, and &L.

a) A possible Lagrangian density for the neutral Klein-Gordon (KG) field is

m?2c?

2
2¢'

h2
L(x) = ?8%5 O —

Setting i = ¢ = 1, we can compute the conjugate momentum and the Hamiltonian density

oL
™= == ¢7
¢
1 1 1 1
H(z) =n° — §7r2 + §(V¢)2 + §m2¢2 =3 (7% + (V¢)* + m?¢?) .
Let us quantize the fields by using the commutation relations:
¢7 T — (ZAS7 7
{'7 '}PB — _Z[a ]
The Heisenberg equations will be

(2) = =i [$(x)
(2) = =i [#(x)

ST

®)]

JH
JH(8)],

-

where H is the total Hamiltonian
A N 1 ~ A
H= /dﬁ%@) =5 /d% (fr2 +(V)? +m2¢2> .
Then the commutators will be (omitting the equal-time dependence)

(), ] = 5 [ & ([b(@). 7 (@) + (), (V'9(a)’) + m?[3(e), (@)
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7 Quantization of the Klein-Gordon field

Using the fundamental commutation relations, we find

which lead to

In a similar way, from the commutators
[#(x), #*(x')] =0,
[#(x), (V'd(a'))?] = —2i V'd(a) - V6@ (x — a') = 2i V2h(x') 6P (@ — o),
[#(2), *(@')] = —2i p(a') 6 ( — ),

we can see that

[#(x), H] = i / &3 (v%(m’) - m2¢(a:')) 5z — ') =i (v?é(m) - m%(m)) .

Thus, the equations of motion become:

which are equivalent to the KGE .
(O+m?) o(z) =

b) Let us expand the solution in the basis of plane waves

= / d3p N, dp(t)e"’p'm,

where N, is a (real) normalization factor which is supposed to depends only on the module of p (we will
see that this assumption is not restrictive). Since ¢ satisfies the KGE, we find

0= [ @0, (in()e™® ~ (D) ap()e™® + mPay (1))
_ / o N, (iplt) + PPap(t) + m2ap(t)) P,
which leads to

A= w24 — /2 2
ap = —W, ap Wp = V/p°+m=.

The general solution of the equation is

Since the classical field ¢ is real, then the quantized one is hermitian: b= <£T. With this fact, we find

/d3p <CL(1 —iwpt + d;Z)eiwpt) eip-m

_ (:L‘) /dBpN ((@S))Teiwpt + (&;Q)ﬂe—iwpt) e—z’p-:c7
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7 Quantization of the Klein-Gordon field

so that &g) = (&(722,)T. Setting dl([,l) = ap and with the replacement p — —p in the second integral for ng57
we find

gZA)(:v) = /dgpr <&L eilwpt—p-z) | ap ei(wptp.m))
Since T = gg, we find
7(x) = i/d3p N, w, <dIJ O ei(wptp~cc)).

In order to obtain the commutation relation between the operators a, and their adjoints it is useful to
isolate the operators using some Fourier transforms

N, (6t ert 1+ 4 it _ [ @ b(z) e ™
plape G_pe = | @rp p(x)e

. At iwpt A —iwpt Px ip-@
iNp wyp (ape —G_pe ) = Wﬂ(m) P

here we have replaced p — —p in the a, terms of the gZA)(x) and 7(z) integrals and used the fact that

Wy, = W_p. So that
’ ’ AT iwpt P n ﬁ.(‘r) ip-x
2N, a, "t = o) ((;S(x) s ) ere,

We can finally isolate &L and by dagging it we can obtain a,
1 dr /- #r(x) ;
ol = — o —i(wpt—p-x)
“» T 9N, / (2m)3 (“b(x) t ) ¢

N 1 Br ﬁ-(x) i(wpt—p-x)
ap_QNp/(27r)3((x)_iwp)e '

We can now compute the commutators, i.e.

1 d? d? . - ‘ , ,
) = 7 / (27:)63 / (2;)/3 ([‘?(fﬁ)vﬂﬁ(y)} el wrt=P®) g=ilwyt=P"y) 4
p-'p

_|_

o 7[7%($)7 é(y)] ei(wpt—p.m) e—i(wp/t_p'.y) n

1

Wp Wy

>

_|_

(), ()] Hrt ) iyt p ),

using the equal-time commutation relations we find

1 B>z 1 . ) ,
[d ’dT,] [ — / - ( el(wpt_p‘m) e—l(wp/t—p m) _|_

Pop 4Npr/ (27T)6 wp/

+ i ei(wpt*p-m) efi(wp/tfp'-w)>
Wp

1 1 ( 1 1 3 ,
B S S S PR
AN, Ny (2m)% N wp  wy ( )

1 1 1

- 75(3) o .1
N2 (2m)° 2w, (p=p)

(The equalities are such if integrated over momentum space.) Clearly a wise choice for the normalization
factor N, is

—_
—




7 Quantization of the Klein-Gordon field

this leads to the result
lap, al,] = 6@ (p — p').
With analogous calculation we can compute i.e. [Gp,dp]

1 e By (oo , ,
G, ] = AN, N, / (27:)63/ (2733 ([¢(x)7¢(y)] e/ert=P®) il t=py)

1. 4 | ,
[B(x), 7 (y)] e'rt=P®) gilwpi=p ) 4

— —[#(x), d(y)] e wrt—P®) gilwpt=p"y) 4

- Wp Wy [7}(1')7 ﬁ(y)] ei(wptip'm) ei(wp/tfp'-y))

)

using the equal-time commutation relations we find

- 1 Er (1 eipa) i)
[ap7ap/] = 4Npr/ / (27T)6 (_@6 e —+
+ i ei(wptfp-w) ei(wp/tfp'-m))

Wp
1 1 ( 1 1

— ) el 5 (p 4 pl) =,
Wp Wp/

_P
I
=

for symmetry we have [a,, Ay

We have finally found the usual harmonic oscillator algebra

lap, al,] = 6 (p — p')
(ap, apr] = [d;,&;,] = 0.
c¢) Since
V=i / @*pp(apup — auy). Uy = NyeitPe—et)
the Hamiltonian will be
H= %/d?’x (fr2 +(V§)? + m2¢32)

= % /d?’x d®pd®p’ (—wpwp/ (&L up(z) — ap u,,(a:)) (&L, Uny (T) — Gpr Uy (x))
—p P (ah (@) — ap up() ) (f, up (@) = ity v (1))
+m? (&L Uy () + ap up(x)> (&L/ Uy () + Gy up/(x)>> .
The integration over space can be done thanks to the relations

/de up(2)upy (7) =

1 / d’z e—ilp—p)z
2\ /wpwy ) (2m)3
1

_ —i(wp—w,r)t 6(3) o
SN v (p—p)
1

:igya@*P%
= zi,pe‘mpt 69 (p +p'),
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7 Quantization of the Klein-Gordon field

and those for their adjoints. We get:

1
—p? S (—d;dipe%w”t dpd;', — QpGp — GpG_pe 2““Pt)
p
1
+m? o (afal e + apal, + ahip + apa_pe 2%‘5))
p
1 1
B 5/ P2y <( wp + 97+ m?)(ahal et ! 4 api-pe ")
p

The Hamiltonian is positive definite (as it can be directly seen from the first expression), but the ex-
pectation value on every state is infinite. In fact the contribution to the energy is given by w, for every
particle of momentum p via the operators n, plus the zero-point energy, which is independent of the
occupation number. This becomes even more obvious if we discretise the momentum space:

A R 1
H = Z"Jm (npi + 2)
Di

and the zero-point energy Ey = % Zpi wp, is divergent.

Since the problem arises from the terms of the form &pfﬁ we ‘solve’ the problem by forcing them by hand

D’
to become d;f,dp without picking up the divergent contribution. We do this by introducing the normal
ordering. For every operator we separate the contribution given by the positive frequencies e~*r* and
the negative frequencies e™r?

a(z) =a (@) +a (@),  Pla) =M (@) + B (@)
and define the normal ordered product to be
:af:=aM B 4 a3 £ g)aH) 4 a2 3=
where the sign is + if the fields are bosonic and — if the fields are fermionic. In this way the negative
frequencies contributions are forced to stay on the left. With this prescription, the Hamiltonian becomes

(H:= %/d?’x:(7%2+(ng3)2+m2<2>2)::/d3p Wp Tip,

which is the previous Hamiltonian with the zero-point energy removed.

d) Since the Lagrangian density of the KG field is invariant under translations, we have the conserved
classical 4-momentum

Pa= [ @ (r@.0(0) - muLla)).
In particular, we can define the momentum operator to be the symmetrized version of P:

P= —%/d3x(ﬁvé+véﬁ).

IThe equalities have to be intended as such if integrated over momentum space.
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7 Quantization of the Klein-Gordon field

In this way, P is hermitian. Expanding the fields in plane waves, we find
N 1 R A
P = —3 /d?’x d3p d® /(wpp ( L up(z) — ap up(x)) (a;r, Uy (T) — Gpr Uy (w))
wpq)(dLu;(z)dpup(x)>(d2/u;(z)&p/up(z)>>

The vacuum momentum does not give any problem, since the integral is zero for symmetry reasons
P:/ﬁm%.
Hence, in this particular case the normal ordering prescription does not make any difference:
:P:=P.

This is a consequence of the isotropy of space. The same argument does not apply to the energy, since it
is always positive: w, > 0. It can be easily seen that the momentum operator is still a conserved quantity,

since [15, H ] = 0 by applying the commutation relations among the creation and annihilation operators.

e) Since we have an harmonic oscillator algebra, we can introduce the vacuum, which is destroyed by
every annihilator operator

ap |0) = 0.
Then we can construct the eigenstates |n1pq nops .. .) of the number density operators 7, applying the

creator operators to the vacuum:

‘nlpl n2p2. . > = OTL1P1 nzpz-u(di)l)nl (dl')2)n2 T ‘0> )

where C),, p, nyp,... is @ normalization factor. The number density operators count particles with definite
momentum

flm |n1P1 na2ps .. > =N, |n1P1 n2p2.. >

while d;f,i and ap, create and destroy respectively a particle with definite 4-momentum (wp,, p;)

{Dnlpl(nz—l)pl> lfTLZ Z 1

QAp, |N1P1 N2P2 - . D=

Here C and D are normalization factors. We can say that such particles have mass m and definite (rela-
tivistic) momentum, since the states are eigenstates of the 4-momentum operators too (the 4-momentum
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8 Quantization of the charged Klein-Gordon field

operator : P,: commutes with 7). In fact
tH: [nypynaps...) = /dgpwp fip [n1p1 M2P2. . )

= /dgpwp an 5(3)(1’ —pi) [n1p1napa. . )

= (pri nz) [nip1 naps. . .)

K2

and similarly

p lnipinaps . ..) = <sz nz) [nip1naps. ..) .

7

8 Quantization of the charged Klein-Gordon field

a) Write down the Lagrangian for the free charged Klein-Gordon field ¢(z), with all constants explicitly
expressed. Then set A = ¢ = 1 for the subsequent calculations. Compute the conjugate momenta and the
Hamiltonian density H(z). Quantize the field following the prescription of canonical quantization. Write
down the Heisenberg equations of motion for the fields and their conjugate momenta and show that they
reproduce the Klein-Gordon equation.

b) Show that the quantized field (;B(x) can be decomposed in plane waves as follows:

d(x,t) = /d3p N, (dpei(P~w—Wpt) + g;f)e—i(pa:—wpt)) )

Derive the corresponding expression for the conjugate field 7 (z). Derive the commutation relations among
the operators ap, d;, bp and b;[) and compute the explicit expression of the normalization factor IV, in
order for these commutation relations to be in the standard form.

c) Starting from the quantized Hamiltonian H expressed in terms of the fields ¢(z), #(x) and their
adjoints, and using the plane wave decomposition, derive the corresponding expression in terms of Gy,
&L, lA)p and Z)L Discuss the meaning of the expression thus derived, and why one has to introduce the
normal ordering prescription (explain what it consists of).

d) Repeat the same procedure of point (c), for the total momentum p. Why is it not necessary to use
the normal ordering in this case?

e) Discuss the gauge symmetry of the Lagrangian and derive the conserved charge @ its leads to. Write it
in terms of the fields ¢(z), m(x) and their complex conjugates. From that, derive the quantized expression
of @ in terms of Gy, &L, bp and b;,. Comment on the physical meaning of the operators ay, d;, bp and bL.

a) The Lagrangian density for the charged Klein-Gordon (KG) field is
L(x) = h? 0"¢* Opdp — m>c*¢* ¢.

We set i = ¢ = 1. The conjugate momenta are

oL .
W——aq.s—qb
. oL
T —a(b*—d)

and the Hamiltonian density

H(z) =27*m — 71 + Vo* - Vo +m?¢*¢p = m°1 + Vo™ - Vo + m?¢* 6.
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8 Quantization of the charged Klein-Gordon field

Let us quantize the fields using the commutation relations.
¢7 (b*,ﬂ',ﬂ'* — (Z)a QZ)T77%aﬁ-T
{'7 '}PB — _7’[7 ]

The Heisenberg equations will be

() = —i[d(x), H(t)]
¢l (z) = =i [¢f(2), H(t)]
t(x) = —i[it(x), H(t)]

where H is the total Hamiltonian:
= /d3sc7:[(x) - /d% (frffr L VIVt m%w) .
Note that H is hermitian. The commutators become (omitting the equal-time dependence)
b)) = [ ' (18(a), 7 (@)l + [bl@). V6! @) Vo)) + m?[6(@). 6 (@)d()]).
Using the fundamental commutation relations, we find
(@), 7 (") (2')] = #1()[b(x), 7 (2)] + [p(a), 71 (a)] 7 (') = i 7! (') 6P (z - @)
[0(x), V6! (&) V'o(a")] = V'¢! (2') (V' [d(x), d(2")]) + (V' [0(), ' (x)]) V() = 0
(@), 6! (2)d(@")] = ¢! () [b(), b(=")] + [(x), d' ()] (=) = 0.
Using the previous relations, we obtain
[0(), 1] = / B i ()6 (@ — @) = iat ().
In a similar way, from the commutators
[7 (), & ()7 (2")] =0
[#(x), VoI () V'd(2')] = —i V'l (') - V6O (x — &) =i V"¢l (z) 6 (z — 2),?
[#(x), ¢' (@) p(a))] = =i d' (@) 6 (x — )
we can see that
7 (), H] = / d3a’ i (V%T(w') - m%T(m')) 5 (z —a') =i (v%f(x) - m%f(m)) .
Thus, taking the adjoint equations, we obtain
b(a) = #1(x)
ot (z) = #(x)
#(x) = V26! (z) — m?t ()
#l(x) = V29(x) — m?(x),

2The last equality is meaningful only under integration over space.

38



8 Quantization of the charged Klein-Gordon field

which is equivalent to the KGE and its adjoint
(O+m?) b(z) =
(O+m?) ot (z) =

b) Let us expand the solution in the basis of plane waves
d(z) = /dgpr ap(t)e’P®,

where N, is a (real) normalization factor, which depends only on the modulus of p (we will see that this
assumption is not restrictive). Since ¢ satisfies the KGE, we find

0= /d3p N, (ép(t)eip-w _ (ip)zdp( )eP® 4 m ap(t)eip'w)
= / d*p Ny (ép(t) + pPap(t) + m2ap(t)) e

which leads to )
ap = —wf, ap wp = /P2 +m2.

The general solution of the equation is

dp(t) =a l)e—iu}pt T d;Q)eiwpt.

(
D
With the same expansion for QBT

() = /d3p N, by (t)eP?,

we find . . 4 R 4
bp(t) — b;l)e—zwpt + b§)2)ezwpt.
Then we find

(6(@)" = /d3pN <( ()feiort 4 (dg))Tei‘*’pt)eip-m

= /d3pr <Z, —iwpt +b(2) iwp > ¢T( ),

so that Bﬁ}’ = (d(,Qz,)T and IA);Z) (a 1))T Setting ayp o) = p, l;,(gl) = b, and with a substitution p — —p in
the second integral of the expansion, we find

d(x) = /dgpN (ape Hwpt=pa) | l;;f, ei(“’l’t_p'm))
¢l (x) = /d3pN (b e~ ert=p®) 4 gf l(%t—l"‘”).
Since 7 = (ng and 7 = <Z, we find
#(x) = —i/dSp N, w, (I;p e~ iwpt—p@) _ &L ei(wpt—p‘w))
#l(z) = —i/d?’p Ny wp (&p e trt=p®) _ bl ei(wpt—pw))

In order to obtain the commutation relation between the operators ap, l;p and their adjoints it is useful
to isolate the operators using some Fourier transforms

N BT twpt ~ —iwpt ) _ djx n ip-x
p pe +a—Pe - (27T)3 ¢(J§)6

_ . . Bz .
At iwpt —iwpt ) _ T ip-x
Np (ap e +bpe ) / (o) o'(z)e
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8 Quantization of the charged Klein-Gordon field

iNp wy (d;r, et — b, e_i“’l’t) = / o) 7(z) e

iNp wy (5; ert —a_, e_i“?’t) = / o) #1(z) eP®,

here we have replaced p — —p in the a, and Bp terms of the (z), ¢! (x),#(x) and #'(z) integrals and
used the fact that w, = w_,. So that

~ iw & " T ip-x
2N, g, €' = / (2753 (¢ + igi)) e

o d3 . - ,
o= 5 G 1) e

We can finally isolate af, , b}, and by dagging it we can obtain a;, and by,

1 dr /- 7 (x) -
At + —i(wpt—p-x)
“»=oN, | (2n)3 (¢ @+ )e
1 dr /- 7t (x)
i — _ i(wpt—p-x)
“» 79N, | (2r)3 (¢<x) iwp )e
oy 1 Bz /- #t(x)
= —i(wpt—p-x)
P~ 3N, | (@) ( @+ = )e
- 1 dr /- ()
b — T _ Z(wptfp m)
P~ 9N, | (@) ( @) = S, )e

We can now compute the commutators, i.e.

