
Received: Added at production Revised: Added at production Accepted: Added at production
DOI: xxx/xxxx

ARTICLE TYPE

Embedding of Octonion Fourier Transform in Geometric Algebra
of ℝ3 and Polar Representations of Octonion Analytic Signals in
Detail†

Eckhard Hitzer*

1College of Liberal Arts, International
Christian University, 181-8585 Mitaka,
Tokyo, Japan

Correspondence
*Eckhard Hitzer, International Christian
University, College of Liberal Arts,
181-8585 Mitaka, Tokyo, Japan. Email:
hitzer@icu.ac.jp
Present Address
International Christian University, College
of Liberal Arts, 181-8585 Mitaka, Tokyo,
Japan. Email: hitzer@icu.ac.jp

Summary

We show how the octonion Fourier transform can be embedded and studied in Clif-
ford geometric algebra of three-dimensional Euclidean space 𝐶𝑙(3, 0). We apply a
new form of dimensionally minimal embedding of octonions in geometric algebra,
that expresses octonion multiplication non-associativity with a sum of up to four (in-
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1 INTRODUCTION

This paper is an extension of the conference proceedings14. Hypercomplex Fourier transforms experienced rapid development
during the last 30 years. A historical overview of this field can be found in3, a variety of approaches is included in8, and a recent
comprehensive textbook is10. For an up-to-date survey of signal and image processing in Clifford geometric algebra, see Section
6 of12. In Definition 9 of4 a Clifford algebra based hypercomplex Fourier transform producing a multidimensional analytic sig-
nal was defined. In the book6 this approach is applied for the non-associative and non-commutative hypercomplex algebra of
octonions. Apart from its non-associativity, octonions have many outstanding algebraic properties (e.g. the highest dimensional
normed division algebra). Octonion Fourier transforms (OFT) have already found a wide range of applications (for more details
see Chapters 5.6 and 9.4 of6, and the references cited therein) to modulation theory, including the modulation of amplitude,
frequency, single-sidebands, compatible single-sidebands and single-quadrant modulation, Hilbert filters and signal power anal-
ysis. Further applications are to electromagnetic fields, field theory, physics, relativistic quantum mechanics, holomorphicity,
analytic signal entropy, medicine (e.g., medical image processing), noise analysis and image processing.

It is therefore of great interest for us in this work to use a recently invented minimal embedding13,15 of octonions in the Clifford
geometric algebra of three-dimensional space 𝐶𝑙(3, 0) and consequently embed the OFT in 𝐶𝑙(3, 0). This embedding allows to
break down non-associative octonion multiplication into sums of associative geometric products, and therefore to easily apply
existing geometric algebra computing software1,2,18. And it allows to establish new polar representations for octonion analytic
signals, based on the polar decomposition (exponential factorization)11,19 of geometric algebra multivectors.

We first review in Section 2 fundamental properties of octonions16 and in Section 3 the new embedding of octonions in
Clifford geometric algebra 𝐶𝑙(3, 0). Then we present in Section 4 the OFT of6, as well as octonion analytic signals, and in
Section 5 embed the OFT in 𝐶𝑙(3, 0). Finally, in Section 6 we utilize the polar decomposition of11,19 for complex biquaternions
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and multivectors in 𝐶𝑙(3, 0) to introduce new polar representations for octonion analytic signals and the reconstruction formulas
of the original real signal. The paper concludes with Section 7, references and two appendixes on new simplified formulas for
the polar decomposition of multivectors in 𝐶𝑙(3, 0) and with example computations.

2 OCTONIONS

Here we first briefly summarize important octonion algebra properties (see16, pp. 300–302,13,5), assuming 𝑎, 𝑏, 𝑐, 𝑥, 𝑦 ∈ 𝕆.
• Octonions 𝕆 form an eight-dimensional bilinear algebra over the reals ℝ with basis {1, 𝐞1, 𝐞2, 𝐞3, 𝐞4, 𝐞5, 𝐞6, 𝐞7}.
• The multiplication table1 is given by (1 ≤ 𝑖, 𝑗 ≤ 7)

𝐞𝑖 ⋆ 𝐞𝑖 = −1, 𝐞𝑖 ⋆ 𝐞𝑗 = −𝐞𝑗 ⋆ 𝐞𝑖 for 𝑖 ≠ 𝑗, 𝐞𝑖 ⋆ 𝐞𝑖+1 = 𝐞𝑖+3, (1)
where (𝑖, 𝑖 + 1, 𝑖 + 3) can be permuted cyclically and translated modulo 7.

• Via the Cayley-Dickson doubling process, octonions can directly be defined from pairs of quaternions 𝑝1, 𝑝2, 𝑞1, 𝑞2 ∈ ℍ
(note the order of factors, qc(…) is quaternion conjugation):

(𝑝1, 𝑞1) ⋆ (𝑝2, 𝑞2) =
(

𝑝1𝑝2 − qc(𝑞2)𝑞1, 𝑞2𝑝1 + 𝑞1qc(𝑝2)
)

. (2)
• 𝕆 has no zero divisors, i.e., 𝑎𝑏 = 0 implies 𝑎 = 0 or 𝑏 = 0.
• 𝕆 is a division algebra, i.e., 𝑎𝑥 = 𝑏 and 𝑦𝑎 = 𝑏 have unique solutions 𝑥, 𝑦 for non-zero 𝑎.
• 𝕆 admits unique inverses.
• 𝕆 is non-associative, i.e., in general 𝑎(𝑏𝑐) ≠ (𝑎𝑏)𝑐.
• 𝕆 is alternative, i.e., 𝑎(𝑎𝑏) = 𝑎2𝑏 and (𝑎𝑏)𝑏 = 𝑎𝑏2.
• 𝕆 is one of only four alternative division algebras over ℝ: ℝ,ℂ,ℍ,𝕆.
• 𝕆 is flexible, i.e., 𝑎(𝑏𝑎) = (𝑎𝑏)𝑎.
• 𝕆 has a (positive-definite quadratic form) norm ‖… ‖ ∶ 𝕆 → ℝ, the norm is preserved (i.e. admits composition), such

that ‖𝑎𝑏‖ = ‖𝑎‖‖𝑏‖.
• 𝕆 is one of only four unital norm-preserving division algebras over ℝ: ℝ,ℂ,ℍ,𝕆.
• 𝕆 is essential for treating triality, an automorphism of the universal covering spin group Spin(8) of the rotation group

SO(8) or ℝ8. Triality is not an inner automorphism, nor an orthogonal matrix similarity, nor a linear transformation
𝐶𝑙(8, 0) → 𝐶𝑙(8, 0), nor a linear automorphism of SO(8). Triality permutes three elements in the center of 𝐶𝑙(8, 0),
namely {−1, 𝑒12345678,−𝑒12345678}, with basis vectors 𝑒𝑖, (1 ≤ 𝑖 ≤ 8), of ℝ8. Triality is a restriction of a polynomial
mapping 𝐶𝑙(8, 0) → 𝐶𝑙(8, 0) of degree two.

Furthermore, like for complex numbers, quaternions and biquaternions, there is a polar decomposition for octonions19.

3 EMBEDDING OF OCTONIONS IN CLIFFORD GEOMETRIC ALGEBRA OF
THREE-DIMENSIONAL EUCLIDEAN SPACE

For readers not familiar with Clifford geometric algebra we refer to the excellent textbook16, and to the tutorial introduction7.
The current section summarizes the results needed from13.

The Clifford geometric algebra 𝐶𝑙(3, 0) of Euclidean space ℝ3 has eight basis elements
{1, 𝜎1, 𝜎2, 𝜎3, 𝐼𝜎1 = 𝜎23, 𝐼𝜎2 = 𝜎31, 𝐼𝜎3 = 𝜎12, 𝐼 = 𝜎123}, (3)

1This depends obviously on deliberate ordering and sign choices for the basis elements.
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Table 1 GA 𝐶𝑙(3, 0) multiplication table, 𝐶𝑙(3, 0) ≅ Pauli algebra.

