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Abstract

If we talk about Stellar Aberration, then we think of the form of Stellar Aberration that was first discovered and
explained by Bradley. In addition to Bradley’s Stellar Aberration, which can also be defined as Relative Stellar
Aberration, we will define Absolute Stellar Aberration based on just one measurement. Here after we will refer to
the Absolute Stellar Aberration as ASA. We will try to explain in a few words why it is necessary to measure and
interpret Stellar Aberration in this way. Suppose we performed two measurements of the Doppler Effect within six
months. If we don’t know the results of those measurements, but only difference between them, then we cannot
determine the radial velocities with which the observer moves with respect to the star. We will prove that similar
reasoning can be applied in the case of Stellar Aberration as defined by Bradley. Knowing only the difference be-
tween the two measurements of the Stellar Aberration, we are not able to determine the transverse velocities the
observer moves with respect to the line of sight, but only their difference. Using the results of ASA measurements,
we will determine a Stationary Frame of Reference and after that derive formulas for Relative and Absolute Stellar
Aberration.
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1. Introduction

This paper is not original but the author’s attempt to write a shorter and simpler version of the paper [1]. We have
considered some new ideas but we also copied and hopefully improved some parts from the paper [1]. We expect that
with the construction and use of a new type of telescope, which we have already described in the paper [1], it would
be possible to measure the ASA. This would allow us to determine the appropriate Stationary Frame of Reference
and the transverse velocity of the sun relative to that frame.

2. Transformation Matrices for Single Rotation of Coordinate System

First we will review coordinate transformation in general. Changing from one Coordinate System to another can
be achieved by using matrix method. We will consider the cases when two coordinate systems are related by single
rotation through some arbitrary angle about one of the coordinate axis.

The transformation matrix E(x, α) corresponding to a single rotation of the Coordinate System about the positive
x axis through an angle α is is given by the equation:

E(x, α) =

1 0 0
0 cos(α) sin(α)
0 − sin(α) cos(α)

 (1)
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The matrix E−1(x, α) is inverse of the matrix E(x, α).

E(x,−α) =

1 0 0
0 cos(−α) sin(−α)
0 − sin(−α) cos(−α)

 =

1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)

 (2)

It is easy to prove that

E−1(x, α) = ET (x, α) = E(x,−α) (3)

The transformation matrix E(y, β) corresponding to a single rotation of the Coordinate System about the positive
y axis through an angle β is

E(y, β) =

cos(β) 0 − sin(β)
0 1 0

sin(β) 0 cos(β)

 (4)

The matrix E−1(y, β) is inverse of the matrix E(y, β).

E(y,−β) =

cos(−β) 0 − sin(−β)
0 1 0

sin(−β) 0 cos(−β)

 =

 cos(β) 0 sin(β)
0 1 0

− sin(β) 0 cos(β)

 (5)

It is easy to prove that

E−1(y, β) = ET (y, β) = E(y,−β) (6)

The transformation matrix E(z, γ) corresponding to a single rotation of the Coordinate System about the positive
z axis through an angle γ is

E(z, γ) =

 cos(γ) sin(γ) 0
− sin(γ) cos(γ) 0

0 0 1

 (7)

The matrix E−1(z, γ) is inverse of the matrix E(z, γ).

E(z,−γ) =

 cos(−γ) sin(−γ) 0
− sin(−γ) cos(−γ) 0

0 0 1

 =

cos(γ) − sin(γ) 0
sin(γ) cos(γ) 0

0 0 1

 (8)

It is easy to prove that

E−1(z, γ) = ET (z, γ) = E(z,−γ) (9)

3. Coordinate Systems

In this section are given the descriptions of the four Coordinate Systems that will be used in a further discussion.
Denote by (P ) ”The Heliocentric-Ecliptic Coordinate System” [Figure 1]. Its origin Op is centered on the center of
mass of the solar system, and the fundamental plane coincides with the ecliptic plane of the Earth’s revolution about
the sun. The line of intersection of the ecliptic plane and the earth’s equatorial plane defines the xp − axis. On the
first day of Spring a line joining the center of the Earth and the center of the sun points in the direction of positive
xp − axis [1].

Denote by (Q) ”The Geocentric-Equatorial Coordinate System” Figure[1]. Its origin Oq is at the center of the
Earth, the fundamental plane is the equator and the positive xq points in the vernal equinox direction. The zp points
in the direction of the north pole. By the definition the Coordinate System (Q) is non-rotating with the respect to
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the stars [1].