1 dBI' dB ~ A : . ’
Aoty Y t i(wpt—p-x) ,—i(wyt—p'-y)
[a’Paap’] 4Npr//(27T)3/(27T)3 <[¢(I),¢ (y)]e € +
1

[¢(l’), ﬁ(y)] ei(wptfp'”") efi(wp,tfp’.y) I

+ -
Ty
1 N . . ’
= L @), ¢ ()] eilert—p @) emilopi=pw) 4
iwp
Loy

Wp W/ (.’IJ), ﬁ—(y)] ei(“’pt—pfc) e_i(“’p’t—P,‘y)) )

+

using the equal-time commutation relations we find

1 dgfﬂ 1 : . ’
PP S ( i(wpt—p-x) ,—i(w, t—p’-x)
lan ] = TN N / (2m)6 \w, ¢ +
+ i ei(wpt—p‘w) e—i(wp/t—p'w))
Wp

1 1 1 1
- (L D)ooy
AN, N, (2m)3 (wp wp/> )
1 1 1
T DAl ]
N2 (2m)3 2wy

(The equalities are such if integrated over momentum space.) Clearly a wise choice for the normalization

factor N, is

this leads to the result



8 Quantization of the charged Klein-Gordon field

For symmetry we have [E l; ] = 6(3)(p —p).

We can now compute i.e. [ap, . So that

ip bpr] = AN, N / / (W ), ¢ (y)] eilwrt =P gileyt=pty)

[¢>(a:), )] ¢@rt—P) (il t=py) |

prl

1 . ‘ } /

- o @), G )] P et
1 ~f

(A.)p wp/

(x), 7 (y)] e'lrt=P=) ei(wp’t—P"y)) )
using the equal-time commutation relations we find

[dp, l;p IN, N / 6i(wpt*p~w) ei(wp/tfp/-m) +

. el(wpt p-z) ei(wp/t—p’.m))

Wp
1 1 ( 1 1 ) (wptw )t 5(3
: - ) el 8 (4 p) < 0,
AN,Ny (27)3 \wp  wy
for symmetry we have [dp,lA)L,] = [A;, Ap/] = [d;,é;,] = 0. With analogous calculation we can find
[dpa&p/] = [dia’d;/] = [bpabp/] = [bi,,b;,] =0.

c) Starting from

the Hamiltonian will be
H= /d% (717 + V6! - Vo +m?310)
= /d?’x d>p dp’ <—wpwp/ (&p/ up () — BL, Uny (ac)) (ép up () — d; uZ(w))
—p- P (bpup(@) = af (@) ) (g v (2) = By iy ()
+m? (l;p up(x) + dL u;(x)) (dpr Up () + I;L, Uy (x))) .
The integration over space can be done by using the relations

/de up(2)upy (7) =

i(p—p')x

s | oy

= mi(wp—wy)t 5(3)
2, /Wpwpy € (P p)
1
= — 5@ (p—p
20, (p—p),
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8 Quantization of the charged Klein-Gordon field

1 d’x . ’
d3 , — —i(p+p')-x
[ sty @) = g [ e
1 .
— = —i(wptwy)t 6(3) /
N (p+p)
L oiyt
- = iwpt 6(3) /
20y (p+p),

(The equalities are meaningful under integration over momentum space.) and their adjoints. We then
have (using the Dirac deltas to kill one of the integrals)

A 1 ~ . Ay o )
H= / d3p<—w§ 5 (bp—pe™2" — byl — by + Al ")
p
1 . , .
— 1?5 (bpipe 2t — by}, — by — a

2wy,

1 o
+m? o (bpape ™" + byb
w

Using the dispersion relation, we find
= / d*pwy (ahap +bpb,)
Using the commutation relation, we obtain
= / d*pwy (ahap + by +32(0)).

The Hamiltonian is positive definite (as it can be seen from the first expression), but the expectation
value on every state is infinite. In fact the contribution to the energy is given by w, for every type-a
and type-b of particle of momentum p via the operators n, = &L&p and np = l;;l;,, respectively and
by the zero-point energy, which is independent of the occupation number. This can be clearly seen by
discretising the momentum space:

FI = pri (ﬁm + ﬁpi + 1)
Di
and the zero-point energy Ey = Zm wp, is divergent.

The problem can be solved by introducing the normal ordering. Since the difficulty is originated by the
terms d,,d; and bpb; in the various products, for every operator we separate the contribution given by

the positive frequencies e~%r* and the negative frequencies e™r’
a(z) = a (@) +a (@), Bla) =P (@) + 5 (2)
and define the normal ordered product to be
(6= 6B £ aOFH £ O 1 6P,

where the sign is + if the fields are bosonic and — if the fields are fermionic. Note that the negative
frequencies contributions are moved to the left by hand. With this prescription, the Hamiltonian becomes

tH:= /d?’p wp (d;dp + %BL) t= /d?’p Wp (d;dp + B;Bp) ,
that is the previous Hamiltonian with the zero-point energy removed.

42



8 Quantization of the charged Klein-Gordon field

d) Since the Lagrangian density of the charged KG field is invariant under translations, we have the
conserved classical 4-momentum

Pa= [ @o(r@)0,0) + 7 (2)0,6"(2) ~ mouLl)).

In particular, we can define the momentum operator to be the symmetrized version of P:

:—f/d?’ (#Vo+ 7T Voh) —f/d?’ (Vor + Voial).

=T =Tt

In this way, P is hermitian. Expanding the fields in plane waves, we find

a 1 7 ~ * ~ 7 *
T = ) / dxd3pd’y <wpp’ (bp up(x) — al, up(:v)) (ap/ up () — bL, Uny (x))

<
E
2
.d\
E

/\
5

1 . A A
=3 / d3pwpp2 p( bpa_pe*mﬂ bpbl, — abap — abbl e?rt
— apb_pe2irt AP&L - ELBP - d;f,btpemwpt)

1 7 A P —2iw AT 7 ~t 7 iw
+2 /d?’pp ((bpa—p + apb_p)e 2 r" + (aLpr + a;;bip)eZZ vt).

Taking the adjoint and summing the two terms, we find

| L L fpn A a
P=g / d*pp (afap + apaf, + blbp + bpb)),

since the mixed terms cancelled due to symmetry reasons. In this case, the vacuum momentum does not
give any problem, since the integral is zero, again for symmetry reasons. Thus we obtain

P:/d%p(ﬁ,;—i—ﬁ,,),

that is, the contribution to the total momentum is given by p for every type-a and type-b of particle via
the operators fi, and 7y, respectively. In this particular case the normal ordering prescription does not

make any difference: R .
:P:=P.

This is a consequence of space isotropy. The same argument does not apply to the energy, since it is
always positive: w, > 0. It can be easily seen that the momentum operator is still a conserved quantity,
since [P, H] = 0 by applying the commutation relations among the creation and annihilation operators.

e) We can see that the Lagrangian density of the charged KG field is invariant under internal phase
rotations:

¢_>¢/:eicx

(Z)* — (ZS/* — efiong*.
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8 Quantization of the charged Klein-Gordon field

Thanks to Noether’s theorem, we know that there is conserved charge

Q 0.8 /dngOa

. oc 56 + oL
= 90ng"" " dong
Since §¢ = ia ¢ and d¢* = —ia ¢*, we find

where

5o*.

Q- —z‘e/d?’:c (6 — 16",

where e is a real constant. The corresponding operator is the symmetrized version of )

0= _%e/d% (fu{)—frfgzﬁ) —%Z/d% (ésfr—gz}w).

=4 —qt

Expanding the fields in plane waves, we find
. ie (3 . . 2k
i=-5 / >z d>p d>p’ (—zwp (bpup(x) — a;f,up(x)> (ap/up/ (z) + b;,up, (x))
+ iw, (&pup(ac) - lal,u;(x)) (Ep,up, (x) + d;,u;‘,,(m))>

= g/d?’zd?’pd?’p’wp( pap/up(

+a ap/up(:v)upf (x) + Tl;

Taking the adjoint and summing the two terms, we find
Q— /dp ap—l—apa IA)ZB 55;),

since the mixed terms cancelled due to symmetry reasons. Now, applying the commutation relation, we
find that the vacuum charge contains two infinite contributions. We can remove this problem with the

normal ordering prescription:
e 3
1Q:= / d (np - np)

It can be easily seen that the charge operator is still a conserved quantity, since [Q, H ] =0, by applying
the commutation relations among the creation and annihilation operators.

Since we have an harmonic oscillator algebra, we can construct a Fock space with the eigenstates of the
number operators f, and ﬁp. Then, d;, and ap, represent a creation and annihilation operator respectively

for particle with definite momentum p and charge e, while IA)I, and ISP represent a creation and annihilation
operator respectively for particle with the same momentum p, but opposite charge —e. The first are called
particles, the second anti-aprticles.
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9 Commutation relations, propagators, microcausality and spin-statistics theorem

9 Commutation relations, propagators, microcausality and spin-statistics the-
orem

a) Consider the free charged Klein-Gordon field ¢(z), and the commutation relations [¢(z), ' (y)] =

iA(z — y). Show that
d’*p sinp(z —y)
Mo == [ o

and that A(z —y) =0 for (z —y)? < 0.

b) Starting from the previous result, state what the microcausality condition is, and prove it for the
present case.

c) State the spin-statistics theorem, and prove it for the present case.

d) Consider the Feynman propagator iAp(x —y) = (0|T(d(2)$! (1))|0), and prove that it can be written

as fOHOWS: "
d D —ip(x— 1
AF(J?—:U)_—/WG p( y)m

e) What is the difference between a commutation function and a propagation function?

a) Using the expansion

(b by ()i (9) + (Bl s () ()
— i [ @ upla)uy) ~ up(e)up(y)
3

= _@'/ ﬂi (e—ip(;c—y) . eip(x_y))
(27)3 2w,

_ / (d3p sinp(z — y)

2m)3 wp ’

where we have used the commutation relations
lap, al] = [bp, bl = 6@ (p — p'),
lap, bpr] = [af,, BF,] = 0.

Let us write now the function in an explicit covariant form. Setting z = x — y, we will have

3
Az) = _Z/dipi (e*ipz — ei;DZ)

)7 20,
=i [ ) (50— ) 4 50 ) )
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9 Commutation relations, propagators, microcausality and spin-statistics theorem

where

o, )+l if p¥ >0
€(p)— 1 . 0
-1 if p¥ <.

Using the fact that
1
(7)) = - (36° — ) 4 80 +.)).

= E
we obtain
. d4 —ipz
AG) = =i [ b ) 6(6P) — e
. d4 —ipz

where we have used the dispersion relation wg = |p|?> + m?. Now the expression is manifestly invariant
under proper Lorentz transformations. In fact, if

z— 2 = Az A a orthochronous Lorentz transformation,

we can perform the same change of variable in the integral (p — p’ = Ap). Then €(p°) = €(p'?) since A

is orthochronous, p? = p?, pz = p’z’ and finally the measure does not change, since |det A| = 1.

Now,
d3p sinp-z
A(0,z) = — =0

since the integrand is odd. Thus, if (z —y)? < 0, we can find a proper Lorentz transformation x —y — 2
with 20 = 0, 4.e. in the new frame of reference the two events are simultaneous. Then, thanks to Lorentz
invariance,

Az —y) = A(0,z) = 0.

In addition, with the covariant expression for A, we can see that it is a Green function for the Klein-
Gordon (KG) equation with no source. In fact,

d*p
(2m)3

(O, +m*)A(x —y) = —i/ e(@°) 8 (p* —m?) (—p? + m?) e @Y =,

b) Every observable can be written as

Thus, we have

[O(x), 0(y)] = O(x)0(y) [ ()$(x), &' () (y)]

So if (x — y)? < 0, we have that [O(z), O(y)] = 0, i.e. measurements of O in points with a space-like
separation do not interfere with each other. This is the so-called microcausality principle.

¢) The spin-statistics theorem states that, in the assumptions of
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9 Commutation relations, propagators, microcausality and spin-statistics theorem

e Lorentz invariance,
e Microcausality
e Positive-definite energy,

then every boson has integer spin, while every fermion has semi-integer spin. In our case, quantizing the
KG field by following the Fermi rules contradicts the microcausality principle. In fact, the propagator
becomes

2 7 3p cosp(x —

since in the previous calculations
{I;P/a ZA)L} - {dp’a &L} = 6(3) (p - p/)'

In this case the integrand of A;(0, z) is not an odd function. In particular, A;(0, z) # 0. Then, using
the relation

we obtain

= 0@)0(y) (181(x = ) (@)dly) — idi(y - 2)d1 (1)(x))
= 0@)0(y) (¢ (@)d(w) — $(W)d(x)) idi(w — ),

which in general is not zero for space-like separated points. Thus, microcausality is violated, which means
that the KG field, which describes 0-spin particles, cannot describe fermions.

d) The Feynman propagator is defined as
Ap(e —y) = =i (0T ($(2)é' ) [0).
where T'(-) is the time-ordered product®
T (3(@)6' (1)) = 0(® — y)d(@)d! (1) + O° —2°)' (1)d(a).

Let us write the Feynman propagator in manifestly covariant form. Plugging the expansion of (;AS into
the definition of A, we obtain, for 2% > 49,

iAp(z—y) = /d3p d3p/<0|dpl;p’ up (@) up (y) + &P&L’ Up ()t (y)

bhbpr g (@)upr (y) + bhal, up, (x)ug (4)0).

Using the fact that . .
bP’ |0> = <0| bL = Oa

3The plus sign is repalced by a minus sign in case of Fermi particles.
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9 Commutation relations, propagators, microcausality and spin-statistics theorem

we obtain

iAp(z—y / Ppd®p' (Olapal, |0) up(e)us, ()
/ ()

1 .
= d3p e wE—y)
(27r)3 / 2wy
where we have used the relation

(0lapal,0) = (0lal,apl0) + ) (p — p') (0]0) = 6@ (p — p).

Analogously, if y° > 2°, we have

Br (o= 9) = [ Ep s Olbyi up0)p () + Bybly up0)u (2)
g () () + b, () (2)]0).

Using the fact that

we obtain

where we have used the relation
(0[bpbT, |0) = (0]b],bp[0) + 6@ (p — p') (0]0) = 6@ (p — p').

Thus, we have the expression

: dgp 1 —ip(x— ip(x—
iAp(z—y) = / 2r) 2, (@(mo —y0)e @) L 9y — 20)et( y)) .

With the change of variable p — —p in the second integral, we obtain

dp 1 , - .
iAF(-'E - y) = /# m (@(:EO — yo)e_“"z?(xo—yo) + @(yO _ xO)esz(£0—y0)) ezp.(w_y).

We can write the integral as a four-dimensional integral (in d*p), by looking at a term inside the integral
as a residue. In fact, by setting

e~ (2% —y°)

0y — _
fp°) = (p° — wp + i€)(p° + wp — i€)

we have two cases. If 3 > 20 we can integrate f along the contour I't shown in the figure and, using
the Residue theorem, we have:
1
— dp® f(p°) = Res(—w, + i
oi s p” f(p”) (—wp + i€)
= lim  (p" +w, —ie) f(°)
p0——wp+ie
eiwp (2 —y°)+e(z®—y°)
2wy, — 2ie

eiwp(afo —y%)

2wy,
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9 Commutation relations, propagators, microcausality and spin-statistics theorem

On the other hand, the contribution along the semicircle is zero, since

lim p° f(p”) = 0.

|p]—o00
Thus,
: 07..0_ 0 ; 0_,0
1 e w (z"=y") ezwp(ac —y")
—— [ & 5 —5 — =0(y° - 29
2mi (p° — wp +i€) (p° + wp — i€) 2wy,
(%)
r,
R 0
7 R

Wp — 1€

With analogous calculations for 20 > ¢°, integrating along a contour I'~ in the lower half plane, we can
find 1 e’ («°—y°) e—iwp (2" —y")
—— [ &p° - — =0(z" —¢°)
2mi (p° — wp + 7€) (p° + wp — i€) 2wy,

On the other hand,

-0 0 0
(2" —3°)

0y _ _
f°) = (p° — wp +i€)(p° + w, — de)

- 0 0 0
(2" —3°)

B (p)2 — wg + 2iwpe + €2

. 0 0 0
o—ip’(2—3°)

P2 —m2 4 2iwpe
Writing € instead of 2wye, we have

3 dpd —e—i°(@®=y°)
Ap(z —y) = —i/ p [’ =TTV ey
(2m)3 ) 2mi p? —m?2 +ie

dtp  emir(z—y)
n / (2m)* p?2 — m? +ie
With this expression, it can be shown that the Feynman propagator is a Green function for the Klein-
Gordon equation (KGE) with a Dirac delta as a source term:

dp e~ w(z—y)
O, A _a) = [ 22 2 2y % 7
(O +m*)Ap(z —y) /(277)4( p+m)p2—m2+ie
= —6W(z —y).

e) The Pauli-Jordan function A and the anticommutator function A; are examples of commutator func-
tions, while the Feynman propagator A g belongs to the class of propagator functions. Other commutator
functions are

dp 1 -
At(z) = —i / #@e’”’z positive frequency function
dp 1
A (z) = z/ (27:))3 ﬂe”’z negative frequency function,
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10 Quantization of the Dirac field

while other propagator functions are
Ar(2) = 0(2°)A(2) retarded propagator
Aa(z) = —0(—2"A(2) advanced propagator.
The main difference between the two classes of functions is that the former are solutions of the homoge-

neous KGE, as we have seen for A, while the latter are solutions of the inhomogeneous KGE, as we have
seen for Ap:

(Dz + mQ)A(x - y) =0
(Ox + m)Ap(z —y) = —06W(z —y).