Left
factors

Right factors
1 𝐼𝜎1 𝐼𝜎2 𝐼𝜎3 𝜎1 𝜎2 𝜎3 𝐼

1 1 𝐼𝜎1 𝐼𝜎2 𝐼𝜎3 𝜎1 𝜎2 𝜎3 𝐼
𝐼𝜎1 𝐼𝜎1 −1 −𝐼𝜎3 𝐼𝜎2 𝐼 −𝜎3 𝜎2 −𝜎1
𝐼𝜎2 𝐼𝜎2 𝐼𝜎3 −1 −𝐼𝜎1 𝜎3 𝐼 −𝜎1 −𝜎2
𝐼𝜎3 𝐼𝜎3 −𝐼𝜎2 𝐼𝜎1 −1 −𝜎2 𝜎1 𝐼 −𝜎3
𝜎1 𝜎1 𝐼 −𝜎3 𝜎2 1 𝐼𝜎3 −𝐼𝜎2 𝐼𝜎1
𝜎2 𝜎2 𝜎3 𝐼 −𝜎1 −𝐼𝜎3 1 𝐼𝜎1 𝐼𝜎2
𝜎3 𝜎3 −𝜎2 𝜎1 𝐼 𝐼𝜎2 −𝐼𝜎1 1 𝐼𝜎3
𝐼 𝐼 −𝜎1 −𝜎2 −𝜎3 𝐼𝜎1 𝐼𝜎2 𝐼𝜎3 −1

where {𝜎1, 𝜎2, 𝜎3} forms an orthonormal vector basis of ℝ3. Its multiplication table is given in Table 1. The eight components
of a general multivector 𝑀 ∈ 𝐶𝑙(3, 0) can be grouped by grade into the scalar part ⟨𝑀⟩ = ⟨𝑀⟩0, the three-dimensional vector
part ⟨𝑀⟩1 ∈ ℝ3 (where usually ℝ3 is identified with the grade one vector subspace 𝐶𝑙1(3, 0)), the three-dimensional bivector
part ⟨𝑀⟩2 ∈ 𝐶𝑙2(3, 0) spanned by {𝜎23, 𝜎31, 𝜎12}, and the trivector (pseudoscalar) part ⟨𝑀⟩3.

We can construct in 𝐶𝑙(3, 0) an octonionic product13, after splitting it in its even subalgebra 𝐶𝑙+(3, 0) with basis
{1, 𝜎23, 𝜎31, 𝜎12}, (4)

and the set 𝐶𝑙−(3, 0) of odd grade (w.r.t. grades in 𝐶𝑙(3, 0)) elements
{𝜎1, 𝜎2, 𝜎3, 𝐼 = 𝜎123}. (5)

We will use the Clifford conjugation2 (indicated by an overbar 𝑀), i.e. the composition of (main) grade involution3 (𝑀) and
reversion4 (𝑀). Clifford conjugation preserves grades zero and three, but changes the signs of grades one and two in 𝐶𝑙(3, 0). A
realization of the octonionic product of 𝑀,𝑁 in 𝐶𝑙(3, 0) is given by four (individually associative) geometric algebra product
terms

𝑀 =𝑀+ +𝑀−, 𝑁 = 𝑁+ +𝑁−,

𝑀 ⋆𝑁 =𝑀+𝑁+ +𝑁−𝑀− +𝑁−𝑀+ +𝑀−𝑁+, (6)
with even grade parts 𝑀+, 𝑁+ ∈ 𝐶𝑙+(3, 0) and odd grade parts 𝑀−, 𝑁− ∈ 𝐶𝑙−(3, 0). The multiplication table is Table 2, with
octonionic product illustration in Fano plane diagram form in Fig. 1.

The octonion conjugate (anti-involution) in 𝐶𝑙(3, 0) is given by
𝑀⋆ =𝑀+ −𝑀− =𝑀+ −𝑀−, (𝑀 ⋆𝑁)⋆ = 𝑁⋆ ⋆𝑀⋆. (7)

Computing the octonion norm yields (including norm-preservation):

‖𝑀‖ =𝑀 ⋆𝑀⋆ = ⟨𝑀𝑀⟩ =𝑀 ∗𝑀 =
8
∑

𝑖=1
𝑀2

𝑖 , ‖𝑀 ⋆𝑁‖ = ‖𝑀‖‖𝑁‖. (8)

where 𝑀𝑖 ∈ ℝ, 1 ≤ 𝑖 ≤ 8, are the coefficients of 𝑀 in the 𝐶𝑙(3, 0) basis (3), and 𝐴 ∗ 𝐵 = ⟨𝐴𝐵⟩ means to compute the scalar
product of 𝐴,𝐵 ∈ 𝐶𝑙(3, 0), i.e. the scalar part of the geometric product.

The above reviewed (dimensionally) minimal embedding is very flexible. It even allows to reversely embed Clifford geometric
algebra 𝐶𝑙(3, 0) in octonions by defining the geometric product in terms of the octonionic product5 (see13, Section 3.3 for

2Note that by construction 𝑀± = (𝑀)±.
3Grade involution 𝑀 changes the sign of all odd grade parts, i.e., of grades one and three.
4Reversion 𝑀 reverts the order of all products and thus changes the sign of grades two and three.
5Note that the factors 𝐞7 (later identified with the pseudoscalar 𝐼 ∈ 𝐶𝑙(3, 0)) in the last equation of (9) are essential.
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Table 2 Multiplication table for octonion embedding in 𝐶𝑙(3, 0). The upper left 4 × 4-block corresponds to 𝑀+𝑁+, the upper
right 4 × 4-block to 𝑁−𝑀+, the lower left 4 × 4-block to 𝑀−𝑁+, and the lower right 4 × 4-block to 𝑀−𝑁− of (6).

Left
factors

Right factors
1 𝐼𝜎1 𝐼𝜎2 𝐼𝜎3 𝜎1 𝜎2 𝜎3 𝐼

1 1 𝐼𝜎1 𝐼𝜎2 𝐼𝜎3 𝜎1 𝜎2 𝜎3 𝐼
𝐼𝜎1 𝐼𝜎1 −1 −𝐼𝜎3 𝐼𝜎2 𝐼 𝜎3 −𝜎2 −𝜎1
𝐼𝜎2 𝐼𝜎2 𝐼𝜎3 −1 −𝐼𝜎1 −𝜎3 𝐼 𝜎1 −𝜎2
𝐼𝜎3 𝐼𝜎3 −𝐼𝜎2 𝐼𝜎1 −1 𝜎2 −𝜎1 𝐼 −𝜎3
𝜎1 𝜎1 −𝐼 𝜎3 −𝜎2 −1 𝐼𝜎3 −𝐼𝜎2 𝐼𝜎1
𝜎2 𝜎2 −𝜎3 −𝐼 𝜎1 −𝐼𝜎3 −1 𝐼𝜎1 𝐼𝜎2
𝜎3 𝜎3 𝜎2 −𝜎1 −𝐼 𝐼𝜎2 −𝐼𝜎1 −1 𝐼𝜎3
𝐼 𝐼 𝜎1 𝜎2 𝜎3 −𝐼𝜎1 −𝐼𝜎2 −𝐼𝜎3 −1

Figure 1 Illustration of 𝐶𝑙(3, 0) basis elements under the octonionic product (6) in Table 2, see13 for details.

details):
𝑀+𝑁+

(6)
= 𝑀+ ⋆𝑁+, 𝑀−𝑁−

(6)
= 𝑁− ⋆𝑀−,

𝑀−𝑁+
(6)
= 𝑁+ ⋆𝑀−, 𝑀+𝑁− = −(𝑁− ⋆ 𝐞7) ⋆ (𝑀+ ⋆ 𝐞7), (9)

with 𝑀+ ∈ span[1, 𝐞1, 𝐞2, 𝐞3] and 𝑀− ∈ span[𝐞4, 𝐞5, 𝐞6, 𝐞7]. Note that on the right side of the second equality in (9), the
conjugation operation 𝑀− is defined on the relevant octonion components as 𝐞4 = − 𝐞4, 𝐞5 = − 𝐞5, 𝐞6 = − 𝐞6, and 𝐞7 = 𝐞7.

4 OCTONION FOURIER TRANSFORM

From now on, if no brackets are given, the order of multiplication is assumed to be from left to right, e.g., 𝐴𝐵𝐶 = (𝐴𝐵)𝐶 , etc.
According to Section 4.2.1 of6, the OFT of an integrable three-dimensional6 real signal 𝑓 ∈ 𝐿1(ℝ3,ℝ) can be defined as

{𝑓}(𝐮) = ∫
ℝ3

𝑓 (𝐱)𝑒−𝐞12𝜋𝑢1𝑥1𝑒−𝐞22𝜋𝑢2𝑥2𝑒−𝐞42𝜋𝑢3𝑥3𝑑3𝑥, (10)

with three-dimensional position vectors and frequency vectors, and volume element
𝐱 = (𝑥1, 𝑥2, 𝑥3) ∈ ℝ3, 𝐮 = (𝑢1, 𝑢2, 𝑢3) ∈ ℝ3, 𝑑3𝑥 = 𝑑𝑥1𝑑𝑥2𝑑𝑥3, (11)

6These signals can, e.g., be temperature data in a space volume, a density distribution, local chemical concentrations, pressure data, etc.
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respectively, and octonion units {𝐞1, 𝐞2, 𝐞4} in the exponents. As pointed out in6, any triplet of octonion units could be used
in the octonionic kernel of (10), as long as the three do not form a quaternionic subalgebra, by that reason, e.g., the triplet
{𝐞1, 𝐞2, 𝐞3} is excluded, compare the multiplication table Table 2.3 and its Fano plane visualization Fig. 2.2 in6. In the latter the
triplet {𝐞1, 𝐞2, 𝐞3} clearly lies on a straight line.

