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ABSTRACT

In this paper, we provide new quicker sequences convergent to the generalized
Euler-Mascheroni constant, which is a generalization of the Euler-Mascheroni constant.
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1. Introduction

Mathematical constants play a key role in several branches of mathematics, as number
theory, special functions, analysis or probability. In this theory, an important concern is the
definition of new sequences convergent to the mathematical constants with quicker rate of
convergence.

The Euler-Mascheroni constant is the most important mathematical constant after ~ and
the Napier constant e, and widely used in mathematics and engineering.

Many mathematicians made great efforts in this area of concerning the properties of
generalized Euler-Mascheroni constant. In particular, they considered convergent
sequences to the generalized Euler- Mascheroni constant and present the effective methods
to estimate their rates of convergence.

For a>0, the generalized Euler—Mascheroni constant y(a) is given by

V(a):lim(l+L+---+ ! —lna+n_lj- (1.1)
a a+l a+n-—1 a

We can see that the generalized Euler—Mascheroni constant y(a) is the natural
generalization of the Euler—Mascheroni constant
. 1 1
y=y()= hm(l +5 +o b —— lnnj =0.57721566490115328---.
n—>0 n

Recently, many researchers are preoccupied to improve the rates of convergence of
remarkable sequences convergent towards .
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You [1] provided new classes of convergent sequences for the Euler-Mascheroni constant
as follows
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In [2-4], some convergent sequences towards the generalized Euler-Mascheroni constant
was introduced.
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In this paper, we provide new classes of sequence convergent to the generalized
Euler-Mascheroni constant.

2. Approximations for the generalized Euler-Mascheroni constant

For our consideration, the following lemma is necessary.
Lemma([5, 6]). If(x,),.,1s convergent to zero and there exists the limit

limn’(x, —x,,,) =L e[—00,+ ] (2.1)
with s >1, then
limn'"x, _ L : (2.2)
n—>0 S _1

Using Lemma, we can see that the rate of convergence of the sequence (x,),.,increases

together with the value s satisfying (2.1).
We give new classes of sequence convergent for the generalized Euler-Mascheroni
constant.
Our aim is to find the values of the parameters such that new sequence is the fastest
sequence which would approximate for the generalized Euler-Mascheroni constant.
Theorem. For the generalized Euler-Mascheroni constant, we have the following
convergent sequence,
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Furthermore, for any natural number p, we have
limn"" (77 (a) - y(a))=C,, (2.5)
where
1
C=— ,Cy=—t
24 24

Also we have B, =C,.
Proof. We need to give the value B\,B,,,B, €(—%,+x) that produces the best

approximation of (2.4).
The method to measure the accuracy of approximation (2.3) is to say that an approximation
is better if y”(a) — y(a) converges to zero quicker. From (2.3), we have
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and develop the power series inl/n. To obtain the power series of (2.6), we compute
respectively as follows:
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Substituting (2.7)-(2.9) into (2.6), we have
72 (@770 (0) = sz(m( j + o[n L j (2.10)

and
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where

1 e 2 = 1 k Lil} )m+le '—(i+1)m
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Using (2.11), we have
1
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From Lemma, we know that the rates of convergence of the sequence (y/(a)),.,1s even
higher when the value s (s < p+1) satisfies (2.1). Thus, combining Lemma and (2.12),
we have that
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We continue our approach to determine the coefficients B, B, , -+, B, € (-0, + o).

In the case ofk >3, O(k) consists of the linear combination of B,,i =1,k — 1.
So only when j =k —1,i=j—1,does the term of —(k —1)B, , remainandm=1.
Now, let
E, =0(k)+(k-1)B,,,
and then it consists of the linear combination of B,,i = Lk-2.
If(k-1)B, , # E,, then rates of convergence is n “™ and, if(k —1)B, , = E,, then rates

-k

of convergence is at leastn™*. So, by computing B, (i =1, p)according to(k - 1)B,_, = E,,

we can obtain sequences with the rates of convergence of n~"*".
In other words, let
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lim n7* (y(a)- 7/ (@) =C,.

We can obtain

p+l p+l D P Bp+1
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Then, we have B,,, =C,.
The proof of Theorem is completed. O

Remark. (2.11) gives the coefficients which offer the best approximations of y(a).
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