Furthermore, all these functions can be expressed as contour integrals in the complex p’-plane. The
difference between them is that the contours for the commutator functions are closed and limited, while
those of the propagators extend to the infinity.

S(?) 3(p°) 3(°)

C() R(p°) iwp w) R(°) O O R(»")

CF C'A

10 Quantization of the Dirac field

a) Write down the Lagrangian for the free Dirac field ¢(x), with all constants explicitly expressed. Then
set h = ¢ = 1 for the subsequent calculations. Compute the conjugate momenta and the Hamiltonian
density H(x). Quantize the fields following the prescription of canonical quantization. Write down the
Heisenberg equations of motion for the fields and their conjugate momenta and show that they reproduce
the Dirac equation.

b) Given the plane wave solutions of the Dirac equation:

1 m .
(r) ZI},t _ w, efze,.(wptfp-m)’
Wi =~ [T o)

with all terms as defined during classes, write down the plane wave expansion of the quantized field 1&(33),
by introducing the operators a(p,r) and their adjoints. Derive the anticommutation relations between
a(p,r) and their adjoints, starting from those of ¢¥(z) and its conjugate.

c) Starting from the quantized Hamiltonian H expressed in terms of the fields 77/}(x) and its conjugate,
and using the plane wave decomposition, derive the corresponding expression in terms of a(p, r) and their
adjoints. Discuss the problem with the expression thus derived, and how the Dirac-sea’s picture solves
the problem. In accordance with the Dirac-sea’s picture, re-define the operators and spinors such that
the field decomposition takes the form:

d(a,1) Z/W\F (P, s)ulp,5)e™ 7" + 1 (p, $)o(p,5)e™ ")
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10 Quantization of the Dirac field

d) Prove the spin-statistics theorem for the Dirac field.

e) Introduce the vacuum state |0) and, starting from it, construct the Fock space for the quantized Dirac

field. Explain the role of the operators b(p, s), d(p, s) and their adjoints.

a) The Lagrangian density for the Dirac field is
L(z) = Y(ihcy"0,, — me? )i
= ihepTy + iheyTa - Vo — me? ¢f By
We set h = ¢ = 1. The conjugate momenta are

o

= 0t
T w )
T fé’cf
w1-73¢T7

Setting my = 7, we get the Hamiltonian density
H(z) = m — L(x) = —7 (- V +imf) 1.
Let us quantize the fields using the anticommutation relations.

b, — P, 7
{','}PB—>—i{‘, }

The Heisenberg equations will be

where H is the total Hamiltonian

H= /dmg’}:[(x) = —/d?’xfr(a-V—Fimﬁ)ﬁ).
Note that the Hamiltonian density (and thus the Hamiltonian) is not an hermitian operator. However, the
following results would be the same as those we would obtain by starting with a symmetrized Lagrangian.

The commutators for a general component will be (omitting the equal-time dependence and the sum over
repeated indices)

[17;)\("13)7 ﬁ] = - / dSI/<['LZ))\(:B)7 7?ra(m/)olap : V/zsz(m/)] + Zm[lz))\(m)a 7?rc/'(:B/)Bcqusz(wl)]
T / d3x1<{%($)7 fo (@)} tgp - V(@) = o (@)t - V{IA (@), ()}
+ im{a(@), 7 (@)} oty (@) — im g (@) B (@), B (@)} ).
Here we have used the relation o o
[A,BC] ={A,B}C — B{A,C}
and denoted o, the vector with components al - Using the fundamental anticommutation relations

{r(@), 7o (')} = i0rs 0 (z — ')



10 Quantization of the Dirac field

we find

[x (), H] = / &3z’ (fi SroQop - V', ()6 (2 — ') + m G0 B pthy (2 )0E) (2 — a:'))
= —i0typ Vﬁp(w) + mﬁkxﬂﬁp(m)a

that leads to an equation formally equivalent to the Dirac equation

1Z:—a~V7,ZAJ—im51ﬁ

or in explicitly covariant form

(iv"0,, — m)y = 0.

b) Let us expand a general solution in the basis of plane waves

4
dta) =3 [ Epalp el @)
r=1
We can obtain the operators a(p,r) by projecting the state onto the basis:
W) = [ @z @)

4
=3 [@vaw') [ doup @ @)

r’'=1

4
= Z /d3p/d(p/,r/)(5”/(5(3)(p - p/) = d(p,?“).

r’'=1

Thus, the anticommutation relations between a(p,r) and their adjoints will be (omitting equal-time
dependence and the sum over repeated indices)

(ap.r),alo 1)) = [ Prda’ (0 @)in (@), 1) @) (@)
= [t o @)ey) @) in @) b)) =0,
Similarly, {af(p,r),af(p’,7")} = 0. Last:
{a(p,r),al (p/,7")} = / &z d'a’ [ @) (@), O (@)l (@)
= [ @t v @)e) @) @), b @)
— [ @i v @) @) 8508 e - )

~ [ v @ @)

= 57“7"’5(3) (p - p/).

¢, e) Since 1) solves the Dirac equation, we can write

a

f/d?’xfr(aoVJrimﬂ)?fJ
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10 Quantization of the Dirac field

Plugging the plane wave decomposition into the Hamiltonian, we find

4

H=i / da®d*pd’p' Yy al(p, )t (@)alp, )by (@)
ror/=1
4 ’
=4ﬁwwamew@wwwwWwﬂm
rr/=1
Z /al‘n’pcl3 P € wp ' (p,r)a(p’, 7’ /d333¢ ¢(T ()
rr/=1
Z / Ipd*p € wp al(p,r)a(p 1) 6,716 (p — p')
rr/=1

_y [ e, il v.ni. ).
r=1

Separating the positive part from the negative one, we get
= /dspw al(p,r -y /dspwp (p.7)a(p,r).
r=1,2 r=3,4

Such an Hamiltonian is not bounded from below: as the number of particles in the lower continuum
(r = 3,4) grows, the expectation value of the Hamiltonian plummets. The issue can be solved with the
Dirac sea picture: the vacuum state |0) is defined as the state in which all negative-energy levels are
occupied (in accordance with Pauli exclusion principle). In this way,

a(p,r)]|0) =0 for r =1,2

' (p,r)[0) =0  forr=3,4.
The zero-point energy obviously diverges:

(0| H|0) = Z /d3pw (0la’(p,r)a(p, Z /d3pw 6@ (0
r=3,4 r=3,4
Then we redefine the Hamiltonian in such a way that the divergent vacuum energy is removed:
H—H+ Z / d?’pwp
r=3,4

The same result can be achieved with the normal ordering prescription. In this way we find

Z /d3pw af (p,r Z /d3pwp a(p,r (Pﬂ”)~

r=1,2 r=3,4
and (0|H|0) = 0. With the Dirac sea picture in mind, we can view

a'(p,r),a(p,r) as creation and annihilation operators respectively of particles for r = 1,2

a(p,r),a (p,r) as creation and annihilation operators respectively of holes in Dirac’s sea for r = 3, 4.

Thus, the holes in the Dirac sea can be interpreted as antiparticles. In this way, the vacuum will be the
state in which there are neither particles nor antiparticles. To avoid confusion, we introduce the notation

a(p,1) = b(p, +s)

a(p,2) = b(p, —s)
(pv ) = dT(pv —S)
a(p,4) = d' (p, +s),

4Here 6 (0) is “morally” one, as we can see by discretising the momentum space.
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10 Quantization of the Dirac field

so that we can view

Z;T,IS as creation and annihilation operators respectively of particles

JT, d as creation and annihilation operators respectively of antiparticles.

Changing the notation for the spinors too

wi(p) = u(p, +s)
ws(p) = u(p, —s)
w3(p) = v(p, —s)
wa(p) = v(p, +s),

we can rewrite the plane wave decomposition as

-3 [ Ty oy (0590 5 0 9ol )e).

Thus, the vacuum now is defined by the relations

and the Fock space is constructed from the orthonormal eigenstates |n1+p1 ny Pi.. .ﬁfp1 fiy p1...) of the
number operators for particles and antiparticles

i(p, s) = bl (p, s)b(p, 5)

n(p,s) = d'(p,s)d(p,s).
represents a state with n} particles of momentum p; spin %,

Here, the state [npinyp1...A  p1a;pr...) 1
ny particles of momentum p; and spin —4, ﬁf‘ antiparticles of momentum p; and spin 4, 77 antiparticles

of momentum p; and spin —3%, etcetera.
Moreover, since we have quantized the field following Fermi rules, nzi can be only 0 or 1, in accordance

with Pauli exclusion principle.
We can also define the momentum operator

pP=- / Br Vi,
such that

Pnfpinipr.afpinipr..) =Y [(nf +n))pi+ (0] +0;,)pi] Infpinipr. . pinipr..);
7
L

=P
the charge operator
Q=c [dzild
such that

Q Infpinipr..nfpiapr...)=e Z [(nz+ +n;)— (A + T‘L;)} Infpinypr.. Al piapr...);

=Q

and the spin operator along the direction of motion
N 1 S
S = 3 A’z ')
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11 Properties of the quantized Dirac field

such that

R B L 1 B L B L
Snipinipi.. Aip1A P1...) == Z [(nf + 7)) — (ny +0;)] Infpinypr.. A p1A P .).

| J
=S

d) The spin-statistics theorem states that, under the assumptions
e Lorentz invariance,
e microcausality
e positive-definite energy,

every bosonic particle has integer spin, while every fermionic particle has semi-integer spin. In our case,
quantizing the Dirac field by following the Bose rules contradicts the positivity of the Hamiltonian. In
fact, all the calculations done for the Hamiltonian in point (c) are still valid, until

=3 [dpuipnimn - Y [ e,
r=1,2 r=3,4
With the commutation relations for the operators with r = 3,4 we get

H= Z /d3pw al (p,r Z /d3pwp a(p,r ( ;1) + Eo

r=1,2 r=3,4

(where Ej is the zero-point energy). We can normalize the Hamiltonian with

H—>H Z /dgpw a p, Z /d pwp p7 T(1777')’

r=1,2 r=3,4

but it does not become positive-definite. Thus, positivity of the Hamiltonian is violated, which means
that the Dirac field, which describes 3-spin particles, cannot describe bosons.

11 Properties of the quantized Dirac field

a) Discuss the gauge symmetry of the Dirac Lagrangian and derive the conserved charge @ it leads to.
Write it in terms of the field ¢ (z) and its complex conjugate. From that, derive the quantized expression
of Q in terms of the operators b(p, s), d(p, s) and their adjoints. In the light of this result, comment on
the physical meaning of these operators. Discuss the meaning of the expression thus derived, and why
one has to introduce the normal ordering prescription (explain what it consists of).

b) Starting from the quantized momentum P for the Dirac field expressed in terms of the fields v ()
and its conjugate, and using the plane wave decomposition, derive the corresponding expression in terms
of b(p, s), d(p, s) and their adjoints.

c) Consider the Feynman propagator iApas(x —y) = <0\T(z{3a(x)1/jg(y))\0>, and prove that it can be

written as follows: .
d*p —ip(a—y) Y PEMmM
AF(iU_y):/WC P yp72, 2+l.6.

d) Show that the anti-commutator {¢ (), ;Zﬁ(y)} takes the form:
{tha(), da(y)} = /d3 : (7Pt m)age™ ™0 — (= p o m)gpet )
(e I (27_[_)3 20.) «@ I
and that it vanishes for space-like separated distances.

e) State what the microcausality condition means, and prove it for the Dirac field.
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11 Properties of the quantized Dirac field

a) The Dirac Lagrangian density )
L(z) = P(iy" 0 —m)y,

where ¥ = 1140, is invariant under phase rotation

b — "y
P — et
Since the infinitesimal generators are §v) = iop and 6¢" = —iaw)?, from Noether theorem we derive the
conserved quantity
dPa <5 Lo T) a/d% fyp.
ax | Vo o Wty
We can set
Q=ce / 2zt
The quantized version of @ is
Q =e / dx szﬂ

Using the plane wave expansion for 1[)

(5(197 s)u(p, s)e ™" + d' (p, 5)u(p, )™ )

we obtain

) , 1
Q:e/d3xd3pd3 / ( n

7 T —ipx
27'(')3 \/W(d(p,s)v (p78)6

+ 5 (p, 5)u! (p, 5)e™ ) (b(w', 8 Yu(p', 8 e 7" + d! (B, Yo', )P

1 ] A . ’
= e/d?)x Epdp’ ( m (d(p, $)b(p/, s/)v’r(p7 s)u(p, S/)eﬂ(pﬂ] Yo
s,s’

T
+d(p, s)d' (0, ') (p. s)o(p',s")e™ 7P 4 81 (p, )b(p', 8" )ul (p, s)u(p, s )e' PP
"'BT(pvs)dT(Pl s")u (p, S)U(P'7s')ei(p+p/)m>

= [areyS o ([0 syt o e
s,s’ p P’

+ b1 (p, s)d' (', 8" )ul (p, s)o(@', 8" )e!@r T §3) (p 4 p')
+ (d(p, s)d' (p', ")l (p, s)v(p', s")e ™ @rmep)t
+ b (p, 5)b(p', 5 )ul (p, s)u(p', )i =15 (p - p'))

m 7 —i2w, 7 7 2w
= e/d?’pzw— (p, $)b(—p, s")vi (p, s)u(—p, s')e 2" + bl (p, s)d' (—p, ' )u' (p, s)v(—p, §')e'2»!

+d(p, s)dt (p, sl (p, s)v(p, s') + bT (p, $)b(p, s )ul (p, s)u(p, s’))

Now we can use the orthogonality relations

ul (p,s)u(p,s') = o' (p. s)o(p, ) = Lo,
uT(pa S)'U(fp7 8/) = UT(pa S)U(*pv 8/) - 07
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11 Properties of the quantized Dirac field

so that

— 0> (é*m (. ) + d(p,5)d' (b, 5)) 5.

=3 [0 (00 90p.) + 0 5.9)).
We can see that, applying the anticommutation relation for cZ(p7 S)JT (p, s), we obtain

Q= eZ/d?’p (b (p. 5)b(p, ) = d (p, 5)d(, 5)) + e/d3p 3™(0)

which has a divergent expectation value on the vacuum:

01Q10) = ¢ / d*ps®(0).

The problem can be solved by introducing the normal ordering. Since the difficulty is originated by the
terms d d , we can separate for every operator the contribution given by the positive frequencies e~%rt
and the negatlve frequencies e?r?

d(r) = 4P (@) +a (@), Bl) =P (@) + 57 (@)
and define the normal ordered product to be
caf:=a A ;6 £ O L g,

where the sign is + if the field are bosonic and — if the fields are fermionic. Note that the negative frequen-
cies contributions are moved to the left, with a minus sign when interchanged. With this prescription,
the charge becomes

:Q: —e/d3x AR —eZ/d?’ ,8)b(p, s) — CzT(p,S)d(P,S))
= eZ/d3p n(p,s) — ﬁ(p,s))

that is the previous one with the divergence removed. Here we have introduced the number operators

(p, s) = bi(p, 5)b(p, )
ﬁ(l% 5) = dAT (pa S)dA(pv 5)7

which generates the fermionic Fock space in terms of eigenstates. Then, we can interpret the operator
as a charge operator, which distinguishes between particles and antiparticles. For example, if [1Tp) =
bt(p, +s5) |0) is a particle of momentum p and spin +3, then

Q: |1Tp) =e,

since (p,+s)|17p) = 1 and 0 otherwise. Analogously, if [1Tp) = df(p,+s)[0) is an antiparticle of
momentum p and spin +3%, then o
Q: 1Tp) = —e.

In general, for a state |nf p; ny p1...nJ p1 7 p1...), we have

Q: Infpinip1..nfpiap1...)=e Z [(nf +n;) = (@ +0;)] nfpinypr.. A p1AT P )

=Q

and @) represents the total charge of the state.
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11 Properties of the quantized Dirac field

b) The momentum operator, which can be derived from the space-translation invariance of the Dirac
Lagrangian density via Noether’s theorem, is

P _i / P )1V,

Note that with this expression P is not hermitian, although this fact will not affect the following calcu-
lations. With the wave expansion, we find

pP= —z/dga: dBpddy —ip’ (cZ(p, s)v'(p, s)e”P®

V/WpWp
+l(p. 3>u+<p,s)em) (b s ulp e = di (P!, s yo(p', )7

- / Prd’pdp' ) P (d(p. )b, 5o (b, s)u(p', s e @72
™

m
2m)° ey
—d(p, 5)d (p', ') (p, $)0(p', )™ P 1 b (p, )b, o' (p, Yu(p, 8 )e 0"
-, s)civp’, Syt (p, $)o(p', el 7))

= [ty S (A e 0! ()t e
p /

s,s’

—bi(p,s)d'(p', s )ul (p, s)u(p’, s")e'“rT»))53) (p + p')
+ (=d(p, s)d' (', s ' (p, s)v(p, 8" )e @)t
+b'(p, 8)b(p', 8" )ul (p, s)u(p', 8')e'“r =) 53 (p — p’))

/dBPZ ( A E< )’(}T(p’ S)U(_pv sl)efz?w,,t + ?)T(p,s)éﬁ(—pv s’)uT(p,s)v(—p, Sl)6i2w1’t

—d(p,s)d'(p,s")v' (p, s)v(p, s') + bT (p, 5)b(p, s )u' (p, s)u(p, 8’))~

With the othogonal relations, we obtain

P /d3pzp bT pa ) - d(pa S)CZT(pa S/)) 688'

-¥ / @pp (6 (p,5)b(p, 5) — d(p, 5)d' (p,5) ).