Given suitable integrability conditions, the inverse OFT can be computed as
𝑓 (𝐱) = −1{{𝑓}}(𝐱) =∫

ℝ3

{𝑓}(𝐮)𝑒𝐞42𝜋𝑢3𝑥3𝑒𝐞22𝜋𝑢2𝑥2𝑒𝐞12𝜋𝑢1𝑥1𝑑3𝑢, 𝑑3𝑢 = 𝑑𝑢1𝑑𝑢2𝑑𝑢3. (12)

Abbreviating 𝑠𝑘 = sin(2𝜋𝑢𝑘𝑥𝑘), 𝑐𝑘 = cos(2𝜋𝑢𝑘𝑥𝑘), 𝑘 = 1, 2, 3, we can express the kernel of (10), using multiplication table
Table 2.3 of6, as

𝑒−𝐞12𝜋𝑢1𝑥1𝑒−𝐞22𝜋𝑢2𝑥2𝑒−𝐞42𝜋𝑢3𝑥3 = (𝑐1 − 𝑠1𝐞1)(𝑐2 − 𝑠2𝐞2)(𝑐3 − 𝑠3𝐞4)
= 𝑐1𝑐2𝑐3 − 𝑠1𝑐2𝑐3𝐞1 − 𝑐1𝑠2𝑐3𝐞2 − 𝑐1𝑐2𝑠3𝐞4 + 𝑠1𝑠2𝑐3𝐞3 + 𝑠1𝑐2𝑠3𝐞5 + 𝑐1𝑠2𝑠3𝐞6 − 𝑠1𝑠2𝑠3𝐞7. (13)

The significance of this decomposition is, that therefore a real signal 𝑓 ∈ 𝐿1(ℝ3,ℝ) is decomposed by the OFT (10) into eight
spectral components of distinct even-odd symmetries: {eee,oee,eoe,eeo,ooe,oeo,eoo,ooo}, where e=even, o=odd. Following the
multiplication table Table 2.3 of6, and using the alternative octonion multiplication property of Section 2, we find the following
conjugations (𝑖, 𝑗 = 2,… , 7)

𝛼𝑖(𝐞𝑗) = 𝐞𝑖𝐞𝑗𝐞𝑖 =
{

𝐞𝑗 , 𝑖 ≠ 𝑗
−𝐞𝑗 , 𝑖 = 𝑗

. (14)
This allows to express all {𝑓}(±𝑢1,±𝑢2,±𝑢3) in terms of {𝑓}(𝐮) each time using four suitable 𝛼𝑖 conjugations. For example,

{𝑓}(−𝑢1, 𝑢2, 𝑢3) = 𝛼1(𝛼3(𝛼5(𝛼7({𝑓}(𝐮))))). (15)
As a consequence the OFT in all eight octants of the three-dimensional frequency space can be obtained from the OFT only
applied to the first octant, where all three frequency components are positive (i.e. {𝑢1 ≥ 0, 𝑢2 ≥ 0, 𝑢3 ≥ 0}).

4.1 Hypercomplex Analytic Signal
A real signal 𝑓 ∈ 𝐿1(ℝ,ℝ) can be extended to a complex analytic signal with positive frequency by multiplying its Fourier
transform ℝ{𝑓}(𝑢) with (1 + sgn 𝑢), 𝑢 ∈ ℝ being the frequency, and back transforming

𝜓(𝑥) = −1
ℝ
{

(1 + sgn 𝑢)ℝ{𝑓}(𝑢)
}

(𝑥), (16)
equivalent to direct application of the Hilbert transform, where ⊛ means convolution,

𝐻[𝑓 (𝑥)] = ( 1
𝜋𝑥

)⊛ 𝑓 (𝑥), 𝜓(𝑥) = 𝑓 (𝑥) + 𝑖𝐻[𝑓 (𝑥)] = [𝛿(𝑥) + 𝑖 1
𝜋𝑥

]⊛ 𝑓 (𝑥). (17)
We can recover the original signal as the real part of 𝜓(𝑥), i.e.,

𝑓 (𝑥) = 1
2
(

𝜓(𝑥) + cc(𝜓(𝑥))
)

, (18)
where cc(…) refers to complex conjugation.

Analogously, we can construct for real three-dimensional signals 𝑓 ∈ 𝐿1(ℝ3,ℝ) an analytic hypercomplex signal with triple
convolution by (see Section 5.2.3 of6 for details)

𝜓(𝑥1, 𝑥2, 𝑥3)1 =[𝛿(𝑥1) + 𝐞1
1
𝜋𝑥1

] × [𝛿(𝑥2) + 𝐞2
1
𝜋𝑥2

] × [𝛿(𝑥3) + 𝐞4
1
𝜋𝑥3

]⊛⊛⊛ 𝑓 (𝑥1, 𝑥2, 𝑥3)

=𝑓 + 𝑣1𝐞1 + 𝑣2𝐞2 + 𝑣12𝐞3 + 𝑣3𝐞4 + 𝑣13𝐞5 + 𝑣23𝐞6 + 𝑣𝐞7, (19)
which has only three-dimensional frequency values 𝐮 = (𝑢1, 𝑢2, 𝑢3) in the first octant of frequency space, where all three fre-
quency components are positive (+ + +). The original signal 𝑓 ∈ 𝐿1(ℝ3,ℝ) is the scalar real component of 𝜓(𝑥1, 𝑥2, 𝑥3). The
corresponding analytic signals 𝜓(𝑥1, 𝑥2, 𝑥3)𝑘, 𝑘 = 2,… , 8 in the other seven octants are obtained by simply changing the three
plus signs in the first line of (19) to (− + +), (+ − +), (− − +), (+ + −), (− + −), (+ − −), (− − −), respectively. And we can
recover the original signal simply by

𝑓 (𝑥1, 𝑥2, 𝑥3) =
1
8

8
∑

𝑘=1
𝜓(𝑥1, 𝑥2, 𝑥3)𝑘. (20)
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Instead of computing𝜓(𝑥1, 𝑥2, 𝑥3)𝑘, 𝑘 = 2,… , 8, one by one, we can obviously also obtain them from𝜓(𝑥1, 𝑥2, 𝑥3)1 by applying
to it compositions of octonionic conjugations (14) as, e.g., in (15). We note that6, p. 167, states for 𝜓(𝑥1, 𝑥2, 𝑥3)1 of (19): The
exact polar representation of this signal is unknown.

This outline of the OFT and its corresponding analytic first octant frequency spectrum signal may suffice here to be able
to somewhat appreciate its uniquely interesting properties, due to its octonionic kernel. For more details we refer to6. Polar
reconstruction will be discussed in Section 6.

5 EMBEDDING THE OFT IN CLIFFORD GEOMETRIC ALGEBRA OF
THREE-DIMENSIONAL EUCLIDEAN SPACE

Now we reach the main purpose of this work to extend the embedding of octonions in Clifford geometric algebra 𝐶𝑙(3, 0) of
Section 3 to a full embedding of the OFT. An essential first step is the question on how to identify the three unit octonions 𝐞1, 𝐞2,
and 𝐞4 with corresponding non-scalar basis elements of 𝐶𝑙(3, 0). In6, page 70, when defining the OFT, it is emphasized that the
choice of 𝐞1, 𝐞2, and 𝐞4, for constructing the transformation kernel is not unique, but other triplets suggested always include 𝐞2,
located at the center of the Fano diagram Fig. 2.2 in6. Comparing this situation with our Fano diagram Fig. 1, we conveniently
choose the three basis blades 𝜎1,−𝐼,−𝐼𝜎3. We observe that 𝜎1,−𝐼 ∈ 𝐶𝑙−(3, 0) are both odd-, and −𝐼𝜎3 ∈ 𝐶𝑙+(3, 0) is even
graded, respectively.

