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Abstract
Let K0,K1 be Kolmogorov spaces, and there be an exact morphism K0→K1. Assuming K0 to

be a “good moduli stack” gives us an exact injection into the category of hyperspace tilings. Here, we
explore this link. We supply a healthy dose of background information to get the reader acquainted
with the relevant topics in a lightning-round fashion. In the process we touch on automorphisms of
spectral sequences.
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Chapter 1 | Compass homomorphisms
By a polynomial, we mean amonic polynomial with constant term ±1.1 Let f be “totally free,”

up to a retract f(p-1). Let fj: j*→ E be a rooted immersion at a stable point. Here, we will be interested in
discussing formal power series, as an abstraction of polynomials. We start with a complex space; that is,
an analytic stack over ℂℙwhich is an n-fold covering of some building.

Let fib(𝜎) → cofib(𝛿) be a lifting of compasses. Then, there is some totally free root of unity

which gives us a specific tension point along a suspended string with compass ≃ . Following [Fib],Ω
σ
δ ∆
~

pg. 4, when there is a relation 𝛿⊰ Stabℂ, we will suppress the smallness of 𝛿 by suppressing the phrase
“stably almost” to refer to the somewhat awkward relationship between the tightly embedded subspace
and the loose parent space.
Proposition 1.0.1 LetA and B be two compasses. Then fib(A)≃pB is a p-fold covering of the inertially
weighted space ofA.
Proof See [Fib], proposition 2.3.

Let b be the diagonal of a matrix over B/p. Then, by the standard decomposition on objects,
one obtains

1 See, [Aut].
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b(B/p)-1=1,
which is a root of unity for a compass. We also have the chief stratum:

b(B/p)-1 ￮ b(-1(B/p))n = Bn/pk
which is effectively a fusion rule (on objects) of a braided symmetric monoidal bi-category.

When we write a compass, , we call a the “inf-pole” and n the “sup-pole;” a corresponds to aΩ
𝑎
𝑛

positive root of unity, and n a complex root. The most direct path a→ n defines a spectral sequence (of
flags),

a⊂…⊂ n,
where each character in the chain is the successor a+k on a. We single out this specific path as the
“Countryman line,”W, and it is the shortest possible walk from a once-compactified dipole to
another.

Keep in mind, a once-compactified dipole has two poles, {+,-}, which double as identity

actions, where every + is a section and every - is a retraction. We can write, somewhat dismissively,Ω
−
+

for the “barest bones” version of a compass, which maps signs to their retracts. Expressively, this gives
us 𝔹n, the Boolean algebra on n characters. However, the interesting behavior of applying a compass
arises when we equip 𝔹nwith some special structure,

𝔹n⊕ S,
which is essentially topological. We set the addition to be pointwise, and so there is an auto-equivalence
S≃𝔹n×k𝔹n; k>0.
Definition 1.0.2A partial flag variety,V, is a collection of types 𝛼:𝛽:...:𝛺, which are successively

embedded into one another. A flag variety, , is some partial flag variety which is closed.𝑉‾

Proposition 1.0.3 Pointwise addition (of S) creates Sn partial flag varieties.
Proof Let 𝔹n⊕n S be an n-small pointwise addition. Then, for every n, there is a unique diagonal
diag(𝔹n⊕ S) so that each form a unique partial flag variety.

Definition 1.1.1A homomorphism (of compasses),𝛺x→𝛺y, is an injective immersion of schemes such
that the ind-object of every point in x has the same rank as the corresponding point in y. We write this
typically as a pair of injections, [X⇉Y].
Example Fix a point, d, on a manifold M. Deform the manifold via a power-set function f(d)→M.
Say that M is (2k-2) dimensional. Then, we have the maps

{2,k} ⇉ (2)-p

for each of 2,k. We let p=2𝜋ki, and it is a distinct geometric invariant in the category of topological
spaces with lenses.

Example LetV⊆ , and 𝔉 be an overring ofV. There is always a map𝑉‾



proj(𝔉) →V’⊆V
into a subtypical chamber (subspace) of a given typeT. This map is actually a Hurewicz isomorphism
[Ap], and in addition is a homomorphism of compasses with inf-poles at mostV’.
Example Let ℂ=(ℝ+𝕴)≃ℝ2 be a homomorphism of compasses. The supremum, which is a

diagonalization of the unit differential , is 2. Thus, we have as the compass for our “good moduliϵ
^

ϵ
^

Ω
−∞
𝑒
^2

space” of ℂℙ1.