We can see that, applying the anticommutation relation for (Z(p, 5)chr (p, s), we obtain

P= Z / d*pp (5T<p7 $)b(p, ) +d' (p,5)d(p, ) ) —2 / #pp s (0)

—Z/dSpp +7(p,s)).

Note that, contrarily to the charge operator, here the zero-point momentum vanishes due to the symmetry
of the integral. This fact is a consequence of the isotropy of space. Thus, normal ordering is not necessary,
though its application does not affect the result.

c¢) Let us consider the Feynman propagator
Apap(e —y) = =i (OIT (Pa(2)ds(y)) 10).
where T'(-) is the time-ordered product®

T (%(@@(M) = 02" — y")a(@)ts(y) — Oy — 2°)s(y)a(z).
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11 Properties of the quantized Dirac field

Expanding the fields in terms of plane waves, we obtain

Bruse ) = [ dpd'y T (06 =) 0l(b(p, ualp, )+

/WpWp'
+ JT (p7 5)0a (P, 5)e™”) (d(p', ') TP, 8" )e Y + bi(p', s )as(p', s')e®¥)|0) +
—0(y" — 2°)(0|(d(p’, 8" )Ts(p', s )e Y + bT(p/, s )ag(p', s')e™ V) x

x (b(p, s)ua (p, s)e ™7 + d (p, 5)va (P, $)e"7)[0) )

/dde3 /
\/Wp‘*’p

x e~ TP’y _ oy’ — 29) <0|dA(p'7 s/)JT(p, $)[0) vg(p’, " )va (P, s)e*i”/yeim)
since the vacuum is destroyed by the annihilator operators
d(p',s')0) = b(p,)[0) = 0
(0 d'(p, s) = (0]b'(p', ') = 0.

(9(960 — %) (0lb(p, $)b' (#', 8')|0) ua(p, 8)us(p', s') x

On the other hand,

(0[b(p, s)bT(p', s)|0) = (0ld(p’, s")d (p, 5)[0) = b5 6 (p — P),
so that

. d*p ip(a—
rasfa=1) = [ 530 2 (06 — o ualp. s (p. e~ +

oy )35 (p, 5)va (. 5)e 7).

We now use the completeness relations

Pap +m
Zua (. 5)us(p,s) = —
Pop —m
S valppaste.) = PG
to obtain
. d3p m ﬁ"’m —ip(x— B8 zm
sl =) = [ by 2 (0 —y) e — (g0 — ) P nte )

3 .
- / éﬁ; 716“26; T (0" = y0)e 1 4 O(y0 — a¥)etr ) iplew),
P
We can rewrite the integral as a four-dimensional integral (in d*p), by looking at a term inside the integral
as a residue. In fact, setting
e~ (x°—y°)

0y —
Uty (P° — wp + 7€) (p° + wp — i€)
we have two cases. If 4 > 20 we can integrate f along the contour I't in figure and, using the Residue
theorem,
1 .
— dp® f(p°) = Res(—w, + ie)
T+

21

= lim (" 4w, —ie) f(p°)

pO——wp+ie
eiwp (2 —y°)Fe(a®—y°)
2wy, — 2ie

ei’wp(xo _yO)

2wy,

5The minus sign would be substituted by a plus sign in case of Bose particles.
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11 Properties of the quantized Dirac field

On the other hand, the contribution along the semicircle is zero, since

lim p® f(p°) = 0.

[p°| =00
Thus,
. 07,0 0 ; o 0
1 e~ (z°—y") eiwp(c”—y")
- /dpo 5 i 5 S @(yo _ $0) )
27i (p° — wp + 7€) (p° + wp — i€) 2wy,
S(p°%)
r,
R(p°
- 7 RO
wp — i€

With analogous calculations for z° > 3%, by integrating along a contour I'" in the lower half plane, we
find

=0(z" 1)

2mi 0 — wp +i€) (P + wp, — i€) 2wy,

_L/ 0 e~ (2" =y°) e—iwp(@®—y°)
( _—
On the other hand,

e~ (@’ —y°)

f°) =—

(P° — wp +i€) (P0 + wp — ie)
eiipo(x()*y())

()2 — w2 + 2iwpe + €2

-0 0 0
i (20 —4")

P2 — m2 + 2iwye

Writing e instead of 2wye, we have

dgp 1 _e_ipo(mo_yo) .
Apy o) — 4 Do — | a = cip(z—y)
Fap(® = y) Z/(27r)3 (1$6+m)2m'/ P pz—m2+iee

— / d'p Pasp +m e~ P(z—y)
(2m)* p2 — m? + i€ '

Without reference to the components,

d4p p+m —ip(x—
AF(x_y):/(2,/T)4 p2—m2+i66 a y)

With this expression, it can be shown that the Feynman propagator is a Green function for the Dirac
equation with a Dirac delta as a source term:

(w”?q« - m)AF(m - y) = / (d4p p tm (_p + m)e*ip(z*y)

2m)% p?2 —m? +ie

= —W(z —y).
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11 Properties of the quantized Dirac field

d) The anticommutator will be

{Da(x), Vp(y)} = /d3p e (271r)3 2 \/c:nTp

+ c?<p’ (e )™ VB, as(pl e}
- /d3p d3 / 3 Z <{b D,s )a d(P ;S )}UQ (p, 8)’[75([) s S’)e—ipwe—ip/y +
+ {b(p.s), b*(p ) e (P, s)us(p s )e Y +
+{d"(p, ), d(p', s) va(p, s)T5 (P, 8" )ePTe PV +
+ {dAT (p’ S)’ bt (p/’ s/)}va (pv S)ﬂﬁ (pla Sl)eipzeip/y)

dgp m B e ) .
= / (2r)3 Z wpi (Uoc(p; s)ug(p, s)e P V) 4 va(p, 8)05(p, s)e™! y))
3 J—
- [ & (P L oy Bl e

27m)3 wy 2m 2m

{b(p. s)ua(p. s)e ™" +d!(p. s)va(p, )™ +

N

- / (573:)9132@1 ((pag +m)e"PEY 1 (g — m>eip(x—y>)

— / (;lﬂl))s 21 (iBes +m) (e—ip(z—y) _ eip(r—y))
= (iPap + m)zA(m —y),

which is zero for space-like separated events, thanks to a property of the Pauli-Jordan function.

e) The microcausality condition states that measurements of an observable O in points with a space-like
separation do not interfere each other, i.e. if (z —y)? < 0, then [O(z),O(y)] = 0. For the Dirac field,
since every observable has the form

O(x) = tha(x) O (@) (),

we obtain

O (@)015(y) [ )b (@), ()5 )]
= Oas(2)055(y) ([ (@), ¥ ()5 () 19 (@) + (@) [ (2), By () ()]
@)

08(2)055 (1) ({Da (@), by ()15 (1) B3 () — (1) {ha(@), s 9) s ()
+ Do (@) (5 (), Uy ()5 () — V(@) (W) {5 (@), D5 (1)} )

Using the fact that R R
{A(@), 0 (1)} = {¥r(2), Y0 (y)} = 0,

we obtain
[0),0)] = Ous (@)05(y) (Val2)[a(2), 1y (9) s (4) = v (W), Ds(0) s ()

= Oas(@)055 (1) (Y (@) () (i3 + M)A = ) = U ()b (@) (D50 + )il — @) )
0)

05(@)045(5) ($a(@)65 (1) (15, +m) + (W) @) (50 +m) )il — ),

which is zero for space-like separated events, as follows from point (d). Thus, the microcausality condition
is satisfied for the Dirac field.
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12 The electromagnetic field

12 The electromagnetic field

a) Write down Maxwell’s equations for E and B. Introduce the field strength tensor F},,, and its dual,
and re-write Maxwell’s equations in an explicitly covariant form. Introduce the 4-current j, and show
that it is conserved. Introduce the 4-potential A, and re-write Maxwell’s equations in terms of A,,.

b) Discuss the gauge freedom of the theory, and introduce the Lorenz and Coulomb gauge. Write down
the Lagrangian density for the e.m. field. Show the connection between gauge invariance and current
conservation.

c) How many independent degrees of freedom does the free field A,, have? Show it in the Lorenz gauge
as well as in the Coulomb gauge. Why is this a difficulty for canonical quantization? How it is solved?
(Say it in words.)

d) Consider Maxwell’s equations for A, in the Lorenz gauge, and the plane-wave solutions:
A, (kN ) = Nge,, (b, N)e .
Construct a basis for the polarization vectors €,(k, A). Discuss their physical meaning.

e) Prove the orthonormality and completeness relations for the polarization vectors €, (k, A).

a) The Maxwell equations for the electric field E and the magnetic one B are

VxE+B=0
VxB-E=j
V-E=p
V-B=0.

where p is the charge distribution and j is the current. We can introduce the electromagnetic strength
tensor

0 —-E' —-E? —E3

E! 0 -B3 B2

E? B3 0 -B!

E?} -B? B! 0

FH =

and its dual 1
szinW%:FW@—MlB%—m.

With this notation, Maxwell’s equations can be written as

o = j¥ dynamic equation

OuxF" =0 constraint equation,

where j¥ = (p, J) is the 4-current. It can be shown that F*” and its dual are tensors, while the 4-current
is a 4-vector. Hence, the Maxwell equations in terms of the field strength tensor are manifestly Lorentz
invariant.

Taking the divergence of the 4-current, we immediately obtain the continuity equation:

,5" = 0,0, F"™ =0,

since 0,0, is symmetric, while F*” is antisymmetric in the indices y, v.
We introduce the 4-potential A*, defined by

FH = gr A — 9" AP

In terms of the electric and magnetic fields,

0A

E=-vA - 22
v ot

B =V x A.
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12 The electromagnetic field

In such a way, the constraint equation is already satisfied, as it can be easily checked. The dynamical
equation becomes an inhomogeneous wave equation with a divergence term

DA# — 91(8,AY) = j*

or in terms of A? and A

82 0 2 40 9 9 0 _ 2 A0 9 —
OA — V(;AO + V-A) =3j.

b) From the definition of the 4-potential, it is clear that it is not uniquely defined. Every transformation
A (z) — A¥(z) + 0" A(x),

where A is a scalar function, leads to same electromagnetic strength tensor, i.e. to the same observable
quantities. This fact can be seen by counting the d.o.f. of the different quantities here involved. The
electromagnetic strength tensor has 6 different terms, but the constraint equation reduces them to 2. On
the other hand, the 4-potential has 4 independent terms and the constraint equation is already satisfied,
so that we are left with 2 more d.o.f.

This is the so-called gauge freedom and the above transformation is called a gauge transformation. Such
a freedom can be used to fix a gauge. For example, we can introduce the Lorenz gauge by imposing

9, AP =0,

which can be implemented from a potential A* via a gauge function satisfying the inhomogeneous wave
equation

OA = —-0,A".
Another important gauge is the Coulomb gauge, which is obtained by imposing
V-A=0.
It can be obtained from a potential A" via a gauge function satisfying the Poisson equation

VA=-V-A.

The electromagnetic Lagrangian density is

1
ﬁ(l‘) = _ZFMVF#U - juAH7

which can be used to describe photons. Note that the electromagnetic strength tensor is gauge invariant,
thus the free part of the Lagrangian also is. On the other hand, the interacting term j, A* is not a priori
gauge invariant. However, the action is invariant under gauge transformation provided that j, satisfies
the continuity equation:

j/LA# — j/LA/H = j}l.Au + j,ua'uA
= Ju A" + 0" (juh) — (0"ju)A.

The surface term 0%(j,A) does not affect the action, so that the gauge invariance is implied from the
continuity equation 0*j, = 0.

c) As we already discussed, the 4-potential has 4 independent terms, since the constraint equation is
already satisfied. Hence, we are left we 2 redundant dof.
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12 The electromagnetic field

The Lorenz gauge has the advantage that it is manifestly covariant, but it does not fix all gauge dof. The
new 4-divergenceless potential leads to the same observable quantities if transformed as

At (x) — AP (z) + O*N (x),
where A’ satisfies the wave equation [JA’ = 0. Thus, we are left with one gauge dof.

On the other hand, the Coulomb gauge fixes all dof, but it has the disadvantage of not being manifestly
Lorentz invariant. In this case, it can be easily shown which dof are fixed. In fact the 3-divergenceless
condition becomes in momentum space

k-A(t,k) =0,

that is, the longitudinal component of A is zero. Thus, we are left with 4 — 1 = 3 dof. Furthermore, the
second equation of motion expressed in terms of the potential is, in general

0A 0
VA= - V.—— —p=-—V-A-
ot ot P
which is a Poisson equation for A°, whose solution can be expressed via the propagator G(xz — ') =

1
47 Je—a’| as

A, z) = /d%’ Gz — ) (;VA(:&, ') - plt, w’)) .

Thus, in the Coulomb gauge,
1 plt,a)
At x) = [ B2’ — 2251
(t,z) / e p——

so that A® is no longer a dynamical variable, but it is determined by the source p. Hence, we have
4 — 2 = 2 dof and the gauge freedom is completely fixed. Note that in this case the scalar potential is
instantaneous, in the sense that a change in the charge distribution propagates instantaneously. However,
this fact does not contradict relativity, since A° is not a physical quantity; the electromagnetic field is
expressed in terms of the derivatives of A, in such a way that relativity is not violated.

The redundancy in dof of the potential creates a difficulty in the application of canonical quantization.
In order to quantize and impose the commutation relations, we have to compute the conjugate momenta.
If we consider A* as dynamical variables, then

oL
C9Ar ~Fou-

In particular, 7o = 0. Thus, we cannot impose the relation

[AO(t, ), 70(t, )] = i6®) (x — o).

Ty

This is a consequence of the fact that A° can be expressed in terms of the vector potential (and the
charge distribution). The problem can be solved in several different ways. The two most popular are:
either we quantize the theory in the Coulomb gauge, considering only the relevant dof (i.e. the transverse
components of the vector potential), or we quantize the theory in the Lorenz gauge and use an appropriate
prescription for dealing with the remaining dof.

d) The Maxwell equations in the Lorenz gauge are inhomogeneous wave equations fro the potential
OA® = 5+,

Without sources, the equations in momentum space become k2 A* (k) = 0, that is k? = 0. Let us consider
now a plane wave expansion of the potential in terms of the free modes

APk, N\ x) = Nyet(k, N)e™ 2,

where e#(k,\) for A = 0,1,2,3 are called polarization vectors, which we now construct in such a way
that they are orthogonal to each other and normalized. We can choose €*(k,0) = n to be a time-like unit
vector. In a fixed (arbitrary) coordinate system, we set

n=(1 0 0 0).

64



12 The electromagnetic field

Next we take ¢”(k, 3) along k (thus space-like) a normalized
e'(k,3) = (0 %) longitudinal condition.

In explicitly covariant form, we have to implement the projection of k onto the plane orthogonal to n:

k — (nk)n

e'(k,3) = R

Finally, we choose ¢*(k, A) for A = 1,2 to have no time-like component (e*(k, \) = (0 e(k, \))) and satisfy

k-elk,\)=0 transversality condition
e(k,)) e(k,0) =0xrs orthonormalization condition.
The above construction required the choice of a particular frame, but we can impose the polarization

vectors to transform like vectors, to remove the dependence on the frame. The polarization vectors thus
defined are called

e(k,0) time-like polarization vector
e(k,1),¢e(k,2) transverse polarization vectors
e(k,3) longitudinal polarization vector.

They represent the polarization directions of the photons.

e) From the above construction, it is clear that if &2 = 0, then
ke(k,0) = —ke(k,3) = kn.
The first relation follows by the definition of e(k, 0), while for the second one

2_ n n
iy i)

if k2 = 0. For the transverse polarization vectors

ke(k,1) = ke(k,2) = 0,
which follows from the definition.
Furthermore, we have the orthogonality relation

eu(k, Ne(k, N) = mw
We can also prove the completeness relation

> ek, Ney (k) = .
A

In fact, in the particular frame where we first defined the vectors, the relation can be written as

(5), 6), 2 (e, ().

For u = v =0, the sum is +1. When we have a time index and a space index, the sum is 0. Last, when

both are space indices, we find
3

> ik, Nej(k,A) = 6y

A=1

Thus, the completeness relation is proved.

65



13 Quantization of the electromagnetic field: Lorenz gauge

13 Quantization of the electromagnetic field: Lorenz gauge

a) Write down the Lagrangian density of the free electromagnetic field in a covariant form (in terms
of A*). Compute the conjugate momenta 7 associated to A* and show that 7° = 0. Add a gauge
fixing term, such that the Lagrangian density does not change if the Lorenz gauge condition is satisfied.
Compute again the conjugate momenta 7*. Now 7° # 0. Compute the Euler-Lagrange equations from
the gauge fixed Lagrangian density.

b) Choose the Feynman gauge (gauge fixing parameter ( = 1). Perform an integration by parts, to
further simplify the Lagrangian density. Compute once again the conjugate momenta 7#. Compute the
Hamiltonian density. What’s unusual about its form?