We therefore define the embedding in the geometric algebra 𝐶𝑙(3, 0) of the OFT of a real signal 𝑓 ∈ 𝐿1(ℝ3,ℝ) as
{𝑓}(𝐮) = ∫

ℝ3

𝑓 (𝐱) 𝑒−𝜎12𝜋𝑢1𝑥1 ⋆ 𝑒𝐼2𝜋𝑢2𝑥2 ⋆ 𝑒𝐼𝜎32𝜋𝑢3𝑥3𝑑3𝑥. (21)

The kernel of the embedded OFT (21) can be expressed in geometric algebra, using multiplication table Table 2, as
𝐾(𝑥1, 𝑥2, 𝑥3) = [𝑒−𝜎12𝜋𝑢1𝑥1 ⋆ 𝑒𝐼2𝜋𝑢2𝑥2] ⋆ 𝑒𝐼𝜎32𝜋𝑢3𝑥3

= [(𝑐1 − 𝜎1𝑠1) ⋆ (𝑐2 + 𝐼𝑠2)] ⋆ (𝑐3 + 𝐼𝜎3𝑠3)
= 𝑐1𝑐2𝑐3 − 𝑠1𝑐2𝑐3𝜎1 + 𝑐1𝑠2𝑐3𝐼 + 𝑐1𝑐2𝑠3𝐼𝜎3 − 𝑠1𝑠2𝑐3𝜎1 ⋆ 𝐼 − 𝑠1𝑐2𝑠3𝜎1 ⋆ (𝐼𝜎3)

+ 𝑐1𝑠2𝑠3𝐼 ⋆ (𝐼𝜎3) − 𝑠1𝑠2𝑠3[𝜎1 ⋆ 𝐼] ⋆ (𝐼𝜎3)
= 𝑐1𝑐2𝑐3 − 𝑠1𝑐2𝑐3𝜎1 + 𝑐1𝑠2𝑐3𝐼 + 𝑐1𝑐2𝑠3𝐼𝜎3 − 𝑠1𝑠2𝑐3𝐼𝜎1 + 𝑠1𝑐2𝑠3𝜎2 + 𝑐1𝑠2𝑠3𝜎3 − 𝑠1𝑠2𝑠3𝐼𝜎2
= 𝑐1𝑐3(𝑐2 + 𝑠2𝐼) − 𝑠1𝑐3(𝑐2 + 𝑠2𝐼)𝜎1 + 𝑠1𝑠3(𝑐2 − 𝑠2𝐼)𝜎2 + 𝑐1𝑠3(𝑐2 − 𝑠2𝐼)𝐼𝜎3
= 𝑐3(𝑐1 − 𝑠1𝜎1)(𝑐2 + 𝑠2𝐼) + 𝑠3(𝑠1𝜎2 + 𝑐1𝜎1𝜎2)(𝑐2 − 𝑠2𝐼)
= 𝑐3(𝑐1 − 𝑠1𝜎1)(𝑐2 + 𝑠2𝐼) + 𝑠3𝜎1𝜎2(𝑐1 − 𝑠1𝜎1)(𝑐2 − 𝑠2𝐼)
= [𝑐3(𝑐2 + 𝑠2𝐼) + 𝑠3𝜎1𝜎2(𝑐2 − 𝑠2𝐼)](𝑐1 − 𝑠1𝜎1)
= [𝑐3𝑒𝐼2𝜋𝑢2𝑥2 + 𝑠3𝐼𝜎3𝑒−𝐼2𝜋𝑢2𝑥2](𝑐1 − 𝑠1𝜎1) (22)

Now we observe that to change the sign of any of the three frequency components in the result, GA has seven very simple
involutions

𝐾(−𝑢1, 𝑢2, 𝑢3) = 𝜎3𝐾(𝑢1, 𝑢2, 𝑢3)𝜎3, 𝐾(𝑢1,−𝑢2, 𝑢3) = 𝜎3𝐾(𝑢1, 𝑢2, 𝑢3)𝜎3,

𝐾(𝑢1, 𝑢2,−𝑢3) = 𝜎1𝐾(𝑢1, 𝑢2, 𝑢3)𝜎1, 𝐾(−𝑢1,−𝑢2, 𝑢3) = 𝐾(𝑢1, 𝑢2, 𝑢3),

𝐾(−𝑢1, 𝑢2,−𝑢3) = 𝜎2𝐾(𝑢1, 𝑢2, 𝑢3)𝜎2, 𝐾(𝑢1,−𝑢2,−𝑢3) = 𝜎2𝐾(𝑢1, 𝑢2, 𝑢3)𝜎2,

𝐾(−𝑢1,−𝑢2,−𝑢3) = 𝜎1𝐾(𝑢1, 𝑢2, 𝑢3)𝜎1, (23)
Note that the frequency sign change only operating in octonion algebra always requires a composition of four conjugations (as
e.g. in (15)). For later use, we tabulate the action of these involutions on all basis elements of 𝐶𝑙(3, 0) in Table 3. Note that each
involution reproduces the respective basis element up to a sign factor listed in the table, e.g., 𝜎3𝜎1𝜎3 = −𝜎1, 𝜎1𝜎2𝜎1 = +𝜎2, etc.

5.1 Embedding of Octonion Analytic Signal in Geometric Algebra 𝐶𝑙(3, 0)
We now ask how the octonion analytic signal, defined in (19), can be embedded in the geometric algebra 𝐶𝑙(3, 0) of three-
dimensional Euclidean space ℝ3? Similar to our study of the kernel of the embedding of the OFT, we therefore need to apply



Eckhard Hitzer 7

Table 3 Action (sign changes) of all involutions in (23) on all basis elements 𝐴 of 𝐶𝑙(3, 0).

Basis
blade 𝐴

Involution
identity 𝐴 𝜎3𝐴𝜎3 𝜎3𝐴𝜎3 𝜎1𝐴𝜎1 𝜎2𝐴𝜎2 𝜎2𝐴𝜎2 𝜎1𝐴𝜎1

1 + + + + + + + +
𝜎1 + − − + + − + −
𝜎2 + − − + − + − +
𝜎3 + − + − − − + +

𝐼𝜎1 + + − − + − − +
𝐼𝜎2 + + − − − + + −
𝐼𝜎3 + + + + − − − −
𝐼 + − + − + + − −

the embedding of octonion multiplication in geometric algebra to the convolution factor product that appears in the definition
of the octonion analytic signal in the first line of (19). We again replace 𝐞1, 𝐞2, and 𝐞4, by the three 𝐶𝑙(3, 0) basis blades 𝜎1, −𝐼 ,
and −𝐼𝜎3, respectively, and obtain7

{

[𝛿(𝑥1) + 𝜎1
1
𝜋𝑥1

] ⋆ [𝛿(𝑥2) − 𝐼
1
𝜋𝑥2

]
}

⋆ [𝛿(𝑥3) − 𝐼𝜎3
1
𝜋𝑥3

]

=
[

𝛿(𝑥3)
(

𝛿(𝑥2) − 𝐼
1
𝜋𝑥2

)

− 𝐼𝜎3
1
𝜋𝑥3

(

𝛿(𝑥2) + 𝐼
1
𝜋𝑥2

)](

𝛿(𝑥1) + 𝜎1
1
𝜋𝑥1

)

. (24)
The following threefold convolution, carried out algebraically in the geometric algebra 𝐶𝑙(3, 0), will therefore give the
embedding of the octonion analytic signal of (19) in 𝐶𝑙(3, 0)

𝜓(𝑥1, 𝑥2, 𝑥3)1 =
[

𝛿(𝑥3)
(

𝛿(𝑥2) − 𝐼
1
𝜋𝑥2

)

− 𝐼𝜎3
1
𝜋𝑥3

(

𝛿(𝑥2) + 𝐼
1
𝜋𝑥2

)](

𝛿(𝑥1) + 𝜎1
1
𝜋𝑥1

)

⊛⊛⊛ 𝑓 (𝑥1, 𝑥2, 𝑥3)

= 𝑓 + 𝑣1𝜎1 − 𝑣2𝐼 − 𝑣3𝐼𝜎3 − 𝑣12𝐼𝜎1 + 𝑣13𝜎2 + 𝑣23𝜎3 + 𝑣𝐼𝜎2. (25)
Furthermore, the seven simple GA involutions of (23) will also analogously yield the embedded version of the octonion analytic
signal for the other seven octants, which corresponds to changing one, two or all three signs of 𝜎1, −𝐼 , and −𝐼𝜎3, in (25):

𝜓(𝑥1, 𝑥2, 𝑥3)2 = 𝜎3𝜓(𝑥1, 𝑥2, 𝑥3)1𝜎3, 𝜓(𝑥1, 𝑥2, 𝑥3)3 = 𝜎3𝜓̂(𝑥1, 𝑥2, 𝑥3)1𝜎3,
𝜓(𝑥1, 𝑥2, 𝑥3)4 = 𝜓̂(𝑥1, 𝑥2, 𝑥3)1, 𝜓(𝑥1, 𝑥2, 𝑥3)5 = 𝜎1𝜓(𝑥1, 𝑥2, 𝑥3)1𝜎1,
𝜓(𝑥1, 𝑥2, 𝑥3)6 = 𝜎2𝜓(𝑥1, 𝑥2, 𝑥3)1𝜎2, 𝜓(𝑥1, 𝑥2, 𝑥3)7 = 𝜎2𝜓̂(𝑥1, 𝑥2, 𝑥3)1𝜎2,
𝜓(𝑥1, 𝑥2, 𝑥3)8 = 𝜎1𝜓̂(𝑥1, 𝑥2, 𝑥3)1𝜎1, (26)

where in number ordering of the octants we simply follow Fig. 4.10 and Table 5.4 of6. The original scalar signal can always be
reconstructed from the eight octant specific signals of (25) and (26), and therefore from the purely positive frequency (in the
first octant of the three-dimensional frequency space) signal 𝜓(𝑥1, 𝑥2, 𝑥3)1, as

𝑓 (𝑥1, 𝑥2, 𝑥3) =
1
8

8
∑

𝑘=1
𝜓(𝑥)𝑘, (27)

which is the consequent octant generalization of the reconstruction (18) of a real one-dimensional signal from its complex
analytic signal. The single complex conjugation in (18) is replaced by the seven geometric algebra involutions of (26). With the
help of Table 3 that has eight positive signs in the first row of scalars 1, and precisely four positive and four negative signs8 in
each of the other seven rows, it is obvious that the sum of the eight involutions (including the identity) in (27) will give eight
times the scalar part of 𝜓(𝑥1, 𝑥2, 𝑥3)1 and zero for all the non-scalar parts.