Let ϕ = 23.43693 ∗Π/180 denotes Earth’s axial tilt Figure[1]

Op

xp

yp

zp

(P )

Oq

ϕ

xq

yq

zq

(Q)

v(t)

Figure 1: Ecliptic Coordinate System (P) and Equatorial Coordinate System (Q)

Conversion from Ecliptic Coordinates to Equatorial Coordinates is defined as follows

E(xp,−ϕ) =

1 0 0
0 cos(ϕ) − sin(ϕ)
0 sin(ϕ) cos(ϕ)

 (10)

A1 = E(xp,−ϕ) (11)

xqyq
zq

 = A1

xpyp
zp

 (12)

Using equation (12) we are able to convert the coordinates from the Ecliptic Coordinate System (P ) to the Equatorial
Coordinate System (Q).

The position of the star is determined by two angles called right ascension and declination Figure[2]. The right
ascension α is measured eastward in the plane of equator from the vernal equinox direction. The declination δ is
measured northward from the equator to the line of sight, we would say that is an angle between the plane of equator
and the direction of the starlight [1].
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Figure 2: Equatorial Coordinate System (Q) and Telescope Coordinate System (T)

Conversion from equatorial coordinates to telescope coordinates will be implemented in two steps, Figure[2].

The transformation matrix E(zq, α) corresponding to a single rotation of the Equatorial Coordinate System (Q)
about the positive zq axis through an angle α.

E(zq, α) =

 cos(α) sin(α) 0
− sin(α) cos(α) 0

0 0 1

 (13)

A2 = E(zq, α) (14)

x′qy′q
z′q

 = A2

xqyq
zq

 (15)

Using equation (15) we are able to convert the coordinates from the Ecliptic Coordinate System (Q) to the Coordi-
nate System (Q′).

The transformation matrix E(y′q,−
(

Π
2 − δ

)
) corresponding to a single rotation of the Coordinate System (Q′)

about the positive y′q axis through an angle −
(

Π
2 − δ

)
−
(

Π

2
− δ
)

= δ − Π

2
(16)

E

(
y′q, δ −

Π

2

)
=

cos(δ − Π
2 ) 0 − sin(δ − Π

2 )
0 1 0

sin(δ − Π
2 ) 0 cos(δ − Π

2 )

 =

− sin(δ) 0 cos(δ)
0 1 0

− cos(δ) 0 − sin(δ)

 (17)

A3 = E

(
y′q, δ −

Π

2

)
(18)

xy
z

 = A3

x′qy′q
z′q

 (19)
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Using equation (19) we are able to convert the coordinates from the the Coordinate System (Q′) to the Telescope
Coordinate System (T ).

xy
z

 = A3A2A1

xpyp
zp

 (20)

Using equation (20) we are able to convert the coordinates from the Ecliptic Coordinate System (P ) to the Telescope
Coordinate System (T ).

4. Determining the Stationary Frame of Reference

Suppose we observe an arbitrarily chosen star, denoted by (Z) Figure [3]. At the instant t the photon (electro-
magnetic wave) hits in a perpendicular direction at the center of the top plane of the telescope noted by S′. At
the instant t′ the photon (electromagnetic wave) hits the bottom plane of the telescope noted by A. We define
a Coordinate System (T ′) ≡ (O′, x′, y′, z′) as it follows. Its origin is noted by the point O′ (O′ ≡ S′) and the
positive z′ coordinate is determined by direction O′Z. We will define (T ′) as a Stationary Coordinate System and
assume that telescope is moving uniformly with velocity U regarding the (T ′). The Telescope Coordinate System is
denoted by (T ) ≡ (S, x, y, z). Its origin is noted by the point S and the positive z coordinate is determined by direc-
tion SS′ Figure[3]. We will say that the Stationary Frame of Reference is determined by the Coordinate System (T ′).

x

y

z

x′

y′

z′

?

(T )

(T ′)

Z

S
A

O′ ≡ S′

U

Figure 3: The telescope is moving uniformly regarding Coordinate System (T ′)

We will define velocities u,v and w in the following way:

(i) u - the velocity at which the solar system moves relative to the Coordinate System (T ′)
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(ii) v - the velocity at which the Earth moves relative to the Sun
(iii) w - the velocity at which the telescope moves relative to the center of the Earth

We will assume that the velocities v and w are known.
Let U denotes the velocity with which the telescope moves relative to the Coordinate System (T ′).