¢) Quantize the electromagnetic field as prescribed by canonical quantization. What’s unusual about its
form? Show that the Lorenz gauge condition is not satisfied for the quantized field. Expand AP in plane
waves. Do the same for the conjugate momenta. Write all factors explicitly. Reverse these relations
and write the operators agy and &,TM as a function of A* and their conjugate momenta. Compute the

commutation relations for the operators ag) and &};A starting from those of A and their conjugate
momenta.

d) Compute the normal-ordered Hamiltonian H and momentum P as a function of ay and &L y» starting
from their definition in terms of A* and their conjugate momenta. What’s unusual about their form?

e) Explain the Gupta-Bleuler method and show how it solves all the problems encountered.

a) The Lagrangian density of the free electromagnetic field is

1 1
L(w) = =1 FuF" =~ (0,A, = 0,A,) (9"A” — 9" A").

Considering A* as dynamical variables, the conjugate momenta are

0L 1 (OF. . . . OFW
T 9AN T 4<aAkF +FW8A/\>
1 oFm 1 S
= oty = — 5 Fur (9 0% — g %)

1
=-3 (Fox — Fxo) = —Fox.

This fact shows that 9 = 0, that is A° has no conjugate momentum. The problem can be solved by
adding to the Lagrangian a gauge fixing term

1
L(x) = — g Fu P ~ g (0,A%)% .

The new Lagrangian trivially reduced to the previous one in the Lorenz gauge. But for the time being,
we will not impose the gauge condition.

With this addition, the conjugate momenta become
mx = —Fox — (nox O A7

and in particular mg = —( 0, A% # 0, provided that ¢ # 0. The Euler-Lagrange equations are:

oL o oL _
0AY oor AV
We have
oc 0
HAY
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13 Quantization of the electromagnetic field: Lorenz gauge

oL 1 ( 0Fy OFr? o 00, A7
porAY ~ 4 (68#AVF 5 ’“’amm) (0 A%) S
The first term in the last equation is
0F s oFre 1 oOFre 1
_- pee  p 0\ _—p 2 _ g P§T _ SO SP
(88“14” +Foo 88“A”> 2" 77 9om Av 217 (5”6” 5”6”)
1
= *§(F#V*Fuu) =—Flu,
while the second term becomes
00,A7 00* A _ Py
donAr — "N ggn A~ e Ouly = T
Thus,
oL -
D1 AV = _F/w - Cn;w(aoA )
and the Euler-Lagrange equations are
oL -
0= 0" Sy = 0" Fuw + (w0 (0,4%)

=0" (0,4, — 0,A,) +(0,(0,A7)
=04, - 90,(0"A,) + ¢ 0.,(0,A7)
=04, + (¢ —1)0,(0,A7).
We can see that, if ( = 1, the equations are the free Maxwell ones in the Lorenz gauge.

b) In the Feynman gauge ¢ = 1 the Lagrangian density becomes

L(z) = %FWF“” - % (0,A7)?
_ _i (0, A, 0" A — 8,A,0" A — 0, A, 0" A" + 9, A,0" AF) — %@LA“GVA”
_ _%OHA,,WA” + %@Aya”A” _ %a“AHaVA”
= LA AY L0, (AU AN — AD,AY).

In the last step the terms A,0,0"A* and —A*0,0,A” cancel each other. The 4-divergence term does
not affect the variation of the action. Thus, we can take the Lagrangian density as

L(z) = —%aﬂAyaMAV.

The conjugate momenta become

oL 00, A, 29m AV
_ 9k _ 2 Y OrAY 19, A,
Py ( DAN T AN >
w AV
9,4, 8§A‘f = 9, A, 686, = — 3y Ay

Thus, the Hamiltonian density will be
. 1 1 .
H(z) = 1, A* — L(z) = —m it + §7rlL7r“ + 58¢A,,81A”

1 1
= —Eﬂﬂﬂ“ + *VAI, - VA

;i( +(VAR)?) — %((WO)M (VA%)?),
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13 Quantization of the electromagnetic field: Lorenz gauge

which is not positive definite due to presence of the temporal component. This will create a problem.

c) Let us quantize the electromagnetic field
APt — AM gk
{- e — —i[-, ].

The fundamental equal-time commutation relation becomes

[Ar(t, @), 7" (t, @)] = in" 6@ (x — ')

[Ar(t, @), A" (t, @)] = [7(t, @), 7" (t, x)] = 0.
In particular, we find the “wrong signed” commutation relation

[A0(¢, ), At &')] = —i 6@ (@ — ).

This is another problem to deal with. We can also see now that the Lorenz gauge condition cannot be
implemented for the field operator A*. In fact,

(04" (8, 2), A (1, 2')] = [A°(t, ) + VAt ), A (t,2)
= [A°(t, @), A"(t,2)] + V. [A(t, 2), A (t,2')]
[A"(f x), 7°(t, )]
uO 6(3)( )

Thus, canonical quantization and the Lorenz gauge are not compatible.

A basis of plane wave solutions to the equation JA* = 0 is given by
AR (K, \; ) = Ny e (k, X)e

where €#(k, \) for A = 0, 1,2, 3 are the polarization vectors. They can be assumed to be real. In addition,
the normalization factor can be chosen as

as in the Klein-Gordon (KG) case. Here wy = |k|, in accordance with the massless dispersion relation.
Expanding the fields, we find

_ d3k L a M e—’ik‘.L M ikx
)= | e v (ol Ve e e e 0,

while for the conjugate momenta we find
d3k 1

V@ Vo 2
> \/chZ (e, N)et (o, N)e ™™ — af (R, A)er (I, A)e™ ).

In order to obtain the commutation relation between the operators a(k, A) and their adjoints it is useful
to isolate the operators using some Fourier transforms

A (x) = —p AP (z) = i Zwk< (R, A) e (K, A)e ke &T(k,/\)e”(k,/\)eikm)

) i Br . )
Z(d(ka /\)Eﬂ(k’ )\)eizwkt + dT(—k, )\)E“(—k, )\)elwkt) = \/W\/ka/ B 123 :ZZ) ezk-m
A
Z/\:(d(k, et (k, A)e wwt — dT(—kz, Ne(—k, ’Lwl,t) \/7 /wk / #h(z) ek,
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13 Quantization of the electromagnetic field: Lorenz gauge

here we have replaced k — —k in the d;f, terms of the A¥(z) and ##(x) integrals and used the fact that

Wk = W_k. So that
\/20.) A“ )—1 —fr“
V w

>k, A)e = V@ W/
3
Za k, )\ 6” k, >\ \/7 —iwt d \/714# /;ﬁﬂ 7zkm

A
A

We can now compute the commutator [a(k, \),af (k’, \')]

d3y x

D lalk, ), a' (K, N)] e (k, A) € (K, X') = d*z

AN

l\J

x (m\/@ [A#(x), AV(ZJ)] eilontthez) g—i(wyt+k y) |

4 :jk [AA“(.I), ﬁ.u(y)] ei(wkt—i-kw) e—i(wk/t+k'~y) +
k:/
— Wi [ﬁ“(x),A”(y)] ei(wkt—i-k:'m) e—i(wk/t-‘rk:"y) +
Wk
1 . . ,
+ A 7ﬁ,l/ ez(wkt+k-m) efz(wk/tqtk y)>’

using the equal-time commutation relations we find
1 ' ) ,
3 falk, A), af (K, X)) e (k, A) € (K, X) = — / R et ithk)x
YoV 2 (2m Wi’ Wik

1 Wk'
— — UV / z(wk wk/)t 6(3) k kl
2 wk/ ( )

=—n" 5<3 (k—K).

(The equalities have to be intended as such if integrated over momentum space.)
We can now multiply both sides by €,(k, A) €, (k’, \') and use the relation €,(k, \) €*(k, \") = naxn. So

that
> falk, A),at (k" M) mys iy = —nax 0P (k — k)
WY

The last equality can be written as

[a(k, ), af (K, X)) sy = — nsw 6 (k — k)
The last equality tells us that if A\ = N we have [a(k,)\),af(k’,\)] = —nn 6@ (k — E') otherwise
[a(k,N\),al (K, \)] = 0.

With analogous calculation we can compute i.e. [a(k,\),a(k’, )]

Bx | By x

> lalk, A),a(k', X)) e (k, \) € (K, A

AN

i Wk [121“( ),fr”(y)] i(wrtt+k-x) Ji(w, t+k y)+
Wg!

i Wi [ﬁ'“(fE),Ay(y)] ei(wkt—&-k‘m) ei(wk/t-‘f-k"y)_’_
Wk
1

_ AL AV i(wrtt+k-x) ji(wy t+k’y)
———— [ (2), 7" (y)] e e 7

69



13 Quantization of the electromagnetic field: Lorenz gauge

using the equal-time commutation relations we find

D la(k,A),af (K, X)) et (k,A) € (K, X) =

&’ (2 3 T]MV/dSZL' :j:/ [ )ei(warwk/)t 6i(k+k')
BV
n u( OJk/ 1 (wrFwpr )t 6(3)(k + k/)
wk/

N |

S =

For symmetry [a'(k, \),al(k',\)] =0
We have finally found the usual harmonic oscillator algebra

[a(k, A), a' (K", X)] = —man 6 (k — &)
[a(k, \),a(k’, \)] = [a (k, \),a (K, \)] = 0.

d) Using the relations

B3k 1 Z( (k, \)et (K, \e ik | (k A (k, Ne zkl)

N
AL _ N i Wk —ikx €M ikx
#h(x) = —Bp Ak _/sz a(k, N et (k, Ne it (k, N et (k, Ne )

VAR (z) = k1 Z(a(k,A)e“(k,A)e*ikm —at (e, Nt (k, Ne ’W)
7 Vo

the normal ordered Hamiltonian will be
A 1
i =—3 /d% (Fuf + VA, VA

1 Br Bk BE e .
:*5/ @2n)? mmz (—eoreon (@(k. ey (o, e = a7 ke, Ny (. )t )

x (k! N yer (', X )em™e — at (!, N et (K, X)) +

— kK (d(k:, Ne(k, e~ — at (e, Ne, (k, )\)e“”) x
X (a(k’,A’)eH(kQX)e—ik'w —at(k, )\’)e“(k’,)\’)eik/x» :

1/ dx  dk K
== wrwi + k- ke, (B, N et (B, N) x
2 (27T)3 mmg)\:’( kWEk ) H( ) ( )

« (d(k7>\)e—ikz _ df(k7>\)eikz> (d(k/’)\/)e—ik’m _ dT(k/7/\/)eik’z) .

The normal ordered term (integrated over space) becomes

3
/ (;177‘;.3 : (&(k, )\)e_ikz — dT(k’ )\)eikw> (d(k/7 )\l)e—ik T &T(k/, )\/)eik m) -

d*x P W ARNAPR 10 2 T NP DT WY, —i(k—K)z |

- W(a(k,)\)a(k,)\)e —at(k', N)alk, \e
— it (k, N)a(k!, X e I 4 (e, N)a! (R, Vel (07

_ (&(k, Na(k', N)e~ i@+t 1ot (g Nat (K, A’)ei<%+w>t)5<3>(k + )+

_ (CALT(k/’ )\/)d(k’ /\)efi(wkfwk/)t + df(k7 )\)&(k/’ A/)ez(wkfwk/)t)(s(?)) (k _ k/)
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13 Quantization of the electromagnetic field: Lorenz gauge

Thus, with an integration over k' in H , we find

.1 3 , ,
== / ;Lk > (Wi = [k[?)eu(k, e (—k, X) <(&(k, Na(—k, N)e >+ 4+ af(k, N)al (—k, X)emk‘f) +
Wk
AN

— (wf + [R[2)e o, N (e, X') (aF (kN )alk, A) + at (K, Na(k, A’))).

With the massless dispersion relation w? = |k|? and then the orthogonality relation €, (k, \)e*(k, \') =
A\, We obtain

= —%/d?’kwk 3 ek, et (k, ) (&T(k, Na(k, \) + &' (k, a(k, X))

AN

== [ @k Y ma (a6 e V)i, ) + 0! (e Nl X))

FBY

- —/d?’kwkzm,\dT(k,/\)d(k,)\).
A
Defining the number operator 7 (k, \) = af(k, A)a(k, \), we eventually arrive at

= —Zm/d%wkﬁ(k,x).
A

From Noether theorem, we find the expression for the momentum
P= /d?’x 2 A, (2) VAR (2):

Br Bk B e .
:/( U mekk/ ( (ks N (B, Ne™ ™ — ot (e, Ne, (e, \)et® )x
AN

x (k' N )er (!, N e — @t (R, N et (!, N e ) 5

3z &k 3K ) . .
B / (27)3 /2wy 2w Zwkk/ en(k, N (k' N') (a(k:, e ™% — af (k) \)et® )
AN

x (&(k’, N~z &T(k’,)\’)eik/z) ;.

Using the previous result, we find

. Pk PK , L v
— mmekk eulle, e (K, N) x
AN

x ((&(k, /\)d(k/,)\l)efi(wk+wk/)t + dT(k,)\)dT(k/,)\/)ei(warwk/)t)(s(B)(k + k/) +

— (&T(k/7>\/) (k, \e —i(wr—wp )t 4 &T(k7)\)&(k”)\’)ei(“”“f‘*’k')t)d(g)(k - k/))

:/;l— ( wkkzeu(kz,/\)e"(fk,A’)(&(kz,)\)&(sz,)\’)e*%w’“t+d*(k,/\)&T(fk,)\’)62“’“t)+
AN

— wike, (R, e (K, A’)(dT(kz, Na(k, \) + ' (k, \a(k, X))).

The terms in the first line are equal to zero due to symmetry reasons, since the integrand is an odd
function of k. This is a consequence of the fact that [a(k,\),a(—k,\)] = [af(k,\),al(—k,\)] = 0
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13 Quantization of the electromagnetic field: Lorenz gauge

Using the orthogonality relation €, (k, \)e”(k, \') = ni/, we obtain

P= /ddk Zwkzmx( (k, X)a(k, ) +&T(kv)‘)&(k»)‘/))

AN

—/d?’kanM&T(k,A)d(k,A)
A
= *anx/d:skkﬁ(k,)\).
A

In both cases, we have the expected operators, except for the time-like photons which carry the wrong
sign:

3
H= —/d%wk a(k,0) +Z/d3kwkﬁ(k, A)
A=1

3
pP= —/dskkﬁ(k,o)+Z/d3kkﬁ(k,)\).
A=1

e) We have found quantities with wrong signs in the commutation relation, the Hamiltonian and the
momentum. This fact has undesired consequences, like imaginary norms for the time-like photons in the
Fock space:

These problems are connected to the Lorenz gauge, which has not been implemented. As we saw in
point (c), we cannot impose 0*A,,. The Gupta-Bleuer method gets rid of this problem by restricting the
Hilbert space to states |¢) such that

(90" Aulg) = 0.

We will implement the stronger condition
" AL [¢) =0,
so that, with the adjoint one (¢| 8“1215‘7) = 0, we obtain the first constraint
(010" Aulo) = (ol0" ALD|0) + (o]0" A |¢) = 0.

Expanding the field 8“;%”, the condition becomes

ke, (k, Na(k, \)e™* |¢) = 0

ZZ/¢%MMA

With the orthogonality relations

ke, (k,0) = —k*e,(k,3)
kle,(k,1) = k"e,(k,2) =0,

we find

kte, (k. 0)e —m( (k,0) —d(k:,3)) I6) = 0.