7Note the close algebraic analogy to the computation in (22), associating 𝑐𝑘 and 𝛿(𝑥𝑘), as well as 𝑠𝑘 and −1∕(𝜋𝑥𝑘), for 𝑘 = 1, 2, 3.
8Corresponding to a set of four elementary octonion conjugations (14).
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6 POLAR REPRESENTATION OF EMBEDDED OCTONION ANALYTIC SIGNAL

First we review in Section 6.1 two proposals in6 for polar representations of octonion analytic signals. Then in Section 6.2 we
look at new candidates for polar representations of octonion analytic signals, after embedding them in the Clifford geometric
algebra 𝐶𝑙(3, 0).

6.1 Previous Candidates for Polar Representations of Octonion Analytic Signals
For octonion signals with spectrum in the first octant (19), Hahn and Snopek first propose in Section 7.5.2 of6 a polar form with
one amplitude function 𝐴0(𝑥1, 𝑥2, 𝑥3) (the octonion norm of (19)) and seven phase angle functions9 Φ𝑘(𝑥1, 𝑥2, 𝑥3), 1 ≤ 𝑘 ≤ 7

𝜓𝐻𝑆
1 (𝑥1, 𝑥2, 𝑥3) = 𝐴0𝑒

𝐞1Φ1𝑒𝐞2Φ2𝑒𝐞3Φ3𝑒𝐞7Φ7𝑒𝐞4Φ4𝑒𝐞5Φ5𝑒𝐞6Φ6 ,

𝐴0 =
√

𝑓 2 + 𝑣21 + 𝑣
2
2 + 𝑣

2
3 + 𝑣

2
12 + 𝑣

2
13 + 𝑣

2
23 + 𝑣

2, (28)
where we have omitted for brevity the arguments (𝑥1, 𝑥2, 𝑥3) of all seven phase angles Φ𝑘 and all functions
𝑓, 𝑣1, 𝑣2, 𝑣3, 𝑣12, 𝑣13, 𝑣23, 𝑣. After defining

𝑐𝑘 = cosΦ𝑘(𝑥1, 𝑥2, 𝑥3), 𝑠𝑘 = sinΦ𝑘(𝑥1, 𝑥2, 𝑥3), 1 ≤ 𝑘 ≤ 7, (29)
Hahn and Snopek provide the 16 term reconstruction formula for the scalar real signal as

𝑓𝑟𝑒𝑐(𝑥1, 𝑥2, 𝑥3) = 𝐴0[𝑐1𝑐2𝑐3𝑐4𝑐5𝑐6𝑐7 + 𝑠1𝑠2𝑠3𝑐4𝑐5𝑐6𝑐7 − 𝑠1𝑐2𝑐3𝑠4𝑠5𝑐6𝑐7 + 𝑐1𝑠2𝑠3𝑠4𝑠5𝑐6𝑐7
− 𝑠1𝑠2𝑐3𝑠4𝑐5𝑠6𝑐7 + 𝑠1𝑐2𝑠3𝑐4𝑠5𝑠6𝑐7 − 𝑐1𝑐2𝑠3𝑐4𝑠5𝑠6𝑐7 − 𝑠1𝑠2𝑐3𝑐4𝑠5𝑠6𝑐7
+ 𝑐1𝑐2𝑠3𝑠4𝑐5𝑐6𝑠7 + 𝑠1𝑠2𝑐3𝑠4𝑐5𝑐6𝑠7 + 𝑐1𝑠2𝑐3𝑐4𝑠5𝑐6𝑠7 − 𝑠1𝑐2𝑠3𝑐4𝑠5𝑐6𝑠7
− 𝑠1𝑐2𝑐3𝑐4𝑐5𝑠6𝑠7 + 𝑐1𝑠2𝑠3𝑐4𝑐5𝑠6𝑠7 − 𝑐1𝑐2𝑐3𝑠4𝑠5𝑠6𝑠7 − 𝑠1𝑠2𝑠3𝑠4𝑠5𝑠6𝑠7]. (30)

On the other hand, for the simpler case of three-dimensional separable real signals
𝑓 ′(𝑥1, 𝑥2, 𝑥3) = 𝑔1(𝑥1)𝑔2(𝑥2)𝑔3(𝑥3), 𝑔𝑘 ∈ 𝐿1(ℝ1,ℝ1), 𝑘 = 1, 2, 3, (31)

the proposed polar representation and its reconstruction (see Section 7.5.2.1 of6) look much easier
𝜓𝐻𝑆′

1 (𝑥1, 𝑥2, 𝑥3) = 𝐴′
0𝑒

𝐞1Φ1𝑒𝐞2Φ2𝑒𝐞4Φ4 , 𝑓 ′
𝑟𝑒𝑐 = 𝐴′

0 cosΦ1 cosΦ2 cosΦ4, (32)
again omitting for brevity the arguments (𝑥1, 𝑥2, 𝑥3) of 𝐴′

0, Φ1, Φ2 and Φ3.

6.2 New Polar Representations of Embedded Octonion Analytic Signals
6.2.1 Polar Representation Based on Polar Decomposition in 𝐶𝑙(3, 0)
As shown in19, Theorem 1, there exists an elegant and very compact polar decomposition for complex biquaternions. Due to
the isomorphism between complex biquaternions and the Clifford algebra 𝐶𝑙(3, 0), this can be carried over to multivectors in
𝐶𝑙(3, 0) as well, see11, Section 4.3, equation (49). In the following we will first summarize the polar decomposition of 𝐶𝑙(3, 0)
multivectors provided in19,11, then provide a set of direct (computationally) simplified formulas for its computation, followed
by an explicit example. The simplified formulas are derived in appendix A, and the example is fully computed in appendix B.

A summary of the polar decomposition of𝐶𝑙(3, 0) multivectors in19,11 can be given as follows. As for notation, all unit vectors
𝑢 (two degrees of freedom (DOF)), all unit bivectors 𝑖2 (two DOF), and the central unit pseudoscalar 𝐼 = 𝜎123 in 𝐶𝑙(3, 0) square
to

𝑢2 = +1, 𝑖22 = −1, 𝐼2 = −1. (33)
The even subalgebra of 𝐶𝑙(3, 0) is isomorphic to quaternions ℍ: 𝐶𝑙+(3, 0) ≅ ℍ. That means general multivectors𝑀 in 𝐶𝑙(3, 0)
can always be represented as complex (𝐼2 = −1) (bi)quaternions:

𝑀 =𝑀+ +𝑀− = 𝑝 + 𝐼𝑞, (34)

9Hahn and Snopek 6, p. 168, state that the factor 𝑒𝐞7Φ7 is placed arbitrarily at the center.
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where 𝑝 and 𝑞 are (isomorphic to) quaternions
𝑝 =𝑀+ = 𝑎𝑝𝑒

𝛼𝑝𝑖𝑝 , 𝑞 = 𝐼−1𝑀− = 𝑎𝑞𝑒
𝛼𝑞 𝑖𝑞 , 𝑎𝑝, 𝑎𝑞 ∈ ℝ+

0 , 𝑖2𝑝 = 𝑖2𝑞 = −1, (35)
with unit bivectors 𝑖𝑝, 𝑖𝑞 ∈ 𝐶𝑙2(3, 0).

The polar decomposition of 𝑀 ∈ 𝐶𝑙(3, 0) is

𝑀 = 𝑝 + 𝐼𝑞 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑒𝛼0𝑒𝛼2𝑖2 for 𝑞 = 0,
𝐼𝑒𝛼0𝑒𝛼2𝑖2 for 𝑝 = 0,
𝑒𝛼0𝑒𝛼2𝑖2 1+𝐼𝐟

2
for 𝑞 = 𝑝𝐟 ,

𝑒𝛼0𝑒𝛼1𝑢′𝑒𝛼2𝑖2𝑒𝛼3𝐼 otherwise.
(36)

where in line three (compare (26) in11) we have the special case that the quotient 𝑝−1𝑞 results in a unit bivector 𝐟 = 𝑝−1𝑞. The
value of 𝑖2 = 𝑖𝑝 in lines one (compare (19) in11) and three, 𝑖2 = 𝑖𝑃 in line four, while in line two we have 𝑖2 = 𝑖𝑞 . We note that
line one is a special case of line four for 𝛼1 = 𝛼3 = 0. Line two (compare (19) in11) is a special case of line four for 𝛼1 = 0 and
𝛼3 = 𝜋∕2. So essentially only lines three and four of (36) matter, and we have one special (line three) case with idempotent factor
( 1+𝐼𝐟

2
), signaling that𝑀 is not invertible, and one general case (line four: see Section 4.2 of11 for all computational details) with

full exponential factorization. The latter has the necessary eight DOF: four DOF are given by the phase angles 𝛼𝑘, 𝑘 = 0, 1, 2, 3,
two DOF by unit vector 𝑢′ and two by unit bivector 𝑖2.