Chapter 2 | Locally ringed spaces
LetRN be a ring. Let be its extension. LettingR[p] be a “good moduli space” for these𝑅

𝑁
𝑒𝑥𝑡

settings; we develop the flag variety
R[p]:RN⊂ = { | ={p,N}}𝑅

𝑁
𝑒𝑥𝑡

ϕ
Υ
Υ

In a certain sense, this imitates the function of a weakly chained space by supplying co-cycles with
“boundary conditions,” such as p and N, which are cohomological invariants. If, for every such RN

there exists at least one ’⊂ , then we say that RN is Prüffer-extensible.𝑅
𝑁
𝑒𝑥𝑡

𝑅
𝑁
𝑒𝑥𝑡

We have thatR[p] and each Prüffer extensible ring is an Artin stack.R[p]with a simplicial
realization are automatically a Deligne-mumford stack. We have:

LocRng⊂ LocSys( )∆
~

So in some sense, restricting ourselves to locally ringed spaces may give us more “control” over the
modularity of the site in question. If consists of all locally coherent terms, then B , the “displayΥ Υ

block” of the ring space section being considered, is automatically coherent.
For two “good moduli spaces” with finite products, and all finite intersections,MM2, they are

left indecomposable. Thus, the metric torsor 𝖙k∊M×Mi is totally free, but not in general guaranteed to
be regular. For every tensor equation, we have a set of fundamental facts M×Mi about which the
spectrum of the theory is based. Of course, if we wish to work topologically, we cannot simply think of
a “theory” as a purely modelable structure. Instead, we think of a “theory” as a certain sort of topos,
with refinements being made rationally about certain generative loci. So, we transfer from 𝖙k to the
cardinal invariant 2𝜅+i by the sharpmorphism Q.

Q = LocSys( )-1 =𝖙k#∆
~

Here, we consider as a sitewise deformation of . So, if is locally presentable as a category of∆
~

𝔹ω 𝔹ω

commutative rings, then is a genuine isomorphism of displays 𝜙.𝔹ω ϕ
ω
𝔹 ≃ ∆

~

2.1 Relative Functors
Let RN, RM be two distinct, locally perfect fields. If there is a split epimorphism onto a trivial

co-character 𝜉, then we say that RN⇉𝜉⇇RM is a Chow-trivialization of said fields. The
Chow-trivialization preserves a certain distinct invariant, polarity, p, as well as the generic property of
analyticity. If two functors, p→, ←q, are related by a Chow-trivialization, then we say that their pullback
onto a space of equal genus is cohomologically Cauchy.

Cohomologically Cauchy pullbacks are also called “relative functors,” see e.g. [DK]. Let r be a
relative functor, and letK0,K1 be Kolmogorov spaces. If and only if, for every n-cell inK0 there is a
bijection inK1, and the intersection ofK0 andK1 is well insideK1, we say thatK0 is relatively inside



K1. For two objects A and B, with A relatively inside B, then, from the “point of view” of the good
moduli space, A is locally flat whence it is relatively stable. We denote a transition from the finer space
to the larger space as r:Km→Kn. This encloses the interior of a (rank n) space in a rank >n space of
equal or lower codimension.

If two locally ringed spaces are connected by a relative functor, then they admit a homothetic
scaling via 𝜋-weighted proportional re-representation. In other words, if two spaces look different on
the outside, they may always be repackaged on the inside to look the same so long as there is the relative
functor mediating the two! This is highly motivating for us, as it encourages us to explore new ring
spectra which are forced by the inclusion of a smaller component within the larger.
Warning 2.1.1We encourage the reader to look for differences between the sharp morphism Q and the
relative morphism r. They are not to be confused. We note thatQ is more special than r, which is more
generic.

We have the normal cone

and 𝛿 is the stabilizer of r at a point in Q.
Remark 2.2.2The restriction 𝛿→Q is an opf-map from the stabilizer to its co-domain. We denote by
𝛿opfib the relevant op-fibration in r’. We have 𝛿opfib ⊩ r’∞ as a coherent forcing notion, assuming the
source and target of the forcing notion have equivariant display blocks.



Chapter 3 |Degenerate displays
Let 𝛿opfib↛A be an obstruction to lifting the display block about a fixed algebraic object w to a

transcendental ordinal𝜔. What can we say about the existence of such an obstruction? Firstly, it is
important to realize that not all of these obstructions will be of “one type.” Certainly, there are many
varied causes for such a failure to lift outside of the locally ringed space of an action.