/ \/ 271’ 32wk
A sufficient condition is that

(a(k,()) - &(k,3)) 1) = 0.
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14 The quantized electromagnetic field

As a consequence, the expectation values of the time-like and longitudinal number operators are equal

(ol (k,0)|¢) = (dln(k, 3)[¢)

and thus all the expectation values of observables previously computed have the correct expressions and
dof:

(6|[|6) = Z / By, (97K, \)[)
(6| Plo) = Z/d%k Ak, \)|6)

14 The quantized electromagnetic field

a) Consider the quantized electromagnetic potential A“(m) Show that the Feynman propagator D%’ (z —
y) = —i(0|T(A*(x)A¥(y))|0) can be written in the form:

d*k ) -yt
DM (r — — —ik-(z—y) )
r (T =) / (2m)4 ‘ k2 + ie

b) The photon propagator could take a simple form only because the summation over the polarization
states was not restricted to the transverse polarizations only. Show that the propagator can be split as
follows:
g _ Y712 g g
Dlé' (k) k2 + i€ - DF (transverse)(k) + DF(Coulomb)(k) + DF(residual) (k)
and explain the meaning and role of the three terms.

c) Compute the commutation relations [A* (), A”(y)] and show where they are non-vanishing. Comment
on the meaning of the result.

d) Compute the commutation relations among the electric (E) and magnetic (B) fields and show that
microcausality is satisfied.

e) Briefly review the quantization of the electromagnetic field in the Coulomb gauge.

a) The Feynman propagator is defined as
iD} (@ — y) = (O[T (4 (2) A (1)) 0)
= 0(z° = y°) (0] A% (2) A ()|0) + O(y" — 2°) (0] A¥ (y) A*(2)]0) .
The first term, when expanding the field into plane waves, becomes
A a3k
0| 4% () A (3)]0) /
(014%(=) )10) V(@2r 32wk v (27)32wy WY

X <o|(e#(k,A)a(k,A)e—ikf+e#(k,A) (k, \e ’“)

x (& (8 X)a(k!, X )e™ Y 4 e (!, X )at (&, X)e™ 7 ) o)

3 3 1./
a a (e, M) (K, X) (O, A)al (R, N[0y e~ kK
\/ 27)3 2wy, \/ 2m)3 2w S50
BE
e (k, Ne” (K", N ) ma 6 (k — k') e~ i(ke—k"y)
/\/%% T e (e Ve X a3~ )
k1 ,
_ " —ik(z—y)
/ 27 Tn an (k,\)e”(k,\) e
3 v
:7/ d’k_n" e~ tk(z—y)
(27)3 2wy,
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14 The quantized electromagnetic field

The second term can be treated similarly. We then have
3k : :
STV (o _ 0,0\, —tk(z—y) 0 .0\ ik(z—y)
DR =) = [ (e (B =) 0 ).
With the change of variable k — —k in the second integral, we obtain

&k , 4 4
Drle—y) == / WZE (00 — g0y =" =9) 4 @y — aO)etens" ) gtk (e w),

We can rewrite the integral as a four-dimensional integral (in d*k), by looking at the term inside the
integral as a residue. In fact, setting

efiko (z°—y°)

fE) =~ (k0 — wi + ie) (K9 + wy, — de)

we have two cases. If 4 > 20 we can integrate f along the contour I't in figure and, using the Residue
theorem,
1
— | dk° f(k°) = Res(— '
5] /F+ FEY) es(—wyg + i€)
= i k® + wy — ie) f(K°
w8 Fen i ()

ciwn (20 —y0)+e(@®—y°)

2wy, — 2te

eiwk(wo—yo)

2wk

On the other hand, the contribution along the semicircle is zero, since

lim k° f(k°) = 0.

|kO|—o00
Thus,
1 —ik% (2% —y) iwp (2% —y°)
2mi (KO — wy + €) (k° + wy, — i€) 2wy,
I(k0)
I
—wy, + 1€
. R(KO)
—-R 0 * R
WE — 1€

With analogous calculations for z° > 9%, by integrating along a contour I'" in the lower half plane, we
find 1 —ik" (2% —y") —iwy (27 —y")
e e
2mi (kO — wy + 7€) (k° + wy, — ie) 2wy,
On the other hand,

e*iko(zofyo)
(kO — wy + i€) (k° + wy, — ie)
e—iko(mo—ya)

Fk0) =

(k0)? — w? + 2iwge + €
efiku(xufyo)

k2 + 2iwge
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14 The quantized electromagnetic field

Writing € instead of 2wye, we have

Bk n _e— k(@ —y")
D (x—y) =1 A0 = ik(=—y)
r(@—y)=i / (2m)3 2mi / K2 tie  ©

I B P,
(2m)* k2 +ie '

With this expression, it can be easily seen that the Feynman propagator is a Green function for the wave
equation with a Dirac delta as a source term:

v 'k - 2\ —ik(z—
O D% (z —y) _/wm(k Je K@)

= "6 (z —y).

b) From the above steps, we find that the Fourier transform of the Feynman propagator is

v _n[l/l/ 1
DY (k) = = — Mk, N)e” (k, A
F( ) k2+7;€ k2+’l:€ ;( ,’7)\)\)6 ( ’ )6 ( ’ )
- ie”(k A)e” (k, A) +#e“(kz 3)e”(k,3) — ;e“(k 0)e”(k,0)
k? + ie ’ ’ k2 + ie ’ ’ k2 + ie ’ ’

=Dl (irans) (F)

On the other hand, reminding that n = (1 00 0),
k¥ — (kn)n* k¥ — (kn)n”

V(kn)2 — k2 \/(kn)? — k2
kPR — (kn)kFnY — (kn)k"nk + k2ntn”

—nfn”

e’ (k,3)e” (k,3) — e (k,0)e” (k,0) =

(kn)? — k2
_ kMEY — (kn) (kY + kYnt) n k*ntn¥
N (kn)? — k2 (kn)? — k2’
so that
1 k2ntn¥ 1 k*EY — (kn)(kMn” + kYnt)
DL’ (k) = DhY k
7 (B) = Dpirans) (F) + 12 + ie (kn)? — k2 Tt (kn)2 — k2
nfn? 1 k*E” — (kn)(kFn” + EVnt)
=D k
F(trans)( ) + (k?’l)Q _ k.2 + k2 + e (kn)Q _ k.2
:D;l(/Coul)(k) :Dﬁ;?res)(k)
= D/Ié'lgtrans)(k) + D;l(/COul)(k) + D?Zres) (k)

The transverse part takes into account the transverse photons, which reflect the physical dof. On the
other hand, in our particular frame of reference the Coulomb term in position space is

v d'k v ik(z—
D;(Coul) (LE - y) = / (27’(’)4 D;(Coul) (k)e (=)

4 0510
_ / d*k oM9 k(@)
@2m)* |k
B3k ez’k:'(:n—y)
— 6u06uo ) o_,0 /
@0 | e
The integral is the anti-Fourier transform of the Coulomb potential, so that

1

v 0 v 0_,0
D;(cmﬂ)(l’*y) =195 5(2" —y )m-

0]



14 The quantized electromagnetic field

In the interaction theory, the contribution to the transition amplitude due to a photonic propagator is
given by terms of the form
JuiDE Iy
where j,, and j, are currents (e.g., in Quantum Electrodynamics j, = j, = —epy,1)). Thus, D%COHI)
propagates instantaneously the interaction with the charge distributions jo and j{ only (which is a
Coulomb interaction). The residual term does not give any contribution, since the continuity equation
in momentum space becomes
kM. =k"j, =0,

so that j, iD;”(res) j,=0.

c) Expanding the potential field A" into plane waves, we find
- A 3k A3k

At (x), AY = / X

[A%(@), A"(w)] /@2, /(@) P2 2

AN

X {e“(k:, Nk, N~ 4 ek, Na (k, \)eth=,
(K X )a(k', X )e ™™V 4 e (), Xl (', \)e'™ V]

~ “ 3 31./
[A“(x),A”<y)]:/\/(2‘jr)lz2wk \/(dk D ek, Ae” (K V) x

27r)32wk/ AN

X ([&(h A),al (K, X)} e~ tkeik'y | [af(k, A),a(k’, A’)]ei’%—i’f’y)

3k , .
o [ ER(ik(a—y) zk(wy))
g / (2732w, (e ¢
= —in""D(z —y),

where we have set

&k " .
) = —i | ——= " (emik(amy) _ pik(z—y)
D(z =) Z/ (27)3 2wy, (e € )

=DM (z—y)+ DT (z—y) = 2?}?(D(+)(x - y))

Let us write D(*)(z) in spherical coordinates, using the fact that wy, = |k| and setting r = ||,

3
D) (z) = —i/ (dkei(wktkz)

27T)32wk
+ 2 +1
_ _Z/ o dwy, &e—iwkt/ d(COSﬁ) eiwkrcosﬁ
o (2m)2 2wy 1
11 [t ol
- = wg(r—t) _ —iwk(r+t
= 872 1 A dwk (6 w( ) (& k ))
. _i} /+oo de (eiwk(r—t+ie) _ e—iwk(r-&-t—ie))
e—0+ 87T2 ™ Jo

. 11 1 1
= lim —i——— — + — .
es0t  Sm2r\r—t4ie r+t—ie

From this we can find

D(z) =2§R(D(+)(z)) = lim _11%( i, )

e—0+ 4Arn?vy r—t+ie r+t—ie

i 11 € €
im ———~ - .
=0t Ar2r\(r—t)2+e (r+1t)2+ ¢
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14 The quantized electromagnetic field

Using the expression for the delta
1 €

=M e
we can write 11
D(z) = —E;(é(r —t)—=6(r+1)).

Using the relation

5(r? —t?) = %(5(7* —t)+6(r+t) = ie(lt) (6(r—t) = 8(r+1)).

r 2r
We obtain

We can finally write

D —y) =~ et) ((x ~ 1)?) .

As a result, the electromagnetic potential field components commute everywhere except that on the light
cone. This is not a physical result yet, since the potential is not a physical quantity. Nevertheless, from
this relation we will prove that the components of the electromagnetic field commute outside the light
cone, that is the measurements of these observables do not interfere between each other, except in the
case of light-like separation. The massless hypothesis guarantees that the photons can travel only at the
speed of light.

d) Now, the electric and magnetic fields are
Ei:aiAO_aOAi
Bi = %9, Ay
Thus, we can compute the commutation relations between the components.
E'(x), B(y)| = [0 (2), 047 (y)| — [04°(2), 0047 ()| — [0 4! (), 054°)]| + 05 4°(x), 03 A1)
= 000 [ A (2), A ()] — 0,09 [A°(w), 41 ()| — 900} [ A' (), A°y)| + 00 [ A°(w), A(y)]
— _i(niiagag + 8;(9;)1)(:5 —y).

On the other hand, the function D satisfies 9, D(z—y) = —0lj D(z—y), so that setting simply 05 D(z—y) =
O*D(x —y)

[Ei(x), E‘j(y)} - i(nijaoao + 6i8j>D(x )
_ _i(aifaoao — aiaj)D(m —y).

Analogously,

|Bilw), By(w)] = [eunt 0 A' (@) ejomn 051 A7 ()| = it ejan 0505 | A' (), A" ()]

= —i €kt €jmn (—0"") 0RO D(x —y) =i Y _ €ikn €jmn 0L D(z — 1)
= —i(éijékm — 6im6jk:) 6’;8;”D(x — y)

— (05 V2 — 0707 ) Dz — y),

where in the third step we used again the fact that 9 D(z —y) = —0//D(z — y). But the function D
satisfies the wave equation: V2D(x —y) = 900°D(x — y), so that

|Bi(a). B, (w)| = =i (85,0000 9707 ) Dz ~ )

= —i(6,0°0° — 0,0, ) D(x — y).

7



14 The quantized electromagnetic field

Last,
[Bi(2), By ()] = = [0 As(2), cjmn 0 47 ()] + [0 Ao(2), €jmn 07 A" ()]
= _Gjmna(g)ga;n [Az(x)a An(y)] + Ejmnaixa;n [A0($)7 An(y)}
=i €jmn0y 2°0™mD(x —vy)
=i € 0°0™D(z — y).
The commutators are all second derivatives of the function D(x — y), which vanishes everywhere but on
the light cone. Thus, the commutators vanishes too in such regions, so that the measurements of these

observables do not interfere between each other, except in the case of light-like separation. This fact
proves that microcausality condition holds true.

e) The quantization in the Coulomb gauge

V- A(z)=0
is simpler than the quantization in the Lorenz gauge, because the redundant dof are suppressed from the
very beginning. Nevertheless, the theory will not be manifestly Lorentz invariant.

With the fixed gauge, A° is no longer a dynamical variable, in the sense that it is simply determined
by the charge distribution j°. If there is no source, we have A° = 0. On the other hand, the gauge
condition in momentum space becomes

k-A(k,t)=0,

so that A is perpendicular to the momentum. Splitting the vector potential as
A=A, +A

we can rewrite the orthogonality condition as A = 0. Note that A reflects only one dof (namely, the
direction of k), while A represents the physical dof, those we will work with. The conjugate momenta
will be

™ :EJ_ = —(80AL —VA(JJ_) = —(90AJ_.

Thus, v, = E, has two dof and the issue encountered in the Lorenz gauge quantization is resolved.
However, the quantization cannot be performed simply as

A ,my— A7
by implementing the commutation relations
(A% (t,2), 7 (t,y)] = 167 6P (2 — y)
[A% (t,2), A (t,y)] = [ (t,2), 7 (t,y)] = 0.
In fact, the first condition does not fulfill the Coulomb gauge:

=i 07 9268 (& — y) £ 0.

This is a consequence of the fact that A and # are not totally independent, but they must satisfy the
transversality condition. In order to solve this problem, it necessary to implement the projection of the
commutation relation

[A'(t, @), 7 (t,y)] = 167 6P (2 — y)
into the plane orthogonal to the momentum. The projector operator acts as

k(k-v)

PL'U:’UL:'U—W,
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14 The quantized electromagnetic field

so that

Vi = (51']' — |k;> ’UJ.

A
=(PL)ij

Thus, the standard normalization

d*k ik (m—
6ij 0¥ (x — y) = / W(Sij e~k (z—y)

3
®3) _ dk kiki\ ik (m—
6J_ij(x_y)_/(27r)3<6ij_ |k:|; e~k @),

A (t, ), 7 (t,y)] = 60 (x —y)

(A (t, ), A (t,y)] = [FL(t,2), % (t,y)] = 0

becomes

The commutation relations

are in fact the correct ones.

Let us drop out the symbol L. For the expansion of the field Ain plane waves, we need only the transverse
polarization vectors:

2

A(zr) = /(d% Ze(k,)\)(&(k,/\)e’ikz + dT(kz,/\)e““”>,

27)3 2wy, =1

so that

A A 3 w 2 . .
E(z) = —0"A(z) = z/ L(lzi)g \/E; e(k, \) (&(k, Ne e — af(k, )\)e“”)
B(z) = /df”kk x B(k,t) =i %ﬁst x ek, ) @k, e~ ™ = af (k, \)et).
A=1

The operators a(k, A) and their adjoints satisfy the commutation relations

[a(k,\), af (K, \)] = 6 03 (k — k)
a(k,N),a(k', \)] = [a'(k,\),af (K, \)] = 0.

In the calculation is crucial the presence of the transverse delta function, which agrees with the relation

2
kik;
> ek, Nej(k, A) = 6;; — Wg.
A=1

The normal ordered Hamiltonian and the normal ordered momentum will be the correct ones
2
H= /dSk > wial(k, Na(k, \)
A=1
2
pP= /d3k > kal(k, Na(k, ).
A=1

Last, the Feynman propagator in the Coulomb gauge turns out to be the transverse part of discussed
previously: N B N
OIT (A’ (2) A ()|0) = iDF,,,., (& — ).
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15 Interacting quantum fields

Interacting fields

15 Interacting quantum fields

a) Define the Schrédinger, Heisenberg and interaction pictures, and write down the precise relations
among the three (for the state vectors and for the operators). What is the advantage of the interaction
picture over the other two, when dealing with interacting quantum fields?

b) Define the time evolution operator U(t, to) in the interaction picture, which satisfies the equation:
o . .
ZaU(Lto) lnt( )U(t,to), U(to,to) =1.

Write the equation in integral form. Perform a perturbation expansion of the equation and show how to

arrive at the final result:

A 1
Ot ) = Y 2 (1) / s .. / b T (1) . T (t2)
n=0

c) State Wick’s theorem. Prove it with a simple nontrivial example. Why is it important?

d) Write down the Lagrangian density of QED. Write down the Fourier expansion of the photonic and
fermionic fields in the interaction picture. Write down the first order contribution S to the scattering
matrix for QED in terms of the fields. Show that it can be split in eight different parts, each corresponding
to a different physical situations. Explain what these physical situations are.

e) Why do the above process give no contribution to the scattering matrix? Show it explicitly for one
case.

a) In the Schrédinger picture, states evolve according to the Schrodinger equation, while operators (whose
classical analogue are time independent) do not change in time:

|a,t>s = e~iHt |y, 0>S
O3(t) = O° = 0(0).
The first equation arises from the Schrédinger equation
i%|a,t>s = H |a,t)®
On the opposite, in the Heisenberg picture the states do not change in time, while the operators evolve:
o, )" = )" = |, 0)
OH(t) _ eiﬁtOH(O)e—th.
The second equation arises from the Heisenberg equation

P S
i3 0%(0) = [0"(0), )

The interaction picture is in between the previous two. It is used when the Hamiltonian can be divided
in two parts R X R
H = Hy + Hiys.-

Usually, H, is the free part of the Hamiltonian, while Hiy is the interacting one. The evolution is defined
as

la, t)! = ¢ot |, 1)

OI (t) — e’L‘HotOSe*ngt.
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15 Interacting quantum fields

Here the free Hamiltonian does not evolve, i.e. it is in the Schrédinger picture: Hy = ﬁg The equation
of motion for the states will be

i G, 0
il ) = i(iHo)e " o, 1) + i et o, 1)
= —Hy o, ) + ot | |, t)°
= —Hy o, ) + etHot f—iHot giHot la, t)®
= —Hyla,t)' + HI(t) |a, ).

From the fact that s g
Hé(t) — ezHOtng—zHOt — Hg = H,,

we find 5
i5|0"t>1 = HiInt(t) ‘Ot,t>1,

which means that the states evolve with the interacting Hamiltonian in the interacting picture. On the
other hand, for the observables we obtain

iaOI(t) =i (iHp)eHot QS e=tHot 1 j oot OS=iHot(_jF1,)
= —HyO'+ O'H, = [O", Hy
i.e. the observables evolve with the free Hamiltonian ﬁo.
The three pictures are related as follows:
|a’O>S = |a70>H = ‘O‘50>I = ‘04,0>
05(0) = 0"(0) = 0'(0) = O(0)
for the initial states and operators;
o 1)® = e~ 1 ) !
OS — e—iﬁtOH(t)eth
for the Schrodinger-Heisenberg correspondence;
o, 1) = " fa, )°
Ol(t) — eiﬁoto/\sefif{ot
for the interaction-Schrédinger correspondence, and
|Oé, t>I _ eiflotefiflt |a>H
OI (t) — eiHOtefiI:ItOAH (t)eilﬁltefif[ot
for the interaction-Heisenberg correspondence.
The three pictures are all equivalent, in the sense that the expectation values are the same:
S N S H, 4 H I A i
(@, t|0%a,t)” = (|0 (t)|e) = (a,t|O'(t)]e )
In fact,
S ~ S H e NN N H
<Oé7t‘OS|Oé,t> _ <a|e—the—thOH(t)etheth|a>

Y alOP(#)]a)"
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15 Interacting quantum fields

and analogously

I ~ 1 S o~ s N A A S
(o, t|OY ()|, 1) = (v, t|etTote=tHot OS gitlot o =iHot| o )
S A S
= (o, t|0%|a, t)
The interaction picture has the advantage that the operators evolve freely, so that the theory of the
free of Klein-Gordon, Dirac and Maxwell fields can still be used even if the fields are interacting, and the

states evolve with the interaction Hamiltonian only, so that we need only to worry about the evolution
of the states.

