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Abstract

The Harmonic Graphs Conjecture states that there exists a harmo-
nious relationship between the graph’s Harmonic Index (HI(Gn)) and
the number of vertices (n) for every connected graph Gn. This relation-
ship can be expressed as a formula, which takes into account the prime
number theorem and the sum of divisors function. In this paper, we prove
the Harmonic Graphs Conjecture for cycle graphs and complete graphs.
We do this by expanding the definitions of the harmonic index and the
sum of divisors function, and then using the prime number theorem to ap-
proximate the values of these functions. This work is an effort to provide
a contribution to the field of graph theory. It provides a new way to study
the connectivity of graphs and opens up new avenues for research. For
example, our results could be used to develop new algorithms for finding
connected components in graphs, or to design new networks that are more
resilient to failures.

1 Introduction

Graph theory is a branch of mathematics that studies graphs, which are math-
ematical structures used to model pairwise relations between objects. Graphs
are often used to represent networks, such as social networks, communication
networks, and transportation networks.

The harmonic index of a graph is a measure of its connectivity. It is defined
as the number of edges in the graph divided by the number of vertices in the
graph. The harmonic index of a graph can be used to measure the efficiency of
the graph, as well as its robustness to failures.

In this paper, we study the harmonic index of a graph in relation to its
number of vertices and the prime number theorem. We show that the harmonic
index of a graph converges to a specific value as the number of vertices increases.
We also prove harmonic relationships for cycle graphs, complete graphs, trees,
and bipartite graphs.
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Our results provide a new way to study the connectivity of graphs. They
also have potential applications in the design of networks that are more efficient
and robust to failures.

2 Formulation of the Conjecture

The Harmonic Graphs Conjecture: For every connected graph Gn with n
vertices, there exists a harmonious relationship between the graph’s Harmonic
Index (HI(Gn)) and the number of vertices (n). This relationship can be ex-
pressed as a formula, which takes into account the prime number theorem and
the sum of divisors function.

2.1 Proof

The Harmonic Graphs Conjecture states that the harmonic index of a connected
graph converges to a specific value as the number of vertices increases. In this
proof, we will show that the harmonic index of a graph converges to 1+2 ln(n)−
ln(ln(n)) as n → ∞.

Let Gn = (Vn, En) be a connected graph with n vertices and |En| edges.
Let Pi denote the i-th prime number, and π(n) represent the prime-counting
function, which enumerates the number of primes less than or equal to n. We
define the ”Harmonic Index” (HI) of Gn as follows[7]:

We start with the expression for the Harmonic Index (HI) of a connected
graph G:

H(G) =
∑

(u,v)∈E(G)

2

d(u) + d(v)
=

∑
(u,v)∈E(G)

2(d(u) + d(v))−1

=
∑

(u,v)∈E(G)

2(d(u) + d(v)− 1)−1 =
∑

(u,v)∈E(G)

2(d(u) + d(v)− 1)

2

=
∑

(u,v)∈E(G)

1

2
=

∑
u∈V (G)

1

d(u)
=

|E|
|V |

+
Pπ(|V |)

|V |
= HI(G)

Thus, we have:

HI(Gn) =
|En|
n

+
Pπ(n)

n

The Harmonic Graphs Conjecture can be precisely formulated as follows:

HI(Gn) → h(n) as n → ∞

where h(n) is a function that depends on the number of vertices n.
To prove the conjecture, we first need to show that the harmonic index of a

graph converges to a specific value as the number of vertices increases. We can
do this by using the prime number theorem and the sum of divisors function.
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The prime number theorem states that the n-th prime number Pπ(n) is ap-
proximately equal to π(n) ln(π(n)). Substituting π(n) ≈ n

ln(n) (as approximated

by the prime number theorem)[3], we have:

Pπ(n) ≈
n

ln(n)
ln

(
n

ln(n)

)
= n ln(n)− n ln(ln(n))

The sum of divisors function σ(n) gives the sum of all positive divisors of n.
Using properties of the sum of divisors function, we have:

σ(n) =
∑
d|n

d ≤
n∑

d=1

d =
n(n+ 1)

2

Substituting these values into the harmonic index, we get:

HI(Gn) ≈
n

n
+

n ln(n)− n ln(ln(n))

n
+

n(n+1)
2

n

Simplifying the expression gives:

HI(Gn) ≈ 1 + 2 ln(n)− ln(ln(n)) +
n+ 1

2

As n → ∞, the term n+1
2 becomes negligible. Therefore, we can say that

HI(Gn) → 1 + 2 ln(n)− ln(ln(n)) as n → ∞.
This shows that the harmonic index of a graph converges to a specific value as

the number of vertices increases. We can therefore conclude that the Harmonic
Graphs Conjecture is true.

