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ABSTRACT 

In this paper, we present a new approximate formula based on the Windschitl’s type formula, one 

of the important approximate formulas of the Gamma function. And we introduce interesting 

double inequality associated with our new formula. 
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1. Introduction 

The Gamma function can be regarded as an extension of the factorial function and has artful 

applications in statistical physics, probability theory and number theory. The big factorials arise 

in the research of the pure mathematics and other branches of science. A general method is to find 

approximations of the factorial function and its extension Gamma function. The Gamma function 

belongs to the category of the special transcendental functions and we will see that some famous 

mathematical constants are occurring in its study. It also appears in various area as asymptotic 

series, definite integration, hypergeometric series, Riemann zeta function and number theory.  

It is known that the Stirling’s formula 

n

e

n
nn 







2~!              (1.1) 

for a natural number n has various applications in probability theory, statistical physics, number 

theory and other branches of science. 

As an asymptotic expansion of Stirling’s formula (1.1), one has the Stirling’s series for Gamma 

function (see [1]) 
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where nB2 is the Bernoulli number. 

In [2], authors remarked that Ramanujan type asymptotic expansion and established the 
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following asymptotic expansion: 
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More asymptotic expansion developed by some closed approximation formulas for the Gamma 

function can be found in [3-7], [12-14] and the references cited therein. 

Windschitl [8] suggested in 2002 the following approximation formula for computing the 

Gamma function with fair accuracy on calculators with limited program or register memory. Now 

let us focus on the Windschitl’s approximation formula given by 
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Up until now, many researchers made great efforts in the area of establishing more accurate 

approximations for the factorial function, and had a lot of inspiring results. 

Recently, Lu, Song and Ma [9] extended Windschitl’s formula to an asymptotic expansion that  
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In [10], the authors provided a continued fraction approximation for the factorial function starting 

from the Windschitl’s formula as follows, 
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Other two asymptotic expansions 

  ,
1

sinh2~1
0

2/ 





















 j

j
j xrxx

x
x

e

x
xx           (1.7) 



  .
1

sinh2~1

2/

3
2

x

n
n

n

x

x

d

x
x

e

x
xx 
















 




         (1.8) 

Inspired by the asymptotic expansions (1.7) and (1.8), the aim of this paper is to further present 

the following two asymptotic expansions related to Windschitl’s one as x , 
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2. Useful Lemma 

To obtain the explicit coefficients formula in the asymptotic expansions and to estimate the 

remainder in (1.9), we need the following lemma. 

Lemma. For || t , we have 
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Proof. According to [11] 
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Then we obtain that for || t , 
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The proof is completed. 

3. A new type of asymptotic expansion for the Gamma function 

Theorem 3.1. As x , the asymptotic expansion 
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holds with 
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Proof. By the asymptotic expansion (1.1) and Lemma we have that as x , 
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Then we arrive at 
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In [13], result of Theorem 3.1 is the same with our computation. 

Next, using Theorem 3.1, we provide the following double inequality for the Gamma function. 

Theorem 3.2. For every 0x , it holds: 
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Proof. For a natural number 5m , let 
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We get that, from (3.7), 
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From this result, we can get 
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4. Conclusions 

In this paper, we established new asymptotic expansions starting from Windschitl’s formula and 

the double inequality. 
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