In any scenario, these cases comprise the majority of the objects in the category of locally ringed
spaces. We will shy away frommaking explicit propositions regarding them, but will describe in some
details their interesting properties. We see, by the formula

𝔹-n(𝛿) = 𝛿ij
-1

that they are more prevalent in the coarser sites. Here, we abuse notation by letting 𝔹 be the radius of
an open ball, with the Boolean metric, in a space. We call the “twist”

𝛿ij
-1 ⊗ 𝛿ij1+𝜏

the “adic brake” for the analytic co-cycle of a ringed space with a dimension 𝜏 for flow. The associated
half twists act by an according action on the upper half-plane, which is confusingly labeled ℍ2. So we
have

𝕀={i,j}∝ 𝜏ℍ2

describing the cyclotomic action of the ideal miniscule co-weighs over a perfect space. We have now
enucleated one of the most visceral properties of degeneracy – potency. We call a matrix potent if it
corresponds to either i or j.

So, for two sets of mutually orthogonal copies of ℙn, if we have a time evolution
𝜏n(ℙn) →𝕄ST

to a mapping stack, the density of characters in𝕄ST is still determined by the density of co-characters
in ℙn! Assuming that this is a standard monomorphism, then the resulting co-characters, in the
mapping stack cover of a space, are totally free, as there is a torsion-free inclusion at the level of
𝛿-objects.

Proposition 3.0.1 =
𝑖𝑗=𝑖

𝑗

∑ 𝕀 Ω
𝑁
→ Ω𝑀

Proof If we have two potent half-twists, then we have a map into both halves of an interval. This
corresponds from a walk from an inf-pole to a sup-pole, where M>N.

Definition 3.0.2We call two characters co-degenerate if = ’
𝑖𝑗=𝑖

𝑗

∑ 𝕀
𝑖𝑗=𝑖

𝑗

∑ 𝕀

RemarkThe time-evolution of co-degenerate kernels is identical, assuming a real locus is preserved.
If we have two display blocks, B!, B!, and a homomorphism B!→ B!, then we have at least a

single fixed display , which is a relative functor. So, ifϕ
𝑛



B!SO(p-1) ×n ×B!SO(p)ϕ
𝑛

is co-degenerate with B!, then there is a partial flag variety whose diagonal consists of scalar multiples of
n.

Recall, [Fat], that “any acyclic simplicial sets [sic] is a filtered colimit of finitely presentable
acyclic simplicial sets.” Write𝓧◻ if a simplicial set𝓧 has the “right lifting property”2 and ◻𝓧 if it has the
left-lifting property. For any homomorphism of degenerate displays, we have a lifting CH0

◻𝓧 or
CH0𝓧◻which has the other as an adjoint. IfDm andDn are co-degenerate displays, then there is a
presented finite cell complex3 from the inner hom-set Hom(𝓧,𝓧❤) to the left (resp. right) lifting of a
displayDn

±.

Proposition 3.1.0 Finite cell complexes correspond to partial flag varieties.
ProofWe see clearly that there is a lifting Hom(𝓧,𝓧❤) ⊢Dn

±. We model this as an inclusion of a

compass, , and a map𝓧→D from the inf-pole of a fat object to the sup-pole of its parent category.Ω
𝑋
𝐷

That this is a partial flag variety follows by replacing the relational symbol “→” with the notation :...:,
so that it reads𝓧:...:D.

In this case, the flag variety is a tower of scalars that act via the type-inclusion relation to induce
homothety. Here, we are interested in working with chains of types, or perhaps categories; we have

Cat1 ⊂ …⊂ SSets,
so that SSets is co-fibered over by the globalization of objects inCat1. We let the truncated portion be a
transitive inner modelwhose op-fibrations are injections to locally ringed spaces. To this extent, we
obtain charts, which are transition fiberswith pullbacks onto concrete objects. Each of these objects

have the left (resp. right) lifting property whence there is a right (resp. left) earthquake from a chart𝓔
~

which is locally a copy of ℙ1 to a chart which is locally a smash product of two copies ℙ1×ℙ1.
We render this information, by writing, as a block of displays

(ℙ1×ℙ1→ 𝔹) ≃ Bℙ

which “promotes” a finite cell complex to the level of an affine, locally ringed space. This is essentially
an “extension of a single object” along a bundle gerbe.4We let the cokernel of Bℙ be cohomologically
affine, and such that its weak minimal extension is an object in the inner hom-space of a neighborhood
locally resembling itself.