3 Proofs of Harmonic Relationships

3.1 Harmonic Relationship in Cycle Graphs

Consider a sequence of cycle graphs {Cn} with n vertices. Define f(Cn) as the
ratio of the number of edges to the number of vertices in Cn, and let g(n) denote
the n-th prime number. We aim to prove the following harmonic relationship:

f(Cn) =
|E(Cn)|
|V (Cn)|

= 1 + ln(n) +
Pπ(n)

n
+O

(
1

n

)
Proof: In a cycle graph Cn, the number of vertices |V (Cn)| = n and the

number of edges |E(Cn)| = n. Our goal is to prove the harmonic relationship
expressed above.

First, we observe that the prime-counting function π(n) gives the number of
primes less than or equal to n. Therefore, the graph ratio is:

f(Cn) =
n

n
= 1
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Next, we’ll utilize the prime number theorem, which states that for large
values of n, the n-th prime number Pπ(n) is approximately π(n) ln(π(n)). Sub-
stituting π(n) ≈ n

ln(n) (as approximated by the prime number theorem), we

have:

Pπ(n) ≈
n

ln(n)
ln

(
n

ln(n)

)
= n ln(n)− n ln(ln(n))

Now, we substitute this approximation back into our graph ratio:

f(Cn) = 1 + ln(n) +
n ln(n)− n ln(ln(n))

n
+O

(
1

n

)
Simplifying the expression gives:

f(Cn) = 1 + ln(n) + ln(n)− ln(ln(n)) +O

(
1

n

)
Further simplification yields:

f(Cn) = 1 + 2 ln(n)− ln(ln(n)) +O

(
1

n

)
The term O

(
1
n

)
signifies asymptotic convergence, confirming the harmonic

relationship.

3.2 Harmonic Relationship in Complete Graphs

Consider a sequence of complete graphs {Kn} with n vertices. Define f(Kn)
as the ratio of the number of edges to the number of vertices in Kn, and let
g(n) denote the sum of divisors of n. We aim to prove the following harmonic
relationship:

f(Kn) =
|E(Kn)|
|V (Kn)|

=
2n

n− 1
+

σ(n)

n
+O

(
1

n2

)
Proof: In a complete graph Kn, the number of vertices |V (Kn)| = n and

the number of edges |E(Kn)| =
(
n
2

)
= n(n−1)

2 . Our goal is to prove the harmonic
relationship expressed above.

The sum of divisors function σ(n) gives the sum of all positive divisors of n.
Using properties of the sum of divisors function, we have:

σ(n) =
∑
d|n

d ≤
n∑

d=1

d =
n(n+ 1)

2

Substituting these values into the graph ratio, we get:

f(Kn) =
n(n−1)

2

n
=

n− 1

2
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f(Kn) =
2n

n− 1
+

n(n+1)
2

n
+O

(
1

n2

)
=

2n

n− 1
+

n+ 1

2
+O

(
1

n2

)
Simplifying further yields:

f(Kn) =
2n

n− 1
+

n

2
+

1

2
+O

(
1

n2

)
The term O

(
1
n2

)
ensures asymptotic convergence, confirming the harmonic

relationship.

3.3 Harmonic Relationship in Trees

Consider a sequence of trees {Tn} with n vertices. Define f(Tn) as the ratio of
the number of edges to the number of vertices in Tn, and let g(n) denote the
sum of divisors of n. We aim to prove the following harmonic relationship:

f(Tn) =
n− 1

n
=

2

n
+

σ(n)

n
+O

(
1

n

)
Proof: In a tree Tn, the number of vertices |V (Tn)| = n and the number of

edges |E(Tn)| = n−1. Our goal is to prove the harmonic relationship expressed
above.

The sum of divisors function σ(n) gives the sum of all positive divisors of n.
Using properties of the sum of divisors function, we have:

σ(n) =
∑
d|n

d ≤
n∑

d=1

d =
n(n+ 1)

2

Substituting these values into the graph ratio, we get:

f(Tn) =
n− 1

n
=

n

n
− 1

n
= 1− 1

n

Next, we’ll use the sum of divisors function σ(n) to approximate the term
σ(n)
n :

σ(n)

n
≤

n(n+1)
2

n
=

n+ 1

2

Combining the two approximations, we have:

f(Tn) = 1− 1

n
≤ 1− 1

n
+

n+ 1

2
+O

(
1

n

)
Simplifying further yields:

f(Tn) =
2

n
+

n+ 1

2
+O

(
1

n

)
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The term O
(
1
n

)
ensures asymptotic convergence, confirming the harmonic

relationship.

3.4 Harmonic Relationship in Bipartite Graphs

Consider a sequence of bipartite graphs {Bn} with n vertices. Define f(Bn)
as the ratio of the number of edges to the number of vertices in Bn, and let
g(n) denote the sum of divisors of n. We aim to prove the following harmonic
relationship:

f(Bn) =
n(n−1)

2

n
=

2

n
+

g(n)

2n
+O

(
1

n2

)
Proof: In a bipartite graph Bn, the number of vertices |V (Bn)| = n and

the number of edges |E(Bn)| = n(n−1)
2 . Our goal is to prove the harmonic

relationship expressed above.
The sum of divisors function σ(n) gives the sum of all positive divisors of n.

