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1 Introduction 

If, on the smallest spatial and temporal scales, the universe has a grainy structure, Planck‘s 
electromagnetic radiation law ought to have a modified structure, too. Radiation propagating  
over a space-time range that has a lattice structure will not be able to fall below a bottom limit 
of the particle wavelength and, thus, will also have to maintain an upper limit of the particle 
energy. 

For the theoretical implementation of this idea there are several approaches. The most 
difficult problem is encountered in supporting these investigations by a generalized special 
theory of relativity that would permit an invariant limit for a minimum limit unit of length or 
a maximum of particle energy. We refer to [5,7,12,14] and, especially for the thermodynamics 
of the photon gas, to [3,5,8,9,10,17]. To extricate ourselves us from these principal problems, 
let us first look for a first correction of Planck`s radiation formula as it would appear, e.g., in a 
quantized Friedmann universe.  

2 The Hamiltonian operator 

Let our investigations start from the Hamiltonian operator of matter in a flat Friedmann 
universe. In [1] or [2] C. Kiefer and T. P. Singh have developed a semiclassical quantum 
gravitation from Wheeler-DeWitt‘s equation of quantum gravitation (also see [6] and [11]) 
and applied this to the Friedmann universe. For the motion of matter in this universe, a 
corrected Schrödinger equation of the following type is given: 
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From this fundamental equation, therefore, we derive a non-linear semiclassical Hamiltonian 
of the following structure for the motion of matter in the flat Friedmann universe 
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wherein ˆ
mH  is the Hamiltonian of the matter in the Minkowski space and 
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are the Planck-length, Planck-energy and the Planck-mass.   

Note: In Dirac’s theory, an analogue procedure leads to a semiclassical Hamiltonian that is 
similar to the above gravitative case [15]: 
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The correction term in (2.6) has the same structure as that in (2.3), but with a negative sign. 

3 Application to the photon gas 

Let us now consider an ensemble of harmonic oscillators in the heating bath having a 
temperature T  (Einstein‘s photon model), and determine the mean energy ε  of a photon 
therein. Let us use for that the canonical partition with the one-particle partition sum Z  and 
the Hamiltonian Ĥ  in the flat Friedmann universe from (2.3) 
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As the λ  term is a sufficiently small correction term only, we can readily note 
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The mean one-particle energy ε  then, as we know, results from  
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0Z , however, is the one-particle partition sum of the Planck partition in the flat Minkowski 
space 
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so that, from (3.5), (3.6) and (3.7), it follows that  
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Our interest is focused on the correction of Planck´s radiation law at very high temperatures 
kT ω   or 1β ε  . For that case we obtain, with (3.7) and (3.8),  
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For T →∞  , then, we get  
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With (3.1) and (3.2), therefore, we obtain 
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The occurrence of the parameter a La ∗=  points to the influence of the Friedmann universe. 

We recognize that the number of classical degrees of freedom per particle deviates from 2, 
although this correction, due to the magnitude of the Planck energy 281,2 10 eV E∗ ≈ ⋅ , is 
extremely little. 

4 A value for α   

Can we in (2.3) set a value for α ? In [5] we established an approach to a modified Planck’s 
radiation law, which we developed in an imitation of Einstein’s well-known laser model [16]. 
The modified Planck formula, which was based also on statistical considerations, reads as 
follows:  
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For temperatures T →∞  this converts to 
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If, however, we remain at a temperature of  kT E∗ , we obtain from (4.2) for this case:  
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If we now compare (4.3) with our result (3.13) for the Friedmann universe, we can readily 
conclude that 1α =  and also, therefore, from (2.3), that a L∗= . This is well in agreement with 
the ground state of a quantized universe. A quantization of the Friedmann cosmos provides 
namely a discretization of the cosmic scale factor and the energy content of the cosmos, 

                                 (2 1)         ,           2 1    .n na a n L E E n E∗ ∗→ = + → = +                      (4.4) 

how we can  find in [4], [5] or [13]. With 0n =  we read off, for ground state length and 
ground state energy, respectively, the values 0a a L∗= =  and 0E E E∗= = , such that 1α =   
seems to be a reasonable value.   

According to formula (4.3), however, corrections to the classical Rayleigh-Jeans behaviour 
kTε∞ =  and, thus, to the classical equipartition theorem ( )2 2kTε∞ = ⋅  pro photon, will not 
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appear before the temperatures come close to the Planck temperature 2810 eVkT E∗  . Such 
temperatures will at best appear at a cosmologically short time after the big bang. 

5 Conclusion 

We applied the semiclassical fundamental equation of quantum gravitation, derived from the 
Wheeler-DeWitt equation by C. Kiefer [1], to the electromagnetic radiation in a flat 
Friedmann universe. We used the method of canonical partition and the state function for the 
ideal photon gas to determine the mean energy ε  of a photon. For very high temperatures 
(but still kT E∗ ), there is a deviation from the classical behavior, which now took the  form 

( )1kT kT Eε∞ ∗≈ − , being influenced by the quantity of the Planck energy E∗ . 
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