We have
Hom(Bℙ,Bℙ) =Map(ℙ1×ℙ1,ℙ1×ℙ1×𝔹)≃LocRng(𝔸);

The following commutative diagram represents the shtuka:

4 See, [ap.], sec. 1.2

3 Ibid, pg. 4

2 Loc cit. Pg. 2



where f is a sharp lift from the total space ℙ1×ℙ1.
WarningThe space ℙ1 is not an analytic space!



Chapter 4 | SSets
One of the most important categories for working with a discrete, or more loosely, any

quasi-separated continuum, is SSets, the category of simplicial sets whose objects are vertices and whose
morphisms are edges. An object in SSets with a correspondence to a transcendental ordinal has the
property that it is (locally) the sup-pole of some compass on the category Sets. We have used such
correspondences previously in our account of the “adic brake” of a ring.5

Say we have two topological objects, P1 and P2, and P2 is a suspension of the first. Then, for our
purposes, we can treat the strata of P2 as the codimension for our model. On some level, this makes
sense for us, because we are accustomed to working with spaces that are partitioned into flat
representations of ℝn. We can actually treat two local copies of ℝn as being theDehn twist of one
another. If there are two copies of an object, P, which are mutually orthogonal, we can always adjoin a
third object P3 at the inf-pole to create a new mutually orthogonal vector.

{Pn∧𝔸m|m<n}
We restrict ourselves to Cauchy injections Pn→Pm, with uniformizer mij. In the category of local rings,
one defines the system

LocRng|LocSys = ∊SSets∆
~

We have

Pull( )= =HUR𝓣Nis(LocSys(Quiv),𝔊#)∆
~

Ω
𝑚
𝑖𝑗 𝑖𝑗=𝑖

𝑗

∑ 𝕀

so that any inf-pole at a locally based section of is “glued to” an associated apartment in SSets. We let∆
~

the generative factor of Pn be such that any Hurewicz isomorphism ↣𝖌Pn, there is a unique
1
ξ ∆
~

uniformizer nx∊N. Lastly, the Hurewicz isomorphism to𝔊# is given by considering a certain portion of
Quivwhich looks locally like the category of simplicial sets. This gives us a special kind of 𝖌-small
“portable” Countryman line which forms a diagonal in each display over the geometric realization of

.1
ξ ∆
~

It should be remarked that there are a fair number of ways of treating SSets like a
combinatorial category; for instance, by letting it “locally imitate” the Giry monad or the Kleisli
category by opfibered inclusion. The vertices of SSets may also be thought of as indices (Roman letters)
i,j, etc., and the edges may be thought of as capital Greek letters,𝛱,𝛲,𝛴, etc. In this respect, the
relational aspects are privileged over the object-level instances of the graph. For instance, one has𝛱ij

corresponding to a certain location in the incidence matrix of the graph. In a hypergraph, there are

5 Ibid, pg. 5



2𝑜𝑟𝑑(∆)
~

ways of combining the infinitesimal slices of a smooth curve to form second-order branches. Here,

ord( ) denotes the filtered number of vertices in the first-level order on . For a third level branch, one∆
~

∆
~

has:

≥ ,22
𝑜𝑟𝑑(∆)

~

3𝑜𝑟𝑑(∆)
~

and follows the typical rules for Boolean exponentiation to achieve higher and higher power cycles.
For a Kolmogorov space, one assigns a coordinate to each outcome of the power cycle in order

to determine the number of unique singleton neighborhoods, and by Hurewicz we map these
neighborhoods to edges on the boundary of a space. Increasing this number acts via the Weierstrass
function to increase local smoothness, but also “spikiness,” as in Hausdorff dimension.
Proposition 4.1.0 Increasing the Hausdorff dimension of a space sharply regularizes its adic brake.
ProofAs we see, the fractal dimension is directly related to the number of closed neighborhoods of a
space. The “spikier” it becomes, the “sharper” the jump from the adic brake to the surrounding
separated set becomes.