U = u + v + w (21)

U = [Ux, Uy, Uz] (22)

Ux = ux + vx + wx (23)

Uy = uy + vy + wy (24)

Uz = uz + vz + wz (25)

We can express the velocity v in the Ecliptic and the Telescope Coordinate Systems as it follows:

v = [vxp
, vyp

, 0] (26)

v = [vx, vy, vz] (27)

vxvy
vz

 = A3A2A1

vxp

vyp

0

 (28)

We can express velocity w in the Equatorial and the Telescope Coordinate Systems as it follows:

w = [wxq , wyq , 0] (29)

w = [wx, wy, wz] (30)

wx

wy

wz

 = A3A2

wxq

wyq

0

 (31)

5. Determining a telescope’s velocity

First we will determine the direction in which the photons (electromagnetic waves) move in relation to the transverse
component of the telescope’s velocity U. In order to achieve that, let’s assume that we are observing sunlight,
Figure[4].
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→ v

Sun

S

(t′)

(t)
S’

BA

Figure 4: The telescope is moving uniformly regarding the sunlight. At the instant t the photon (electromagnetic
wave) hits in a perpendicular direction at the center of the top plane of the telescope noted by S′. At the instant t′

the photon (electromagnetic wave) hits the bottom plane of the telescope noted by A.

If we mark with point B the intersection between the bottom side of the telescope and the sun’s ray, then the
vector SB and the velocity v at which the earth moves around the sun have the same direction. If we mark with
point A the intersection between the bottom side of the telescope and the sun’s ray, then the vector SA and the
velocity v at which the earth moves around the sun have the opposite direction. We will assume that the second
possibility is correct. This would mean that the direction in which the photons(electromagnetic waves) move does
not change and that the Stellar Aberration is caused by the movement of the telescope in relation to the sun’s rays,
Figure[4].

A

y

x
S

Ax

Ay

Figure 5: Due to the Stellar Aberration photons hit the bottom side of the telescope at point A

In the next step, we will determine the velocity u. The origin of the Telescope Coordinate System (T ) is noted by
S Figure[5]. Its axes are marked by x and y, A denotes the point where light hits the bottom plane of the telescope
and the points Ax and Ay are the projections of the point A on the x and y axes, respectively.
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l = SS′ (the length of the telescope) (32)

∆t =
l + Uz∆t

c
(33)

∆t =
l

c− Uz
≈ l

c
(34)

ax = SAx (35)

ay = SAy (36)

∆t Ux = −ax (37)

∆t Uy = −ay (38)

ux + vx + wx = − ax
∆t

(39)

uy + vy + wy = − ay
∆t

(40)

ux = − ax
∆t
− vx − wx (41)

uy = − ay
∆t
− vy − wy (42)

We will analyze two cases and assume that the Doppler Effect is measured relative to the same Stationary Frame
of Reference as the ASA.

1)
√
u2
x + u2

y = 0

This means that the velocity u does not affect the Stellar Aberration.

2)
√
u2
x + u2

y 6= 0

We will analyze two subcases:

2.1) u = const

We will choose any two cosmic objects from our Galaxy (constellations,Local Group galaxies,..) and by combin-
ing the results obtained from the two measurements, determine the velocity u. The velocity u can be expressed in
the Equatorial Coordinate systems (Q) as it follows.

u = [uxq
, uyq

, uzq ] (43)

For the first star we will have the following equations.

u = [ux, uy, uz] (44)

A3A2

uxq

uyq

uzq

 =

uxuy
uz

 (45)

Since the component uz is unknown, we will omit the third equation.

For the second star we will have the following equations.
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u = [u′x, u
′
y, u
′
z] (46)

A′3A
′
2

uxq

uyq

uzq

 =

u′xu′y
u′z

 (47)

Since the component u′z is unknown, we will omit the third equation.