The formal solution for the equation for the states in the interaction picture is

ja, t)' = ettt [, 1) = ¢iflotemifl(t=t0) g 4)S
_ eiHOte—iEI(t—to)e—iI:Ioto |a,t0>1
Setting
U(t,to) _ eiI:IOte—iI:I(t—to)e—ifIOt07

we find that

o, t)! = U (t, to) |, to)' -
Moreover, U(to, to) = 1 and

i), =il
ot ot

- HIIIlt( ) |a7t>1 1nt( )U(t,to) |a,t0>1,

Ult,to) |, o)

so that 9
ZaU(t,to) 1nt( )U(tatﬂ)

Solving the equation for U is equivalent to solving the equation for the states. In addition, in this case

we do not have to worry about the initial state (the initia condition is always U(to,t0) = 1). In integral

form, the equation becomes

Ult, to) = 1—2'/ dr H- (1)U (7, to).
to

Thus, we find

Uft, to)—l—z/ dty HL , (t1) + (- )/dtl/ dty HL , (t1)HL  (£2)U (ta,10)
= i /dtl/o dts - - /" 1dt HE(t1) - He (tn).

The integrals can be rewritten changing the integration extremes. In particular, we can prove by induction
that

t t1 tn—1 1 t t t N
[ [t [T Bl ) = o [ [t [an T () B 6)
to to to n. to to to

1 .
== dty dty - - - dt, T(Hmt(tl) H}nt(tn)),

[tO )t]n

where T is the time-ordered product

T(fh(t) - H(ta)) = Bhy(ti) -+ By (ti,), 1, = >t
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15 Interacting quantum fields

ta

Ay

toF--

~+
o
&+ - -

t1

Figure 1: Decomposition of A in the case n = 2.

For equal-times this definition is consistent, since the operators commute. Now, for n = 1 the proof is
trivial, because T(Hllm( 1)) = HL,(t). We now prove it in the simple case n = 2. We want to compute

t t1
12 = / dtl / dt2 HiInt(tl) HiInt(tQ)'
to to

The integration extends over a triangular area in the ¢; — ¢o plane. As sketched in Fig 1, when the
boundaries are suitably chosen one may as well integrate first over the variable ¢; and then over ts.

12:/ dtl/ dt? mt(tl) mt(tQ /dtQ/ dtl mt 1nt( /dtl / dtQ mt 1nt(t1)

In the second step the integration variables have been renamed, t; <> to. Adding up the two alternative
but equivalent forms of integration, we arrive at

t t1
2 / dty [ diy HL (1) L, ()
to to

t t1 N . t t R .
:/ dtl/ dt2HiInt(t1)HiInt(t2)+/ dtl/ dty Hiy (t2) Hiy ()
to to to t1
/dtl / dt2 mt )Hmt(t2)>

The same procedure can be extended to all the higher-order multiple integrals. Let us suppose the thesis
to hold for n — 1. We want to compute

In:/ by dty -ty T (Al () - Al (8) )
[to,t]

We can see that the cube [tg,t]™ is decomposable in

n

[to, t]" = U Aj,

i=1

where A; = { (t1,...,t,) € [to,t]" | t; > t; Vj =1,...,n}. Further, A; N A; has zero measure for i # j.
Thus,

In

I

1
o~ }\

by dty -+ dty T(Hhy () - (1))

—_~—

dty dta - - dty, Hllnt( )T(Hmt(tl) ‘Hilnt(ti) T Hllnt(t ))7

|

s
Il
_

i
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15 Interacting quantum fields

where the factors with the tilde do not appear. The integral over A; can be written explicitly as

/ dty - dt, HL(t )T(Hmt(tl) H/I:(/> i (t )):
A;

t —_
[ [t dnedt, B ()T (B0 (0 L (0)
to [to,tq]™t

—_~—

ti t1 ti—1 tn_1 ) e~
(n—1)! /dt/ dtl/ dty - / dti---/ by FIL () EL (1) - L () - L (1)
to

where in the second step the theorem for the case n — 1 has been used. With a family of changes of
variables

t; — t1
t1 —> to

ti—1 —t;,

we obtain

[t B )T (b (1) Bl (2 (62)) =
A;

t tl tn 1 ~
:(n—l)!/ dtl/ dtQ.--/ dt, HE (t1)--- HL (tn).
to to to

Eventually, the thesis is proved:
n n—1 R
=> (n—1)! /dtl/ dty - / dt, HL (t1)--- HL, (t,)
=1 to

/ dt, / dts - / dtn, HL (t1)--- HL (t,).

Hence, we have the so-called Dyson series for the time-evolution operator

oo
Ult, to) Z

where the zeroth term has been set equal to 1.

/ tydty -t T(Hhy (1) Ly (1))
to,t]"

c) Wick’s theorem allows to express the time-ordered product of operators as normal ordered product
plus a sum over all possible contraction of the product:

T(01-~-On) =01 0p: +3 :01--0;i---0;--- Ot +

£ [
1<J
+ Z :Ol--~Oi~-~Oh-~-Oj~--Ok--~On:—I—highercontractions.
i<ih<k, I e
i<h, h#j#k

A contraction is only defined for fields of the same type (both bosonic or fermionic) as follows:
AB = (0|T(AB)|0).
i3 = (0|7 (AB) o)

For a single contraction in a normal-ordered product, we have



15 Interacting quantum fields

where A is the number of fermionic changes done to move O; on the left besides Oj. For double contractions
in normal ordered products,

:01---0;-- 00O - O i = (=1)MH :OAl...OAi...OAh‘..OAj...Ok -0, Ol_lo Ohék
N e—8E8

where A and p are the number of fermionic changes done to move Ol on the left besides Oj and Oh also
on the left besides Oy, respectively. The formula can be generalized to higher contractions. We will prove
it for the time ordered product of two fields A and B.

We assume that the field are both bosonic or both fermionic (otherwise no contraction can be taken).
We know that o o R R

T(A(@)By)) = O ~ y*)A()By) + cO° — 1) By)Alw),

with € = %1 for bosonic and fermionic fields respectively. Let us assume that 2° > 3°. Dropping out the
space-time dependence, we find

T(A(x)B(y)):AB:A B 4 AMBE) L AGI B 4 A BE)
O BH) 4+ eBOAH) 4 A BE 4 AOBE) 4 [AD) BO,
::AB: +[A®) B,

c;

where L-, |- denotes the commutator, and [-,-]; the anti-commutator. On the other hand, the field
[A), B+ is a scalar function (multiple of the identity operator) and in particular

(A0, BOL = OI[AD, B o) = 0] A B
= (0|AB|0) = (0|T(AB)|0) = AB.
(0[4B(0) = (O[T (4B)[0) = A
For y° > 20 the calculations are analogue, so we have the final result

T(A(x)B(y)) =:AB: AuB

d) The Lagrangian of the Quantum Electrodynamic is

(1% 1 1 -
Loep =1 (2$ — m) P —ZF#,,F“” - 5(3HA”)2 —epy P A* .
| LDirac ! Le.m. ! Ling

The Fourier expansion of the fields is the same as that for the free fields:

\/7\/72 (p, s)u(p, s)e” """ +d' (p, s)v(p, s)e ”””)

bi@) = W\f 3 (4. 5)5(. s)e* + b (p. (. s)e'*")

— ﬂ 1 H —ikx 4 of P etk
)_/\/sz( (e N)et(k, M) 4 a (k, A)e (B, A)ei™).

The interaction Hamiltonian in the quantized theory is

’}:lint =e€ :QZ’Y;L’L/A}AA*M 5

so that the scattering matrix S = U(+o00, —00) is

8

dzy---d'z, T(:&(zl)mﬂ/}(zl)ﬁ”(xl): e J(xn)'yuni/;(xn)/i“" (zn): )
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15 Interacting quantum fields

The first order term in the Dyson series is

S — —ie/d4x 1;(1:)7”1/3(33)/1"(@ .

Due to the fact that o R L R
poch+d,  pocd+df,  Atoca+al,

we obtain eight different terms in S, Namely, we have (be careful to normal ordering):

51(1) e d4x d3p/ d3p// d3k‘/ ﬁ ﬂ 1 Z y
Ve P e e oy Vaee S,

(E(p/’ $)d(p", 8" )a(k', N ) u(p', ')y, 0(p", 8" )e" (k' , N )e =10+ 4K (&)
+b(p',8)d(p", s")al (K, N) u(p', s ), 0(p", s")e" (K, N )e "0+ =Kz (b)
+ 0T (", s")b(p', s a(k', N ) u(p', s )yua(p”, s" e (k' N e~ /@' —p"+k)z ©
+ b1 (p", s")b(p', ")t (K, N) u(p, 8" )y, ti(p”, s et (k' N )e ="' —#"' =Kz @)
—dN(p!,)d(p", 5"k X ) oD 5 VD (" 5 )b (k! X Yo~ P4 (e)
—d'(p',s"d(p",s")al (K", N)v(p, s )y, 00", 8" )e" (K, N)ei(=p"+p" =)z ()
+dt(p', )b (p", s"alk', N) v(p', ) yu(p”, 8" ) (K, N )e 1P =P +k)e (&)
+di(p', st (p”, s"al (K, N ) v(p', 8 )yua(p”, ") et (K )\/)ei(P'+;0”+k’);c) _ (h)

Thus, we will have non-zero matrix elements only if the initial and final states contain the correct number
of creation and annihilation operators, so that the number of & matches the number of af in S M and so
on.

Let us give the following graphical representation of the terms in the expansion:

i § : A

€T x
b bt d dt a af Ap(z —y) D' (z —y)

time
N,

Then the eight terms of the expansion can be represented as follows:

DAY AT Y W

which correspond to:

a) Annihilation of a fermion, an anti-fermion and a photon;

¢) Photon absorption by a fermion;

)
b) Annihilation of a fermion and an anti-fermion, by creating a photon;
)
d)

Photon emission by a fermion;
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15 Interacting quantum fields

e) Photon absorption by an anti-fermion;

f) Photon emission by an anti-fermion;
¢) Annihilation of a photon, creating a fermion-antifermion pair;

)
)
)
h)

Spontaneous creation of an fermion, an anti-fermion and a photon.

e) At the end of the day, all these processes are kinematically forbidden. For example, for (a) we must
have the vacuum as final state, while a fermion f,, s,, an antifermion f,, s, and a photon ~; x as initial
state. All other choices give a null contribution. Thus, the only relevant matrix element in this case is

. B d3pl dS 1 d3k'
0151 . . - 4
OIS o1 oo ) = i€ ¢ 2m) /(21 Wy m ZA

<0|b<p',s'>d<p",s">< A)bwpl,sl)d*(pz,s?) (k, \)10)
U(p’,S’)%f(p” el (k! N eI

d3 / d3 " d3k/
\/ 2m)3 /(27 \/ Wyt \/2wk y ZA

6@ (py — p')o® >(p2 —p )5<3>(k — k)8, 505,57 Ornr X

u(p', )0 (p", 8"t (K, N )e P

= _726 4 e 7L — —i( i+ 2+k)g:
N m/d x\/j wpz T (P 51)70 (P2, s2)e (k, A)e T
\/?\/7 ! \/ﬂ w(p1, 51)7u0(P2, s2)€" (k, ) (277) 5 (p1+p2—|-k)
P2

In general, for each of the eight processes previously described, we will end up with Dirac deltas of the

form
54(:|:p1 :|:p2 + k)

However the system consisting of the 4-momentum conservation and dispersion relations

iplipgik;:O
k? =

has no solution for all the eight combinations of signs. For example, for (a) we have

p1+p2+k=0
k2 =0 = pi4pit22mpe=k = m’+ppa=0.

2 .2 2
pi=p2=m

m? +\/m? + |p12\/m? + |pa]? = p1 P2 =0
Vm? + |p12\/m? + |po|? = p1 - py — m?.
Taking the square of both sides

m* +m?(|p1|* + |p2/?) + [p1*[p2|* = m* — 2m®py - Py + [p1 - pof?
m?|p1 + pa|* = [p1 - po|” — [p1 *lp2f” .
>0 <0 for Cauchy-Schwarz

The only possibility is that p; = —po, but in this case the momentum conservation tells us that £ = 0
(a photon with null momentum), which is not possible.
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16 Quantum Electrodynamics

16 Quantum Electrodynamics

a) Write down the Lagrangian density of QED. Write down the Fourier expansion of the photonic and
fermionic fields in the interaction picture. Write down the second order contribution S to the scattering
matrix for QED in terms of the fields. Explain how Wick’s theorem is modified by the presence of normal
ordering.

b) Write down the eight relevant terms of the Wick expansion of S®). With the help of Feynman
diagrams, explain what they represent physically.

c) Write down Feynman rules of QED in coordinate space.
d) Write down Feynman rules of QED in momentum space.

e) Using Feynman rules, compute the scattering matrix for the scattering in which two electrons with
momenta and spin p1, s1 and pa, So in the initial state are scattered into the final state with pf, s} and

/ /
Do, So-.

a) The Lagrangian of the Quantum Electrodynamic is

4

L Il Il |
LDirac Le.m. Ling

(1% 1 1 -
Lqep = ¥ <;$ - m> b= Fu ™ = S (0 A" —ey A

The Fourier expansion of the fields in the quantize theory is the same as that for the free fields:

(2) = W\fz (p.5)u(p. )" + d!(p, $)o(p. 5)™*)

Y(z) = \/7\/»2 (p. 5)0(p, 5)e™ P + b (p, s)u(p, 3)6”“)

)Z/\/CZ%\/;TZ( E(k,Ne _““”+dT(k7>\)e”(k,/\)eik”).

The interaction Hamiltonian in the quantized theory is

@>

Hing = € s p A,
so that the scattering matrix § = ﬁ(+oo, —00) is

S = Z (—ie)” /d4sc1 . --d4xnT(:@(ml)vﬂiﬁ(:ﬁl)fi“(m): :12(35”)7“”1/3(95“)14”" (mn))

n=0

The second order term in the Dyson series is

—ie 2 S ~ ~ £ ~ ~
50 = 5 [ ateaty T (-d@md @A @) 0 dwAw): ).

We can use Wick’s theorem in the simplified version for time ordered product of factors within a normal
order: contractions of fields within the same normal order do not enter. In fact, they would produce the
divergent factors Ap(0) and D%”(0), which are removed by the normal order.
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16 Quantum Electrodynamics

b) Thus, using Wick’s theorem

—ie)? > - A >
g ) / o d'y (@)@ AP (@)b)1d @A W)+ (a) no contraction

—ie2 B p 2
(Zie) / dad'y D@ D@ @I WA @+ (b

JCd4 JJ(x)7H¢(x)A“(z)i/i}(y)’yyw(y)A”(y) + (C) single contractions

d*z d4y 1?(x)’yﬂw(x)/ll“(x)iZ(y)v,ﬂlb(y)A”(y) + (f) double contractions

d*z dYy :1{?(x)y,ﬂz;(x)/ilu(x)qg(y)%w(yw(y): . (h) triple contraction

We will have non-zero matrix elements only if the initial and final states contain the correct number of
creation and annihilation operators, so that the number of @ matches the number of 4 in S, and so
on. Thus, we can graphically represent the above terms as follows.

(a)

These diagrams are representatives of a class of diagrams, with the same number and type (bosonic or
fermionic) of internal and external lines. For example, (a) corresponds to 64 = 8 x 8 diagrams, coming
from the eight terms in the expansion of

:(b+d"(d+ by (a+ah): .
The diagrams represent the following physical situations:

a) All terms are kinematically forbidden, because of the 4-momentum conservation together with the
dispersion relations. Thus, they do not represent physical situations.

b) The terms which are not kinematically suppressed are four: fermion-photon scattering (bi), antifermion-
photon scattering (bii), fermion-antifermion pair annihilation into two photons (biii), a fermion-
antifermion pair creation by two photons (biv).

UK XK

ii) (biii) (biv)
¢) The same as (b), as we can see with the change of variables x <> y and indices p <> v.

1
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16 Quantum Electrodynamics

d) The terms which are not kinematically suppressed are three: fermion-fermion scattering (di), antifermion-
antifermion scattering (dii) and fermion-antifermion scattering (diii). Again in each case there is a
digram and an exchange one, with the fermions or antifermions exchanged. Thus, a minus sign appear.

(di) (dii) (diii)
e) The diagrams represent an interaction of a photon with the Dirac sea, resulting in fermion-antifermion
creation and annihilation.

f) The diagrams represent an interaction of a fermion or antifermion with the photonic vacuum, resulting
in a creation and annihilation of a virtual photon.

g) The same as ().
h) Here we have a vacuum fluctuation. However, the contribution to the S-matrix due to all bubble

diagrams is a phase factor, which does not change the physics. Thus, it can be neglected.

c) d) To evaluate the S-matrix elements at a given order, we can use the Feynman rules for QED.
They allow to write directly the algebraic expression for the matrix elements in both coordinate and
momentum space, by resorting to a graphical representation of the different elements entering the Dyson
series, without having to start from the Dyson expansion, thus saving a lot of work.