We model the jump →m>n to → as the packing number of edges at the boundary,1

𝔹𝑛 Ω
−

Ω+

which corresponds to the number of curves in a complexified field. This is essentially a “tilt” of
perfectoid fields

↦ ,( 1

𝔹𝑛 )
♭

Ω
−
+

with the right hand side isotonically directed upwards. This is a map
SSets♭ ⊂ SSets → SSets

which takes the étale component of a geometry and maps it via projection to its “less bounded”6

counterpart. In the image, we frequently end up at the Zariski site. This is why we are so often
interested in the “Zariski density” of a set, but little do we hear of an “étale density.”
4.2 The Main Diagonal

In a weighted combinatorial set, or a hyper-regular graph, we write the main diagonal as:

;2...
2𝑜𝑟𝑑(∆)

~

and, we are interested in the singular value, k, which is the count of twos from the bottom-left to the
top-right of the equation. If a space with a diagonal of k has a property P, then it shall be called
k-P-able. For instance, if the property of left division is P, then the space has the property of
k-left-divisibility. If it is descent, then we say that it is k-descendable. Etc.

6 Or, more loosely restricted; laced



When we are working with the fractal dimension of a ruled space, we are interested in the adic
decomposition of the right-hand side of the irrational dimension number. For the number of digits
considered, it will be called k-digital.

The main drawback to this approach is a matter of computational constraint; for instance, we
must satisfy ourselves with a very small sample size of digits. Another drawback is that this may be used
to produce k-adic analysis, while the k-adic case is simply inferior to the p-adic case. In spite of this, we
can still take k-adic samples, and to some degree of success, use them to compare two types of spaces.
We see that for the “zero spaces”, for example, there is no difference between a space “0” and a space

“000”, so the k-value of a zero-space is irrelevant. They both belong to the first class, ord( )=idord∆
~

under their reduction to the absorption kernel, zero.
Theorem 4.2.0.The equivalence class of any number of zeros is k-equivalent to 0(1).
ProofAs we say, for non-unary number fields, every sequence of k zeros is equivalent to any other
sequence of zeros in a sample of k digits. That is to say, if a sample is taken, and all its digits consist in
zeros, then the number of such does not impinge upon the realization of the sequence.

This gives us
(0(1) ⇇ 0(n)+{∅}) = 0+{∅}

Proposition 4.2.1 Let A be a k-adic sequence of zeroes, and A+1 be a k+1-adic sequence of zeros and
a one. Regardless of the place of the digit 1, the sequence is larger in cardinality than 0+{∅}.
ProofThe above proposition gives us the vocabulary 0,{∅},1, which is larger than 0,{∅}.
Proposition 4.2.2A k+1-digital sequence is not necessarily smaller than a k+2-digital sequence.
ProofThis depends upon where we insert the k+2nd digit. If it is to the left (resp. right), the sequence
will be larger (resp. smaller) in the non-adic case.

This is significant, because the main diagonal truncates potentially lots of data! Because of the
shortcut used for observing the first and the last digits of a k-series, one may lose lots of information
about the digits in the middle of the series. So, we have A < A+1 ≤ A+2 ≤ … ≤ A+n; all we know is that
A < A+n. Here, k is equal to n+1, so that the entire sequence is a k-sequence.

There is a lot of potential information included in the sequence A+1 through A+n, but if none
is known, it will be defaulted to a forced homotopy with the zero-set. If the number of non-zero
elements is known, then a random distribution of non-zero elements will be injected into the forgetful
space. Thus,
Proposition 4.3.0 the map

SSets♭ ⊂ SSets → SSets
is forgetful.
ProofTrivially follows. The map is an injection but is not surjective on SSets. Thus, it is not a
categorical isomorphism.



Proposition 4.3.1There is some set SSets♭’ in the target of the above morphism, which locally
resembles SSets♭.
Proof If a set of morphisms are injective on objects, then one can always construct the disjoint union
of those objects as a separate set which the map is one-to-one and onto. This locally resembles the first
at the loop level, assuming the source is quasi-separated.
Proposition 4.3.2 * → SSets♭ is *-absorbing.
Proof Assume that SSets♭ = inf(SSets). Then, assuming we have a complete lattice, inf(SSets)=0 is a
surjective source for every object *, it is unital, and absorbing.



Chapter 5 | K-maps
AK-map [K⇉K] is a continuous pair of morphisms 𝛼,𝛽, from aT≥0-space to aT0-space. For

our purposes, these are both considered sober spaces. Without loss of generality, let each morphism be

injective (resp. surjective); then, there is an op-fibrationK-1→Kwhich is surjective (resp. injective).