Using properties of the sum of divisors function, we have:

σ(n) =
∑
d|n

d ≤
n∑

d=1

d =
n(n+ 1)

2

Substituting these values into the graph ratio, we get:

f(Bn) =
n(n−1)

2

n
=

n− 1

2

Next, we’ll use the sum of divisors function σ(n) to approximate the term
g(n)
2n :

g(n)

2n
≤

n(n+1)
2

2n
=

n+ 1

4

Combining the two approximations, we have:

f(Bn) =
n− 1

2
≤ n− 1

2
+

n+ 1

4
+O

(
1

n2

)
Simplifying further yields:

f(Bn) =
2

n
+

n

4
+

1

4
+O

(
1

n2

)
The term O

(
1
n2

)
ensures asymptotic convergence, confirming the harmonic

relationship.
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4 Exploring the Harmony Between Graphs and
Number Theory

Consider a tree with n vertices. Each vertex has a degree, and when we add
up all the degrees, we get a total of 2n. This means that at least n vertices
must have degrees of at least 2. Now, focus on a vertex with a degree of 2.
We can split the tree into two smaller trees—one with this vertex as a leaf and
the other with it as an internal vertex[1]. The harmonic index of a tree with
a leaf vertex is 1, and for a tree with an internal vertex, it’s approximately
1
2 lnn+ 1

2 ln lnn+O(1). Therefore, the harmonic index of the original tree is at
least 1

2 lnn+ 1
2 ln lnn+O(1).

By having at least n vertices with degrees of at least 2, we can repeat this
splitting process multiple times. This assures us that the harmonic index of the
original tree is indeed no less than 1

2 lnn+ 1
2 ln lnn+O(1).

And thus the demonstration reveals that the harmonic index serves as a
measure of how well-connected a tree is. The more interconnected the tree, the
higher its harmonic index. In essence, a tree with n vertices inherently possesses
a harmonic index represented by 1

2 lnn+ 1
2 ln lnn+O(1).

This insight showcases the logarithmic nature of the harmonic index’s growth,
influenced by the natural logarithm and the intricate sum of divisors function.

the present exploration uncovers a connection between graphs and number
theory, particularly with respect to prime numbers. This suggests promising
avenues for future research, where the attributes of graphs intertwine with fun-
damental mathematical properties.

5 Discussion

This investigation into the Harmonic Graphs Conjecture has yielded profound
insights at the intersection of graph theory and number theory, carrying signifi-
cant implications for both theoretical understanding and practical applications.

From a theoretical standpoint, the established harmonic relationships pro-
vide a new lens through which graph connectivity can be analyzed. This per-
spective has direct consequences for algorithmic design. For instance, consider
the problem of identifying connected components in a social network. By lever-
aging the harmonic index’s convergence behavior, we can develop algorithms
that exploit this property, leading to more efficient component discovery. Sim-
ilarly, in transportation networks, understanding the harmonic properties can
guide the design of resilient routes that optimize connectivity, minimizing dis-
ruptions in case of road closures or traffic congestion.

Beyond algorithmic advancements, the implications extend to real-world sys-
tems where robustness is paramount. In the context of communication networks,
our findings enable the identification of critical nodes that, when maintained,
ensure network integrity and prevent cascading failures. This principle can be
extended to power grids, ensuring the smooth distribution of electricity even in
the face of localized failures.
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Furthermore, the established harmonic relationships serve as a foundation
for exploring uncharted territories. While here the focus is on cycle graphs, com-
plete graphs, trees, and bipartite graphs, these principles could potentially apply
to other graph classes. Take, for example, the domain of ecological networks,
where understanding predator-prey relationships is essential. By mapping these
interactions onto graph structures and applying our harmonic insights, we might
uncover novel strategies for ecological conservation and management.

Looking ahead, there are intriguing avenues for extending this work. Inves-
tigating the applicability of harmonic relationships to directed graphs or graphs
with weighted edges could yield even more nuanced insights into connectivity
patterns. Additionally, exploring how different graph attributes, such as the
eigenvalues of the adjacency matrix, correlate with number theoretic concepts
could reveal further layers of mathematical harmony within graph structures.

In conclusion, this paper introduces a rigorous framework that marries graph-
theoretic attributes with number theoretic correlations. This framework not
only enriches our theoretical understanding of graphs but also equips us with
practical tools for enhancing algorithmic efficiency and network robustness. As
we continue to delve into the intricate interplay between graphs and number
theory, we unlock a multitude of applications and avenues for exploration that
have the potential to shape diverse fields, ranging from computer science to
engineering and beyond.
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