Feynman rules in coordinate space

1) To evaluate the matrix elements of S all topologically distinct diagrams with n vertices are drawn.
To every vertex, we assign a coordinate x;. The algebraic expression is obtained as follows.

) Assign to each vertex the term —iey,,.

) To each internal fermionic line between the vertices x; and z;, assign (Ap(z; — ;).
4) To each internal photonic line between the vertices z; and x;, assign i D% (z; — ;).
) To each external fermionic line of momentum p and spin s, assign:

o Nyu(p,s)e” "% for an incoming fermion going to x;;
e N,u(p,s)e’™ for an outgoing fermion coming from z;;
e N,7(p, s)e~"%i for an incoming antifermion going to z;

Z' X . . . .
o Nyu(p,s)e’?™ for an outgoing antifermion coming from z;.

The normalization factors is set to be

6) To each external photonic line of momentum k and polarization A, assign:
o Nie'i(k,\)e~ i for an incoming photon going to x;;
o Nie'i(k,\)e’*@i for an outgoing photon coming from ;.

The normalization factors is set to be
1 1

(27)% 2wy

N =

7) Integrate over d*zy ---d*xz,,.

8) To each closed fermionic loop, assign a factor —1.
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16 Quantum Electrodynamics

Feynman rules in momentum space

i)
ii)

iii)

iv)

vi)

vii)

viii)

ix)

To evaluate the matrix elements of S () all topologically distinct diagrams with n vertices are drawn.
To each internal fermionic line assign a momentum p; and to each internal photonic line, assign a
direction and momentum k;. The algebraic expression is obtained as follows.

Assign to each vertex the term —iey,,.

To each internal fermionic line, assign

. ) ]ﬁl +m
7AN =i
r(p) pi —m? + ie
To each internal photonic line between the vertices x; and x;, assign
o —imHiti
iDM () = —5—.
r (k) kP + e

To each external fermionic line of momentum p and spin s, assign:

u(p, s) for an incoming fermion going to z;;

e
(

° N u(p, s) for an outgoing fermion coming from x;;
e N,7(p,s) for an incoming antifermion going to x;;
e N,u(p,s) for an outgoing antifermion coming from x;.

The normalization factors is set to be

To each external photonic line of momentum £ and polarization \, assign:
o Nieti(k, \) for an incoming photon going to x;;
e Nieti(k, ) for an outgoing photon coming from x;.

The normalization factors is set to be
1 1

To each vertex with incoming/outgoing fermion/antifermion of momentum p;, incoming/outgoing
fermion /antifermion of momentum p; and incoming/outgoing photon of momentum k;, assign

Ny =

2m)46@ (£p; + pj + ky).

4 4
Integrate over (‘127{7)14 e (d%k)a _

To each closed fermionic loop, assign a factor —1.

Note that the n! factor in the Dyson series does not appear. This is a consequence of the permutation of
the vertices.

e) Let us consider the Mgller scattering of two electrons. It is a second order process, so that we must
draw a diagram with two vertices. The only two possible Feynman diagrams are

’oo /oo
p1,81 I, P2, Sg )
Pas Sg P15 51
T T
Y Y
P1, 81 p1, 81
p2,s2 b2, 82
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17  Electron-muon scattering

The two diagrams are related by an exchange of identical particles. Thus, they are related by a minus
sign. Using Feynman rules, we obtain

(7) (2)+(5) (4)

I
Sy = /d4m d*y Ny Ny, a(pl, ;) (—iey,)u(py, 1) e P PDT DI (z — y) x

X Ny Ny (0, ) (—iey, Ju(pa, s2) P75 — exchange (p}, s} ¢+ v}, 5b)
L |
(2)+(5)

= *62/d4xd4pr;Np1Np;Np2 w(pl, 1) uu(pr, s1)U(Ph, s5) (P2, s2) %

x e~ PPz =i P2 =Py DIV (1 ) — exchange(p’l, st — ph, sé)
Fourier transforming the Feynman propagator and integrating over the coordinates, gives

Spi = *62/d4r d*y Ny, Np, Ny Ny, @(D1, 81)7,0(p1, 51)8(P5, 85) 7 u(p2, 52) %

) , . , d*k )
X e_l(pl_pl)ze_l(m_p?)y/ iDM (k) e~ Ry exchange(p’l,s’l — p’Q,s'Q)

(2m)*
2 4 d4k — ] — !
= —€ d yw Np’lele’szz U(ph51)7uU(P1>Sl)U(p2752)’YVU(P2782)><

x (27)46W (py — p| + k) e 71 P27P2Y DIV (1) FY — exchange (p’l, sy« ph, s’2>

d*k _ _
= —¢? / (27T)4 NpllN;vl NP’QNPQ u(pllv Sll)f)/uu(pla Sl)u(pév SIQ)VVu(an 32)><

x (2m)46@W (py — p + k) (2m)6W (py — ply — k)iD' (k) — exchange (p’l, sy < ph, 8’2)

We would have obtained the same expression from the diagrams with the prescription of Feynman rules
in momentum space:

(viii) (i) +(v) (vii) (iv)

dk ) . o
Sri = /W Ny, Ny, (P, s4) (—iev)u(pr, s1) (2m)*6W (p1 — p) + k) DI’ (k) x

X Ny Ny, U(ph, s5)(—ie, Ju(pa, s2) (2m)*6@ (po — py — k) — exchange(p’l, 8} > P, 8’2>~

(i)+(v) (vil)

The final expression is

Sfi =—¢? JVp’1 Npleész ﬂ(p/h S&)Vuu(plv Sl)a(p/% S/Q)VVU(P% 32) X

x (2m)*6™ (p2 — ph — P} + p1) iDY (p — p1) — exchange (p’p 51— Dy, 3’2)-

17 Electron-muon scattering

a) Introduce the scattering cross section o from physical arguments. Define the M-matrix M y; in terms
of the scattering matrix S¢;. Show how the cross section is defined in terms of My;. Specialize the
formula to the case of a two-body scattering process.

b) Consider the et e~ — u* u~ scattering event. Draw the Feynman diagram to order e? and, using
Feynman rules, write down the expression for the M-matrix (scattering amplitude).

c) Write | M|? and perform the sum over the spins of the electron and the muon. Show details. You will
arrive at an expression containing the trace of the v matrices.

d)Perform the trace under the assumption that the mass of the electron can be neglected. Show details.

e)Write the resulting expression for the cross section in the center-of-mass frame.
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17  Electron-muon scattering

a) Let us consider a scattering process where a beam is scattered by a target. The number of scattering
events per unit of time W will be proportional to the number density of the target n, the flux of the
incident beam ®, the overlap area A and the thickness of the target z. We define the cross section as the
proportionality constant:

W

 ndAz

The scattering matrix can be expressed as
S =1+iT.

In such a way, we separate the non-interacting term from the S-matrix. The T-matrix can be further
split into a kinematic part and a dynamical part:

W=

Spi = 851 + (2m)160 (Zpl pr) (H %) 1;[(275?;0% M.

Here x; or xy is 1 for bosons and 2m for fermions. Thus, the dynamical part is contained in the matrix
elements M ;. If the interaction is non trivial, §¢; = 0 and the transition amplitude becomes

S5l = (2m) 5(4)(21’ —pr)é“”(sz pr)H Qﬁgw I;I(ZW;J;WW Myl

The Dirac delta product can be easily treated by using the box normalization:

(2m) 15 (sz pr) = lim dix e(Zipiizf p'lf)m — (277)45(4)(0) =1tV

t,V—o00 t,V

The singularity 6 (0) signals that working with definite energy and momentum implies infinite time and
space separation of the initial and final states by the uncertainty principle. In particular, for large time
t and volume V

(27)86) (ZPZ ZP )5(4)@:7% pr) (2m)%6™ (0 ‘”(Zm pr)
=tV (2m)*® (sz pr)

Also the normalization factors must be chanced when using the box normalization:

H (2m) 32wp H Vaw,

by the elapsed time ¢, we get the transition amplitude

Dividing the expression for |Sy;|?

Vs (S Y b T

The differential cross section will be
W dIl

n®Az’

where dII must take into account the infinitesimal variation of the final states. The correct expression
turns out to be

do =
I — HVdpf
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17  Electron-muon scattering

so that the integration over all possible final momenta is 1. The expression for the cross section becomes

Xs d°py
do n<I>Az v (2m) 6(4)(211)Z pr) VQW I;I(QW)Bprf Ml

In the case of two-body scattering 1 2 — 1’ 2" 3’--- | we can consider one incoming particle as the beam
and the other incoming particle as the target. Thus, by introducing the relative velocity v.e, we can

write
1 Urel

n=—, b =

Vv v
Note that the box normalization limit ¢,V — oo agrees with our assumptions about the scattering
process, which could happen at any time and everywhere in the space. Hence Az = V and the cross

section becomes

vw

Urel

Thus,
dor = X2 (o)1) (1 py — 35 ) [ AL a i
f

4wy, Wp, Urel F (2m)32wp,

b) Let us consider the e e — u* u~ scattering. We have just the Feynman diagram

Using Feynman rules in momentum space, the scattering amplitude will be

iM,spss, = 0(P2, 82)(—iev)u(pr, s1)U(Ph, s1)(—ien, (P, s1) iDg (k)
)
ie” _ _
= pa, 521" u(p 51 )P 550 (B 1),
where we have used the expression
—nh
2

c) The above expression depends on the spin of the particles. The average of the square modulus of the
scattering amplitude over all possible spin states is

D’ (k) =

1
|~/\/l|2 = 4 Z |M8132S’1s’2|2-

s ol gl
81,582,871,59

On the other hand,

(B(pa2, 52)7"ulp1, $1))" = ul (p1, 51) (") (0T (P2, 52)7°) " = uT (p1, 51) (1) (1) To(pa, 52)

= u'(p1, 81)(707“)TU(P2, s2) = u' (p1, 51)7"7"v(p2, 52)
= ﬁ(ph Sl)’YHU(pQ, 32)

and similarly
(a(ph, s5)yuv(P, 81)) = 0(P1, s1)7uu(ph, 55).-
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17  Electron-muon scattering

Thus, we arrive at the expression

e

2—7
M 44

Z (P2, 52)7"u(p1, 51)u(Ph, 85) 7,0 (P, 81)u(P1, 1)1 v (P2, 52)0(PY, 81) 7 u(ph, 55)

’ ’
51,82,87,85

4

= 4%4 (Z W(P2,Sz)W’MU(PbSﬂU(Pb81)”/”“(192782)> X

81,82

x <Z U(p’mSé)vuv(p’l,S’l)v(p’l,S’l)%U(p’mS’z))-

!
51,52

We can use now the completeness relations

Sup )it =L S v s = L

2m
S S

By writing the factors in components and using the above expression, we find

S (5(pss52)),, (1) o (wlpr, )y (@lp,5), (1), (0lp2ss2),, =

S1,82
1 v
= W(?Q - mg)o’a(’yﬂ)aﬁ(pl +m€)ﬂp(’y )po’
1

= 42
4m2

tr (9, = mo)y" (p, +me)r).

Here the sum over repeated matrix indices is omitted. Furthermore, we have used the expression for the
trace of a product:

tr (ABCD) = AiijkalDli~
Thus,

et 1

MP = gz (02 = men” (py +me)”) e (8, = )y + )

d) The traces can be expressed in terms of the traces of v matrices:

try® =0
tryfy” = 4n

tr 'y"’y’\vy =0
tr Py YTy = AP — P + P 7).

ing

The first relation holds for any representation of the matrices, and it can be proved by introducing the
matrix ° = i7%y1y243. Such matrix has the following properties:

2
()" =1 {1 =0
Thus, the trace of a v matrix can be computed as

try* = tr 75757“

= —try>Hy° for the anticommutation relation
= —try>SAH for cyclicity
= —try".

It is clear that the proof applies to all odd products of v matrices. The second one follows from the cyclic
property of the matrices and the anticommutation relation:

tr Y = tr (2n"Y — 4YH) =20 tr L — tryVyH
= 8" —try"y”,
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17  Electron-muon scattering

so that try#~yY = 4n*”. Again, the proof can be generalized to all even products of v matrices, with the
alternate sum of cyclic permutations of the indices. With the help of this trace identity, we find

tr ((p2 —me)y" (P, + me)y ) =tr (;/)2 "y ) — M tr (7“1117”) + me tr (,7)27“7”> —m2tr (7“7”)
= P2pP1o tr Py 7y” — mepia tr Py A mepax try iy — m? tr iy
= 4(19’529’{ —p1-pan™ + pypl — m?n"”)
= 4(29’519? + o5t =0t (m + py 'P2)>

Performing similar calculations for the second trace, we arrive at the expression

1

2
MP =2 *4 L

(it + P50 =0 (m2 + b - p2) ) (ol + Phuhys — M (2 + 21 - 95))
Now, since = ~ 5= we can neglect the terms containing the electron mass. Note that the mass term
I

at the denominator will be simplified in the scattering cross section, since the denominator is exactly
X1X2X1X5- Setting m = m,, and X\ = x1Xx2x] x5 We obtain

464 v 14 v
AMP* = — (p‘z‘pl +pspl — "y ~p2) (p’gupiy + Phu Dy — N (M? + P ~p’2))
464 / / / / 2 / /
= (2(p1 “P) (P2 - p3) +2(p1 - pa)(p2 - PY) — 2(p1 - p2)(m” + py - o) +
=20} ph)(pr - p2) + 4(p1 - p2) (m® + i - 7))
8et

= F((pl 'pll)(pz plg) + (pl 'plg)(m p’l) + m2(p1 ~p2)).

e) In the CoM frame, implementing the conservation of momentum that comes from the S-matrix and
under the assumption m, = 0, we have

Thus, taking into account that k* = (p; + po)* = 16w* = s2, where s is the invariant relativistic, the
above expression becomes

8et

AM? = 16 I ((w2 + wlp| cos ¥9)? + (w? — w|p’| cos V) + m2(2w2))

= 5 (Qw + 2w [p’|? cos? ¥ + 2mw )

9.4
2 m2
= ( \p| cos? 9 + )
m2
(1++<1—w2)cos219>.
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17  Electron-muon scattering

Let us rewrite now the infinitesimal cross section for a process 12 — 1’ 2/

1 X1X2 XiXo 45(4) r N 3.1 g3 2

do = (27T)6U 14UJ1W2 4w’ W (271-) 4 (pl +p2 — D1 7p2) d D1 d P2 ‘M|
Te 12

1 X1X2 X1X2 54

3.7 13 2
T 1672w | dwiws wiwh P14 p2 — Py — ph) d°ph dophy |IM]7.
re

We can use the delta function to fix the momentum p} and the modulus |p)|, obtaining an expression
in the infinitesimal solid angle d©) identified by the direction of pj. The following equalities can be
considered true only under integration.

5B (p1 + pa — 1y — ph) d®p dPply = 6@ (p1 + pa — P — DY) (w1 + wa — W — wh) d3p) dpl,
= §(wy + wo — wy — wh) d®p)
= 0(w1 + w2 — w) — wh) [p}[* d|p} | dQ
1 /12
= Ipa "
d|pf|

In the last two steps we have performed a transformation in spherical coordinates d®p} — |p}|? d|p}| dS
and the change of variable formula for the Dirac delta

sy =y oo

wol famy =0 /@)l

Furthermore, all the values must be computed for p; + p2 = p} + ph, as a consequence of the delta in
3-momentum. Hence, we have the expression

1 X1X2 X1Xb 1

1672 vpe) dwwa wiwh d(w]l-"jbl‘)é)
d|p}

do [P [? [M? dQ2.

In the CoM frame for e"et — pu~p+ with m, = 0, we have vy = 2, W1 = ws = W} = wh = w and

dwh +op) _AVIEFE) o

dpi| dlp’| w

The expression becomes

1 1 1 w
1672 2 4w? w? 2|p/|

1 1 p'| 4 m? m? 2
= L 14+ — 1— — 9 ) dQ
1672 16w? w ¢ + w? + w? €08

et 1 w? —m? m? m?
= 1+ =+ (1-—= 29 ) dQ
1672 16w? w ( * w? N ( w? ) o8 )

1 m2 m? m?
_ 2 2
=a 602 1-— el (1 + el + (1 -2 ) cos 19) ds?,

do

[P[* AIM? dS2
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17  Electron-muon scattering

2, .
where o = & is the fine structure constant. The cross section turns out to be

4

a:a216l2\/1—:22/O%dga/lld(cosﬁ) (1+1:22+ (1—7:;22) cos219>
1622\/1—7;12227r/_11du(1+2122+(1—Z}f)u2)
:azﬁ 1Zf4n(1+7;f+;<12f)>

1 2 4 2m?
— o2 1_m4ﬂ(+m)

:a2

16w? w? 3 3w?
_ma? 1 om0 ImEy
3 w? w? 2 w?

Remembering that 16w* = s2, where s is the invariant relativistic, the above expression becomes

ra? 1 1 m2 - 1 m? 4o’ 1 4m?2 1+ 2m?
o= —— - )= \J1—-— 27 ).
3 w? w? 2 w? 3s s s

2

For particle with energies such that s >> m® we can neglect all the mass terms and finally find the

famous cross section formula
dra?
o= .
3s
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