WhenK is equipped with a compass structure (and is hence, compassionate), we say that it is tensored in
the categoryKComp of Kolmogorov spaces with compasses.

We have the identity

(K⇉K×K) ≃Hom(KComp, ) ≃𝕄ST(K,K
-1)Ω

on fibered objects of Kolmogorov spaces, so thatK is both the source of a Hurewicz fibration and is
also a good moduli space for its opfibration.
Warning 5.0.0 K, oftentimes, is not Zariski. However, the productK×K induces a Zariski density on
objects of the mapping stack. This is because

QCoh( )↠ nϵ
^

ϵ
^

is fibered over inductive colimits. So, for an 𝝐-chain stratifying the diagonal of a space, its n-dimensional
representation as a convolved7 product is precisely the structure sheaf of the main diagonal ofK×K.

Reminder 5.0.1𝕄ST(K,K
-1) is a differentiable stack. This means that we can associate a vector bundle

𝒱 at the level of the site to induce a metric. Kӓhler andWeil-Petersson metrics8, in specific, are
interesting to work with for producing good, locally trivial spaces. We can tensor𝕄ST(±𝒱)𝜇 to obtain a
supersymmetric orbifold, which is homotopic to the quaternions. We get our transition maps for free
by matching each object inK-1 to an object inK, and lifting the correspondence to the level of sets.

We can always reverse engineer n so that it is the convolution of a set of torsors , ,..., , forϵ
^

ϵ
χ
1 ϵ

χ
2 ϵ

χ
ξ

example, by the formula:

⊗ ,...,⊗ = LocSys(𝖙),ϵ
χ
1∂

0
ϵ
χ
2∂

1
ϵ
χ
ξ∂

χ
𝑖

and we couple to truth values over time

LocSys(𝖙) ↔ = d ↦ = AEffτ
𝑛
τ
𝑛−1

𝑑
𝑑𝑡

5.1 Effective action
For a Manifold Mwith a flat metric p, the effective action AEff is the average Hamiltonian of an

ensemble of bi-products
di𝜃𝜇 = d×d/dt→ d★p

8 See [WP]

7 Twisted



In the above equation, 𝜃 is a K-map of normal strength, and 𝜇 is a measure of the time-decaying
potential of AEff.

AEffModR( ) = 𝜇-1(d/dt)θ
~

=MM ⇉kMNλ
𝑐𝑢𝑟
Ω
−
+

The monomorphisms are k-split over the product of the current flow and the induced sign metric of
the compass. We rewrite this by saying:

Mk(𝔹) = {{0}+∅}→ 1
So that there are k-many ways of decomposing a manifoldMwith a Boolean base to obtain the
probability measure 𝜇=1.

For two manifolds,M,M’, with one Hermitian, the other Kähler, we obtain the Mochizuki
link 𝜃:M±⇆

±M’ from the étale picture to the Frobenius display. If, for a fibration f:M→M’, there is an
opf-map f→ f’, and if this map is injective, then the twisted action on 𝛴M is 𝓁-stable. If the map is
𝓁-stable, andM andM’ are perfectly flat and with a commonmetric, we call the action perfectly trivial.
For two twisted, perfectly trivial maps with time-varying potential, it is possible to obtain (assuming
both maps to be monotonic), a point inMwhich is in the image ofM at a time tkM=M’. The
nonstandardMochizuki link acts as a shortcut between these two points; it is a time-forgetful functor
(t.f.f.). This is a canonical extension of the universe-forgetful functors 𝖀(2i) → 𝖀(–), which surrenders
information about the large quiver of a system of diagrams, at the upshot of accessibility to miniscule
universe-dependent parameters. Technically, t.f.f.s are also sign-forgetful functors, as the absolute value
is adopted to create portable metrics for scaling a model between positive and negatively oriented
reference frames.
Proposition 5.1.1Hurewicz isomorphisms “lift” 𝜃𝜇 from the class of “universe-forgetful functors” to
the set of genuine isomorphisms.