The components ux, uy, u
′
x, u
′
y are known. It remains to calculate the components uxq , uyq , uzq from the three

equations that we arbitrarily chose from the four remaining equations. If velocity u has a constant value this means
the Stationary Frame of Reference (T ′) is not stationary with respect to the observed star. The ASA measurements
are sufficient to determine the velocity u. In order to determine the radial velocity ar which the ”star” moves in
relation to the Stationary Frame of Reference (T ′), we apply the formula for the Doppler Effect given in [2].

f ′ - the frequency of the signal measured by the observer
f - the frequency of the signal measured by the sender
vo - the velocity of the observer
vs - the velocity of the sender

a = [0, 0, 1] (48)

f ′ = f

(
c+ a · vo

c+ a · vs

)
(49)

a · vs =
f

f ′
a · vo −

∆ f

f ′
c (50)

We are still unable to determine the transverse velocity of the sender relative to the Stationary Frame of Reference
(T ′).

2.2) u 6= const

The velocity u is not equal to a constant value. We can say that in this case the velocity u is equal to the ve-
locity with which the solar system moves in relation to the observed star. This means the Stationary Frame of
Reference (T ′) is stationary with respect to the observed star. Using the Doppler Effect formula (50) we are able to
determine the component Uz of the velocity U.

vs = 0 (51)

Uz = a · vo (52)

Uz =
∆f

f
c (53)

Uz = uz + vz + wz (54)

uz = Uz − vz − wz (55)

We can express velocity u in Ecliptic Coordinate system (P ) as it follows.

u = [uxp , uyp , uzp ] (56)uxp

uyp

uzp

 = A−1
1 A−1

2 A−1
3

uxuy
uz

 (57)

Combining the results of Stellar Aberration and Doppler Effect, we are able to determine the velocity at which the
sun moves in relation to the observed star and vice versa. If we assume that the sun is stationary, then the star
moves with velocity −u in relation to the heliocentric coordinate system.
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6. Relative stellar aberration

Let’s assume that we performed two measurements at instants T and T ’, Figure[6]. We will denote the corresponding
sidereal times with ts and t′s. Let A and A′ denote the intersection points between the light beam and the bottom
plane of the telescope determined by point S, at the instants T and T ′ respectively. The coordinates are given in
the Telescope Coordinate System, noted by (T ).

x

y

z

S

A

A’

S’

α

β

(T)

Figure 6: Relative and Absolute Stellar Aberration

Referring to the Figure[6] we have following equations.
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α = 6
(
S′A,S′A′

)
(58)

l = SS′ (59)

∆t =
l

c
(60)

U(T ) = u(T ) + v(T ) + w(ts) (61)

SA = −U(T )∆t (62)

U(T ′) = u(T ′) + v(T ′) + w(t′s) (63)

SA′ = −U(T ′)∆t (64)

SA′ − SA = U(T )∆t−U(T ′)∆t = ∆U(T )∆t (65)

∆U(T )∆t = (u(T )− u(T ′)) ∆t+ (v(T )− v(T ′)) ∆t+ (w(ts)−w(t′s)) ∆t (66)

∆U(T )∆t = ∆u∆t+ ∆v∆t+ ∆w∆t (67)

k = (0, 0, 1) (68)

SS′ = lk = ∆tck (69)

S′A = S′S + SA (70)

S′A = S′S + SA = −∆tck−U(T )∆t = −∆tc

(
k +

U(T )

c

)
=
∣∣∣ | U(T ) |

c
<< 1

∣∣∣ ≈ −∆tck (71)

S′A′ = S′S + SA′ = −∆tck−U(T ′)∆t = −∆tc

(
k +

U(T ′)

c

)
=
∣∣∣ | U(T ′) |

c
<< 1

∣∣∣ ≈ −∆tck (72)

We assumed that SS′(T ) = SS′(T ′), but actually we have that SS′(T ′) = SS′(T ) + E, where |SS′|>> |E|.

S′A× S′A′ =
(
S′S + SA

)
×
(
S′S + SA′

)
= (∆tck + U(T )∆t)× (∆tck + U(T ′)∆t) (73)

sin(α) =
‖ S′A× S′A′ ‖
‖ S′A ‖‖ S′A′ ‖

≈
∣∣∣∣∣∣k×∆U(T )

c
+

U(T )

c
× U(T ′)

c

∣∣∣∣∣∣ (74)

k×∆U(T ) = k× (∆Ux(T )i + ∆Uy(T )j + ∆Uz(T )k) = −∆Uy(T )i + ∆Ux(T )j (75)

if

(∣∣∣∣∣∣−∆Uy(T )i + ∆Ux(T )j

c

∣∣∣∣∣∣ >> ∣∣∣∣∣∣U(T )

c
× U(T ′)

c

∣∣∣∣∣∣) then (76)

sin(α) ≈

∣∣∣∣∣∣−∆Uy(T )i + ∆Ux(T )j
∣∣∣∣∣∣

c
=

∣∣∣∣∣∣− (∆uy + ∆vy + ∆wy)i + (∆ux + ∆vx + ∆wx)j
∣∣∣∣∣∣

c
(77)

Equation (77) gives the general formula for calculating the angle α associated with Relative Stellar Aberration. The
angle α depends on the change in the velocity with which the telescope moves in relation to the Stationary Frame of
Reference (T ′).