Here we present a computationally simplified set of formulas for computing the polar decomposition of a general multivector
𝑀 ∈ 𝐶𝑙(3, 0). First we compute the central number 𝑀𝑀 ∈ ℝ ⊕ 𝐼ℝ, i.e. a scalar plus a pseudoscalar (algebraically like a
complex number).

For 𝑀𝑀 = 0 we have the special case of 𝑀 being a divisor of zero, i.e., not invertible10. Then we can directly compute the
entities of line 3 of (36) as
𝛼0 = ln 2 + 1

2
ln(𝑀+𝑀+), 𝛼2 = atan2(|⟨𝑀⟩2|, ⟨𝑀⟩0), 𝑖2 =

⟨𝑀⟩2

|⟨𝑀⟩2|
for ⟨𝑀⟩2 ≠ 0, 𝐟 = 𝐼−1𝑀−1

+ 𝑀− = (𝑀−1
+ 𝑀−)∗,

(37)
where the upper star index of𝐴∗ applied to a multivector𝐴 ∈ 𝐶𝑙(3, 0)means geometric algebra duality, i.e.,𝐴∗ = 𝐴𝐼−1 = −𝐴𝐼 .
And we note that in this case we have

𝑀+ = 2𝑒𝛼0𝑒𝛼2𝑖2 , 𝑀− = 𝐼𝑀+𝐟 . (38)
The above formulas also apply in the case of ⟨𝑀⟩2 = 0, i.e., 𝑀+ = ⟨𝑀⟩0. Then 𝑒𝛼2𝑖2 degenerates to ±1, and it is simpler to
express

𝑀 = 2⟨𝑀⟩0
1 + 𝐼𝐟

2
= 𝑒𝛼0 sgn⟨𝑀⟩0

1 + 𝐼𝐟
2

, 𝛼0 = ln 2 + ln |⟨𝑀⟩0|, 𝐟 = 𝐼−1
𝑀−

⟨𝑀⟩0
=

(𝑀−)∗

⟨𝑀⟩0
, (39)

For𝑀𝑀 ≠ 0, i.e., when𝑀 is not a divisor of zero (and thus invertible) we get with the normed multivector (compare (A11))
𝑁 = 𝑀

√

𝑀𝑀
= 𝑁+ +𝑁−, 𝑁± =

( 𝑀
√

𝑀𝑀

)

±
, (40)

the general simplified decomposition formulas for invertible multivectors
𝛼0 =

1
4
ln
(

det(𝑀)
)

,

𝛼1 = atanh
(

−
𝑁−𝑁−

𝑁+𝑁+

)
1
2 , 𝑢′ =

𝑁−𝑁+

|𝑁−𝑁+|
,

𝛼2 = atan2 (|⟨𝑁⟩2|, ⟨𝑁⟩0), 𝑖2 =
⟨𝑁⟩2

|⟨𝑁⟩2|
for ⟨𝑁⟩2 ≠ 0,

𝛼3 =
1
2
atan2

(

(⟨𝑀𝑀⟩3)∗, ⟨𝑀𝑀⟩0
)

. (41)
We note that for ⟨𝑁⟩2 = 0, i.e., 𝑁+ = ⟨𝑁⟩0, the factor 𝑒𝛼2𝑖2 degenerates to ±1 = sgn⟨𝑁⟩0, and thus 𝛼2 and 𝑖2 need not to be
computed. The derivation of (37) to (41), based on the results of19,11 can be found in appendix A.

10𝑀𝑀 is a factor in the determinant of 𝑀 , see (B22): det(𝑀) =𝑀𝑀𝑀𝑀 , showing that det(𝑀) = 0 ⇔𝑀𝑀 = 0. The determinant is the same when computed in
a matrix representation of 𝐶𝑙(3, 0).
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To better understand how to compute the generic case decomposition of line four of (36), we present the following numerical
example (see all computational details in Appendix B).
Example 6.1.

𝑀 = 1 + 2𝜎1 + 3𝜎2 + 4𝐼𝜎1 + 5𝐼𝜎3 + 6𝐼 = 𝑒1.0436 𝑒1.5574 𝑢′ 𝑒0.66405 𝑖2 𝑒1.8304 𝐼 ,
𝑢′ = 0.9047 𝜎1 − 0.1544 𝜎2 + 0.3972 𝜎3, 𝑖2 = −0.2959𝐼𝜎3 − 0.6685𝐼𝜎2 − 0.6823𝐼𝜎1. (42)

We thus propose to use this new polar representation method (36) for the embedded octonion analytic signal (25), as one way
to answer the open question for the exact polar representation of (19).

Now let us assume, we have a general embedded octonion analytic signal in this new form of polar decomposition
𝜓1(𝑥1, 𝑥2, 𝑥3) = 𝑒𝛼0𝑒𝑎𝑒𝐵𝑒𝛼3𝐼 , (43)

with
𝑎 = 𝑎1𝜎1 + 𝑎2𝜎2 + 𝑎3𝜎3 = 𝛼1𝑢

′, 𝛼1 = |𝑎| =
√

𝑎2 =
√

𝑎21 + 𝑎
2
2 + 𝑎

2
3, 𝑢′ = 𝑎

𝛼1
,

𝐵 = 𝑏1𝜎23 + 𝑏2𝜎31 + 𝑏3𝜎12, 𝛼2 = |𝐵| =
√

−𝐵2 =
√

𝑏21 + 𝑏
2
2 + 𝑏

2
3, 𝑖2 =

𝐵
𝛼2
,

𝑏 = 𝑖∗2 = 𝑖2(−𝐼) =
𝑏1𝜎1 + 𝑏2𝜎2 + 𝑏3𝜎3

𝛼2
(44)

where 𝛼0, 𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑏3 and 𝛼3 are scalar functions of (𝑥1, 𝑥2, 𝑥3), and consequently 𝛼1, 𝛼2, vector 𝑎 and bivector 𝐵 are
also functions of (𝑥1, 𝑥2, 𝑥3). Note that the unit vector 𝑏 is dual (and thus orthogonal) to the unit bivector 𝑖2.

What does the reconstruction of the original real scalar signal 𝑓 look like? In order to answer this question, we note that
𝑒𝑎 = 𝑒𝛼1𝑢′ = cosh 𝛼1 + 𝑢′ sinh 𝛼1, 𝑒𝐵 = 𝑒𝛼2𝑖2 = cos 𝛼2 + 𝑖2 sin 𝛼2, 𝑒𝛼3𝐼 = cos 𝛼3 + 𝐼 sin 𝛼3, (45)

and abbreviate in this context
𝑐1 = cosh 𝛼1, 𝑠1 = sinh 𝛼1, 𝑐2 = cos 𝛼2, 𝑠2 = sin 𝛼2, 𝑐3 = cos 𝛼3, 𝑠3 = sin 𝛼3. (46)

Now we can expand the above polar representation of the embedded octonion signal as
𝜓1(𝑥1, 𝑥2, 𝑥3) = 𝑒𝛼0(𝑐1 + 𝑢′𝑠1)(𝑐2 + 𝑖2𝑠2)(𝑐3 + 𝐼𝑠3)

= 𝑒𝛼0(𝑐1𝑐2𝑐3 + 𝑐1𝑠2𝑐3𝑖2 + 𝑠1𝑐2𝑐3𝑢′ + 𝑠1𝑠2𝑐3𝑢′𝑖2 + 𝑐1𝑐2𝑠3𝐼 + 𝑐1𝑠2𝑠3𝑖2𝐼 + 𝑠1𝑐2𝑠3𝑢′𝐼 + 𝑠1𝑠2𝑠3𝑢′𝑖2𝐼). (47)
We observe that only the first term and the scalar part of the last term do contribute to the scalar part of 𝜓1

𝑓𝑟𝑒𝑐 = ⟨𝜓1(𝑥1, 𝑥2, 𝑥3)⟩ = 𝑒𝛼0(𝑐1𝑐2𝑐3 + 𝑠1𝑠2𝑠3⟨𝑢′𝑖2𝐼⟩) = 𝑒𝛼0(𝑐1𝑐2𝑐3 + 𝑠1𝑠2𝑠3 𝑢′ ⋅ (−𝑖∗2)) = 𝑒𝛼0(𝑐1𝑐2𝑐3 − 𝑠1𝑠2𝑠3 𝑢′ ⋅ 𝑏)
= 𝑒𝛼0(𝑐1𝑐2𝑐3 − 𝑠1𝑠2𝑠3 cos𝜑𝑎𝑏), (48)

where in the last line we introduced the angle 𝜑𝑎𝑏, cos𝜑𝑎𝑏 = 𝑢′ ⋅ 𝑏, between the vector 𝑎 and the normal vector 𝑏 of 𝑖2.
Comparing with the octonionic reconstruction result (30) in6, we see that even without the assumption of separability, we obtain
a considerably simpler, more compact and geometrically intuitive result in terms of the amplitude factor 𝑒𝛼0 , the (hyperbolic)
cosines and sines of the parameters 𝛼1, 𝛼2, 𝛼3 and of the cosine of the angle 𝜑𝑎𝑏 between the vectors 𝑎 and 𝑏 (normal to 𝑖2).