Proof Say we have two universes 𝖀(–), and 𝖀( ), and there is a k-rational map between them.Ω
𝑖𝑛𝑓(𝑋+𝑌)
𝑠𝑢𝑝(𝑋+𝑌)

We denote, by equivalence class,
S1 ≥ ½ sup(X+Y); S0< ½ sup(X+Y)

and we have the fibrations 0→ 1, 0→ 0, 1→ 1, and the op-fibration 1→ 0.We denote by S the set±
of fibrations (+), and opfibration (-). We have

= opfib(𝜃𝜇) ±;µ±

if ↔(–) is a valid pairing, and if it is Serre, then it is bijective on opens. Thus, there is at least oneµ±

bijection ↔ ⚫ ∊ from a compact unit to a compass of dilations. So,µ± Ω
𝑖𝑛𝑓(𝑋+𝑌)
𝑠𝑢𝑝(𝑋+𝑌)

fib(𝜃𝜇) → opfib(𝜃𝜇) ≃ 1/k→ 1



Let 𝓚 be aK-map. Let 𝜑 be the fibration of a topological space T. Then, assuming T to be

sober, there is a unique indecomposable term 𝜒which bounds every 𝜃𝜇( ), where n is the dimensionϵ
^𝑛

of the space. This forces an equivalence

𝓚 ≃ 𝜉 →ϵ
^𝑛

ϕ
ξ

where 𝜉 is equal to a sum of fibrations in 𝜑. So, we have

𝓚 ≃ →
φ=0

𝑛

∑ 𝐼
φ
ϵ
^𝑛

ϕ
φ=0

𝑛

∑ 𝐼
φ

↧HUR

ℤ/p∪ {∞}
yielding the correct isogeny of displays induced by 𝓚. We let ℤ/p∪ {∞} denote the attaching space of a
k-rational map which splits at 𝓚. So, for a mapping stack𝕄ST, we let

𝕄ST∪ℤ/p∪ {∞}
be an ∞-groupoid and we record the trace of a kernel of ℤ/p as the Gromov-Witten invariant.

5.2 Yetter-Drinfeld Category
Let𝒴𝒟 be the Yetter-Drinfeld category. LetK1,K2 be complete Kolmogorov spaces. Let9

(K1 ⊗ K2
-1⊗ K1

-1 ⊗ K2) ↦ H
H𝒴𝒟 ≃Kcent

be the fusion rule on𝒴𝒟 assigning to each spaceKcent a nucleus. This is a more modern reformulation
of the classical Hopf fibration10

S7 ↩ S3

↓
S4

By assignment,K±, we have two end twists,K1,K2,, and two half-twists at the center,K2
-1 andK1

-1.
Operationally, the whole ensemble yields a non-trivial two-fold covering of an effectively lensed
Kolmogorov space, and – assuming that space to be sober, a restriction is made to S4 so that it is
indecomposable into tori. This preserves the genus of the cokernel maps from H

H𝒴𝒟. The spinorial
component of the Yetter-Drinfeld category is compactified from a genus 2g+2 space to a space with
two closed points with a Baxter bundle over them.

This is achieved by performing the Dehn twist on S3 in the projective preimage. More or less,
this is what Weinstein means with his “Shiab operator.” We take the inequality

Sn≄ Sn±1/2

10 [YM], pg. 9

9 See, [YD]



as our starting point for coupling the pseudo-Riemannian geometry of a twistor to its mass term. We
call this the Yukawa coupling if it is localized to a scale with ineffective or only weakly effective
symmetry breaking.

LetH be a Hopf algebroid in some vect-enriched category. Let r be a weighted bi-module. By
the formula

H(r)-1 ↦ 𝖍,
we obtain a genuine eigenalgebra 𝖍with commutative ends, making 𝖍monoidal and symmetrically
closed. For our purposes, we want to describe rep(𝖍) as a tiled space, which gives it an isometry to the
Anabelian Teichmuller space. This is a very free and general starting space, but we restrict to a set of
mutually orthogonal vectors along a hyper-bundle so we obtain a “nicer” simplicial space,𝒞(S).

What does a “twist” correspond to, simplicially?
Well, we can imagine that edges between vertices are labeled𝛱ijwhere the Greek letter indicates

a relationship and the subscripts denote two objects under said relationship. Interestingly for our (toy)
purposes, we can let ij be a superposition, or perhaps even an entanglement. Anyways, on the graph

G(𝛱ij), we can write a series of half-twists, such as to represent swapping the poles in a𝑖−1⊗ 𝑗−1

partial flag variety, and we have a perfect correspondence between operations on these co-characters
and maps between graphs. We write the composition of two functions to a negative term as a twist
T∈ℝℙ1. Two path-connected spaces will still be path-connected after the twist, although their
orientation may become reversed, which is the case with the spinorial particle’s behavior.
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