To simplify things, we will assume that

(ts = t′s)⇒ (w(ts) = w(t′s)) (78)

It follows that:

sin(α) ≈

∣∣∣∣∣∣− (∆uy + ∆vy)i + (∆ux + ∆vx)j
∣∣∣∣∣∣

c
(79)

Suppose T ′ = T + 0.5 year

v(T ) = −v(T ′) (80)
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Then it follows that:

∆v(T ′) = v(T ′)− v(T ) = 2v(T ′) (81)

D = − (∆uy + 2vy) i + (∆ux + 2vx) j (82)

D2 = (∆uy + 2vy)
2

+ (∆ux + 2vx)
2

= 4(v2
x + v2

y) + (∆u2
x + ∆u2

y) + 4vx∆ux + 4vy∆uy (83)

sin(α) ≈ ||D||
c

=

√
4(v2

x + v2
y) + (∆u2

x + ∆u2
y) + 4vx∆ux + 4vy∆uy

c
(84)

Equation (84) gives the general formula for calculating the angle α associated with Bredley’s Stellar Aberration.

if (∆v2
x + ∆v2

y) >> (∆u2
x + ∆u2

y) then
(
D2 ≈ 4(v2

x + v2
y) + 4vx∆ux + 4vy∆uy

)
(85)

||D||

2
√
v2
x + v2

y

≈
√√√√1 +

vx∆ux + vy∆uy√
v2
x + v2

y

(86)

if

1 >>
vx∆ux + vy∆uy√

v2
x + v2

y

 then

 ||D||

2
√
v2
x + v2

y

≈ 1 +
vx∆ux + vy∆uy

2
√
v2
x + v2

y

 (87)

||D||≈ 2
√
v2
x + v2

y + vx∆ux + vy∆uy (88)

sin(α) ≈
2
√
v2
x + v2

y + vx∆ux + vy∆uy

c
(89)

Equation (89) gives the simplified form of the formula (84) for calculating the angle α associated with Bredley’s
Stellar Aberration.

7. Absolute Stellar Aberration

In this section we will calculate the angle β corresponding to the Absolute Stellar Aberration. Referring to the
Figure[6] we have following equations.

β = 6
(
S′A,S′S

)
(90)

l = SS′ (91)

∆t =
l

c
(92)

U(T ) = u(T ) + v(T ) + w(ts) (93)

SA = −U(T )∆t (94)

k = (0, 0, 1) (95)

SS′ = lk = ∆tck (96)

S′A = S′S + SA (97)

S′A× S′S =
(
S′S + SA

)
× S′S = SA× S′S = (−U(T )∆t)× (−∆tck) = ∆t2c (U(T )× k) (98)

sin(β) =
‖ S′A× S′S ‖
‖ S′A ‖‖ S′S ‖

≈
∆t2c

∣∣∣∣∣∣U(T )× k
∣∣∣∣∣∣

l2
≈

∣∣∣∣∣∣U(T )× k
∣∣∣∣∣∣

c
=

∣∣∣∣∣∣Uy(T )i− Ux(T )j
∣∣∣∣∣∣

c
(99)

sin(β) ≈

√
U2
x(T ) + U2

y (T )

c
=

√
(ux(T ) + vx(T ) + wx(ts))2 + (uy(T ) + vy(T ) + wy(ts))2

c
(100)

12



or we can simply write that

tan(β) ≈ |SA|
l

(101)

Equations (100) and (101) give the formulas for calculating the angle β associated with Absolute Stellar Aberra-
tion.

8. Conclusion

We derived formula for the angle of Bradley’s Stellar Aberration and proved that it depends on the change in velocity
of the detector. In addition, we derived the formula for the angle of the ASA and proved that it depends on the
magnitude of the velocity of the detector. It would also be interesting to perform the experiment so that instead of
a distant star, we use a light source from the lab.
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