6.2.2 Polar Representation Based on Polar Decomposition in 𝐶𝑙(3, 0) and Intuition from
Separability
Another way to answer the above question for the polar decomposition of embedded octonion analytic signals can be proposed
based on analysis of a separable three-dimensional signal (31) that leads to a decomposition of the form

𝜓 ′
1(𝑥1, 𝑥2, 𝑥3) = 𝐴1𝐴2𝐴3

[

cos(𝛼2)𝑒−𝛼3𝐼 − sin(𝛼2)𝐼𝜎3𝑒𝛼3𝐼
](

cos(𝛼1) + sin(𝛼1)𝜎1
)

, (49)
where the scalar amplitude- and angle parameters 𝐴1, 𝐴2, 𝐴3, 𝛼1, 𝛼2, 𝛼3 are all functions of (𝑥1, 𝑥2, 𝑥3). More general, without
assuming separability, we have

𝜓 ′
1(𝑥1, 𝑥2, 𝑥3) = 𝑒𝛼0

[

cos(𝛼2)𝑒−𝛼3𝐼 + sin(𝛼2)𝑖2𝑒𝛼3𝐼
](

cos(𝛼1) + sin(𝛼1)𝑢
)

, (50)
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with
𝑎 = 𝑎1𝜎1 + 𝑎2𝜎2 + 𝑎3𝜎3 = 𝛼1𝑢, 𝛼1 = |𝑎| =

√

𝑎2 =
√

𝑎21 + 𝑎
2
2 + 𝑎

2
3, 𝑢 = 𝑎

𝛼1
,

𝐵 = 𝑏1𝜎23 + 𝑏2𝜎31 + 𝑏3𝜎12, 𝛼2 = |𝐵| =
√

−𝐵2 =
√

𝑏21 + 𝑏
2
2 + 𝑏

2
3, 𝑖2 =

𝐵
𝛼2
,

𝑏 = 𝑖∗2 = 𝑖2(−𝐼) =
𝑏1𝜎1 + 𝑏2𝜎2 + 𝑏3𝜎3

𝛼2
, (51)

where 𝛼0, 𝑎1, 𝑎2, 𝑎3, 𝑏1, 𝑏2, 𝑏3 and 𝛼3 are scalar functions of (𝑥1, 𝑥2, 𝑥3), and consequently 𝛼1, 𝛼2, thus vector 𝑎 and bivector 𝐵
are also functions of (𝑥1, 𝑥2, 𝑥3).

The reconstruction formula for the real signal 𝑓 ′ from the polar representation (50) amounts simply to compute its scalar part.
In analogy to (48), we obtain with (note the different definitions of 𝑠1 and 𝑐1, compared to (46))

𝑐1 = cos 𝛼1, 𝑠1 = sin 𝛼1, 𝑐2 = cos 𝛼2, 𝑠2 = sin 𝛼2, 𝑐3 = cos 𝛼3, 𝑠3 = sin 𝛼3. (52)
𝑓 ′
𝑟𝑒𝑐 = ⟨𝜓ε′1(𝑥1, 𝑥2, 𝑥3)⟩ = 𝑒𝛼0(𝑐1𝑐2𝑐3 − 𝑠1𝑠2𝑠3 𝑢 ⋅ 𝑏) = 𝑒𝛼0(𝑐1𝑐2𝑐3 − 𝑠1𝑠2𝑠3 cos𝜑𝑎𝑏), (53)

where in the last line we again introduced the angle 𝜑𝑎𝑏 between the vector 𝑎 and the normal vector 𝑏 of 𝑖2. We note that the two
geometric algebra embedding based reconstruction formulas (48) and (53) are formally identical, apart from the differences in
using hyperbolic cosines and sines at the beginning of (46), while only trigonometric cosines and sines are used in (52).
Remark 1. We note that in the case of a truly separable signal, like in (49) with 𝑢 = 𝜎1 and 𝑖2 = −𝐼𝜎3, we have

−cos𝜑𝑎𝑏 = −𝑢 ⋅ 𝑏 = ⟨𝑢𝑖2𝐼⟩ = ⟨𝜎1(−𝐼𝜎3)𝐼⟩ = ⟨𝜎1𝜎3⟩ = 0 (54)
and hence the even simpler result

𝑓 ′
𝑟𝑒𝑐 = 𝑒𝛼0𝑐1𝑐2𝑐3, (55)

formally identical to the above (32) also found in Section 7.5.2.1 of6.
Further research has to show which of these two geometric algebra based polar representations of embedded octonion analytic

signals may be preferable.

7 CONCLUSIONS

We have briefly reviewed octonions and their new minimal embedding in the geometric algebra of three-dimensional space
𝐶𝑙(3, 0). We further reviewed the notion of OFT and octonion analytic signal, embedded both in 𝐶𝑙(3, 0), and finally suggested
two interesting possibilities for polar decompositions of the embedded octonion analytic signal, together with the correspond-
ing signal reconstruction formulas. In this context we have given for the polar decomposition of multivectors in 𝐶𝑙(3, 0) new
simplified computation formulas. Further research, including concrete applications to non-separable signals, is desirable.
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APPENDIX

A DERIVATION OF SIMPLIFIED FORMULAS FOR EXPONENTIAL DECOMPOSITION IN
𝐶𝐿(3, 0)

Based on the general results for the exponential factorization of 𝐶𝑙(3, 0) multivectors 𝑀 in19,11, we now prove the simplified
computation formulas (37) to (41).

For a general multivector 𝑀 ∈ 𝐶𝑙(3, 0) we have the additive decomposition
𝑀 =𝑀+ +𝑀− = 𝑝 + 𝐼𝑞, 𝑝, 𝑞 ∈ 𝐶𝑙+(3, 0), 𝑝 =𝑀+, 𝑞 = 𝐼−1𝑀− = (𝑀−)∗. (A1)

For 𝑀𝑀 = 0 the multivector 𝑀 is a divisor of zero and will take on the factorized form
𝑀 = 𝑒𝛼0𝑒𝛼2𝑖2 1 + 𝐼𝐟

2
= 1

2
𝑒𝛼0𝑒𝛼2𝑖2 + 1

2
𝑒𝛼0𝑒𝛼2𝑖2𝐼𝐟 , (A2)

with
𝑀+ = ⟨𝑀⟩0 + ⟨𝑀⟩2 =

1
2
𝑒𝛼0𝑒𝛼2𝑖2 = 1

2
𝑒𝛼0 cos 𝛼2 + 𝑖2

1
2
𝑒𝛼0 sin 𝛼2, ⟨𝑀⟩0 =

1
2
𝑒𝛼0 cos 𝛼2, ⟨𝑀⟩2 = 𝑖2

1
2
𝑒𝛼0 sin 𝛼2, (A3)

and
𝑀− = 1

2
𝑒𝛼0𝑒𝛼2𝑖2𝐼𝐟 =𝑀+𝐼𝐟 =𝑀+𝐟𝐼. (A4)

From (A3) we immediately find
𝑀+𝑀+ = 1

4
𝑒2𝛼0𝑒𝛼2𝑖2𝑒−𝛼2𝑖2 = 1

4
𝑒2𝛼0 ⇔ 𝛼0 =

1
2
ln(4𝑀+𝑀+) = 2 + 1

2
ln(𝑀+𝑀+), (A5)

and
tan 𝛼2 =

|⟨𝑀⟩2|

⟨𝑀⟩0
⇔ 𝛼2 = atan2(|⟨𝑀⟩2|, ⟨𝑀⟩0). (A6)

For the special case of ⟨𝑀⟩2 = 0, i.e., 𝑀+ = ⟨𝑀⟩0, we have
𝛼0 = 2 + 1

2
ln(⟨𝑀⟩

2
0), 𝑒𝛼2𝑖2 → sgn⟨𝑀⟩0 = ±1. (A7)

For ⟨𝑀⟩2 ≠ 0, we see from (A3) that
𝑖2 =

⟨𝑀⟩2

|⟨𝑀⟩2|
. (A8)

Finally from (A4) we then conclude
𝐟 =𝑀−1

+ 𝑀−𝐼
−1 = (𝑀−1

+ 𝑀−)∗, (A9)
and if furthermore ⟨𝑀⟩2 = 0, i.e., 𝑀+ = ⟨𝑀⟩0, this becomes simply

𝐟 =
(𝑀−)∗

⟨𝑀⟩0
. (A10)

This completes the derivation of the simplified computation of the exponential factorization of a (non-invertible) multivector
𝑀 ∈ 𝐶𝑙(3, 0) that is a divisor of zero.
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Now we derive the simplified factorization expressions for a 𝑀 ∈ 𝐶𝑙(3, 0) with 𝑀𝑀 ≠ 0, i.e. for 𝑀 being invertible (not a
divisor of zero). Division with

√

𝑀𝑀 leads to a unit norm multivector
𝑁 = 𝑀

√

𝑀𝑀
, 𝑁𝑁 = 1, (A11)

and hence the central (scalar and pseudoscalar) amplitude is given by
√

𝑀𝑀 = 𝑒𝛼0+𝛼3𝐼 = 𝑒𝛼0𝑒𝛼3𝐼 , 𝑀𝑀 = 𝑒2𝛼0𝑒2𝛼3𝐼 = 𝑒2𝛼0(cos 2𝛼3 + 𝐼 sin 2𝛼3),

𝑒2𝛼0 =
√

|𝑀𝑀|

2 =
(

𝑀𝑀 (̃𝑀𝑀)
)

1
2 =

(

𝑀𝑀𝑀𝑀
)

1
2 =

√

det(𝑀)

⇔ 𝛼0 =
1
4
ln (𝑀𝑀𝑀𝑀) = 1

4
ln
(

det(𝑀)
)

, (A12)
where we notice that det(𝑀) =𝑀𝑀𝑀𝑀 , compare21,9. And

tan(2𝛼3) =
⟨𝑀𝑀⟩3𝐼−1

⟨𝑀𝑀⟩0

=
⟨𝑀𝑀⟩

∗
3

⟨𝑀𝑀⟩0

⇔ 𝛼3 =
1
2
atan

(

(⟨𝑀𝑀⟩3)∗, ⟨𝑀𝑀⟩0

)

. (A13)

Interpreting
√

𝑀𝑀 as a complex number, the computation of 𝛼0 and 𝛼3 simply means to obtain the logarithm of the magnitude,
and the phase angle, respectively.

In11 we find the definition of 𝑃 ,𝑄 ∈ 𝐶𝑙+(3, 0) as

𝑃 = 𝑁+ = ⟨𝑀
√

𝑀𝑀
−1

⟩+, 𝑄 = 𝑁−𝐼
−1 =

(

⟨𝑀
√

𝑀𝑀
−1

⟩−

)∗
, tanh 𝛼1 =

𝑎𝑄
𝑎𝑃

=

√

𝑄𝑄
𝑃𝑃

, (A14)
hence

𝛼1 = atanh

√

√

√

√

(𝑁−)∗(𝑁−)∗

𝑁+𝑁+

= atanh

√

√

√

√−
𝑁−𝑁−

𝑁+𝑁+

, (A15)
because

𝑄𝑄 = 𝑁−𝐼
−1𝑁−𝐼−1 = 𝑁−𝐼

−1𝐼−1𝑁− = −𝑁−𝑁−. (A16)
From we have

𝑢′ =
⟨𝑁𝑒−𝛼𝑃 𝑖𝑃 ⟩1
|⟨𝑁𝑒−𝛼𝑃 𝑖𝑃 ⟩1|

=
⟨𝑁𝑃 −1

⟩1

|⟨𝑁𝑃 −1
⟩1|

= 𝐼𝑄𝑃 −1

|𝐼𝑄𝑃 −1
|

=
𝑁−𝑁−1

+

|𝑁−𝑁−1
+ |

=
𝑁−𝑁+

|𝑁−𝑁+|
. (A17)

According to11, we have
𝑒𝛼2𝑖2 = cos 𝛼2 + 𝑖2 sin 𝛼2 = 𝑒𝛼𝑃 𝑖𝑃 = 𝑃

𝑎𝑃
=

𝑁+

|𝑁+|
= 1

|𝑁+|
(⟨𝑁⟩0 + ⟨𝑁⟩2), (A18)

hence
tan 𝛼2 =

|⟨𝑁⟩2|

⟨𝑁⟩0
⇔ 𝛼2 = atan2(|⟨𝑁⟩2|, ⟨𝑁⟩0), 𝑖2 =

⟨𝑁⟩2

|⟨𝑁⟩2|
. (A19)

For the special case of ⟨𝑁⟩2 = 0 we have 𝑒𝛼2𝑖2 → ±1 = sgn⟨𝑁⟩0, and do not need to compute 𝛼2 and 𝑖2.

B COMPUTATION OF EXAMPLE 6.1

We assume in 𝐶𝑙(3, 0) the multivector
𝑀 = 1 + 2𝜎1 + 3𝜎2 + 4𝐼𝜎1 + 5𝐼𝜎3 + 6𝐼 (B20)

A first step is to norm 𝑀 by division with the central square root of 𝑀𝑀 .
𝑀𝑀 = (1 + 2𝜎1 + 3𝜎2 + 4𝐼𝜎1 + 5𝐼𝜎3 + 6𝐼)(1 − 2𝜎1 − 3𝜎2 − 4𝐼𝜎1 − 5𝐼𝜎3 + 6𝐼)

= 1 − 4 − 9 + 16 + 25 − 36 + 𝐼(12 − 16) = −7 − 4𝐼

=
√

65 −7 − 4𝐼
√

65
= 𝑒2×1.0436𝑒2×1.8304𝐼 , ⟨𝑀𝑀⟩0 = −7, ⟨𝑀𝑀⟩3 = −4𝐼, (B21)
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showing that 𝛼0 = 1.0436 and 𝛼3 = 1.8304. We can check the value of 𝛼0 by computing the determinant
det(𝑀) =𝑀𝑀𝑀𝑀 = 65, 𝛼0 =

1
4
ln det(𝑀) = 1

4
ln 65 = 1.0436, (B22)

and similarly we can check (to make the angle positive, we add 2𝜋)
𝛼3 =

1
2
atan2(−4𝐼∗,−7) = 1

2
atan2(−4,−7) = 1

2
(−2.6224) ≅ 1

2
(−2.6224 + 2𝜋) = 1.8304. (B23)

We therefore have
√

𝑀𝑀 = 𝑒1.0436 𝑒1.8304𝐼 , (B24)
and

𝑁 =𝑀
√

𝑀𝑀
−1

=𝑀𝑒−1.0436𝑒−1.8304𝐼

= 1.9519 + 1.1807𝜎1 − 0.2712𝜎2 + 1.7019𝜎3
− 0.4520𝐼𝜎3 − 1.0212𝐼𝜎2 − 1.0424𝐼𝜎1 − 0.8828𝐼

= 𝑁+ +𝑁−, (B25)
Therefore

𝑁+ = 1.9519 − 0.4520𝐼𝜎3 − 1.0212𝐼𝜎2 − 1.0424𝐼𝜎1,
⟨𝑁⟩0 = 1.9519, ⟨𝑁⟩2 = −0.4520𝐼𝜎3 − 1.0212𝐼𝜎2 − 1.0424𝐼𝜎1, |⟨𝑁⟩2| = 1.5276,
𝑁− = −0.8828𝐼 + 1.1807𝜎1 − 0.2712𝜎2 + 1.7019𝜎3. (B26)

And we represent 𝑁+ as a rotor
𝑁+ = |𝑁+|𝑒

𝛼2𝑖2 = 2.4786 𝑒0.66405×(−0.2959𝐼𝜎3−0.6685𝐼𝜎2−0.6823𝐼𝜎1), |𝑁+| =
√

𝑁+𝑁+ = 2.4786, (B27)
that is

𝛼2 = atan2(|⟨𝑁⟩2|, ⟨𝑁⟩0) = 0.66405,

𝑖2 =
⟨𝑁⟩2

|⟨𝑁⟩2|
= −0.2959𝐼𝜎3 − 0.6685𝐼𝜎2 − 0.6823𝐼𝜎1. (B28)

We finally have
𝑒𝛼1𝑢′ = 𝑁𝑒−𝛼𝑃 𝑖𝑃 = 2.4786 + 2.0517𝜎1 − 0.3502𝜎2 + 0.9008𝜎3, (B29)

with unit vector part
𝑢′ =

𝑁−𝑁+

|𝑁−𝑁+|
= 0.9047 𝜎1 − 0.1544 𝜎2 + 0.3972 𝜎3, (B30)

and
𝛼1 = atanh

√

√

√

√−
𝑁−𝑁−

𝑁+𝑁+

= atanh
√

5.1435
6.1435

= 1.5574. (B31)
In summary the polar decomposition gives

𝑀 = 𝑒1.0436 𝑒1.5574 𝑢′ 𝑒0.66405 𝑖2 𝑒1.8304 𝐼 ,
𝑢′ = 0.9047 𝜎1 − 0.1544 𝜎2 + 0.3972 𝜎3, 𝑖2 = −0.2959𝐼𝜎3 − 0.6685𝐼𝜎2 − 0.6823𝐼𝜎1. (B32)

All computations have been verified with The Clifford Multivector Toolbox for Matlab18.
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