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1. Introduction 
 The transformations of relativistic dynamics in the Special Theory of Relativity and quantum relativistic 
dynamics (it's fashionable to say Quantum Theory of Relativity) are presented in "Unified Theory 2" in one 
mathematical truth. We are talking about dynamic space-matter, a special case of a zero or fixed angle of 
parallelism, there is the Euclidean axiomatics of space-time. The Special Theory of Relativity cannot describe space-
time in quantum fields with their uncertainty principle. It is impossible to fix both the time and the coordinate at the 
same time. And there is no quantum relativistic dynamics in the gauge fields that follow from the Dirac equation. 
Relativistic dynamics is represented by the Lorentz group, and the Dirac equation invariance condition  

( 𝐴𝜇(𝑋) = 𝐴̅𝜇(𝑋) + 𝑖
𝜕𝑎(𝑋)

𝜕𝑥𝜇
) is represented by the condition (

𝜕𝑎(𝑋)

𝜕𝑥𝜇
≡ 𝑓′(𝑥) = 0). But this is a constant extremal of a 

dynamic function 𝑎(𝑋) = 𝑓(𝑥) ≠ 𝑐𝑜𝑛𝑠𝑡. In the Yang-Mills theory , the derivative of the scalar function is added 

to the potential, which does not change the potential itself, in the symmetry group:   

𝐴𝜇 = 𝛺(𝑥)𝐴𝜇(𝛺)−1(𝑥) + 𝑖𝛺(𝑥)𝜕𝜇(𝛺)−1(𝑥), where𝛺(𝑥) = 𝑒𝑖𝜔  , 

and 𝜔- an element of any group A and ( SU ( N ), SO ( N ), Sp ( N ), E 6 , E 7 , E 8, F 4 , G 2 ), and  

 𝐴µ → 𝐴µ + 𝜕𝜇𝜔. In this case 𝑈(1)- describes the electromagnetic interaction, 𝑆𝑈(2)- Weak Interactions and  

𝑆𝑈(3)- describes Strong Interactions, and so on. We will consider the conditions: 𝑎(𝑋) = 𝑓(𝑥) ≠ 𝑐𝑜𝑛𝑠𝑡, and 

substantiation of symmetries in quantum relativistic dynamics (in the Quantum Theory of Relativity). 
2. General representations. 

 Let's start the mathematical representation of symmetries with the simplest geometric figures. Regular 
figures on a plane retain their symmetry during rotations, inversions. For example: 

2.1. the rectangle is symmetrical when rotated by 180 0 , and when rotated by 0 0 does not change. 

 
Figure 2.1. 

We have two operations. Rotate 0 0 as 𝑅0 = 𝐼, and rotate 180 0 as 𝑅180. They can be multiplied by first  
 𝑅0 ∗ 𝑅180turning by 0 0 , then by 180 0 , or vice versa: 𝑅180 ∗ 𝑅0, in the Cayley table. 

C2 𝐼 𝑅180 

𝐼 𝐼 𝑅180 
𝑅180 𝑅180 𝐼 

𝑅0 ∗ 𝑅0 = 𝑅0 = 𝐼,    𝑅0 ∗ 𝑅180 = 𝑅180.  𝑅180 ∗ 𝑅0 = 𝑅180. 𝑅180 ∗ 𝑅180 = 𝑅360 = 𝑅0 = 𝐼 
The operation 𝑅0 = 𝐼, does not change anything, is called the identity element of the given group. The group is 
defined by properties.  
1). A group operation is defined, here is a turn.  
2). The presence of a single element, 𝑅0 = 𝐼,  
3). closedness, when an operation in a group gives an element that does not leave the group, 
 4). the presence of an inverse element 𝐼−1 = 𝐼, or 𝑅180

−1 = 𝑅180. This is the element that undoes the previous 
operation of each group element. 
 5).associativity property: A( BC)=(AB)C. This group is called C2. 
  
 
 
 



2.2. an example of an equilateral triangle, with rotations of 0 0 , 120 0 , and 240 0 . 

 
Figure 2.2 

The multiplication table of a given group of rotations is compiled in exactly the same way. 

C3 𝐼 𝑅120 𝑅240 

𝐼 𝐼 𝑅120 𝑅240 

𝑅120 𝑅120 𝑅240 𝐼 

𝑅240 𝑅240 𝐼 𝑅120 

All possible elements of a group, when multiplied, give the elements of the same group. The group is closed. For 
each element there is an inverse element and also in the group. 𝑅120

−1 = 𝑅240, 𝑅240
−1 = 𝑅120. 

 Not only turns of figures give a group. The numbers (+1) and (-1) also form group . 

 1 -1 

1 1 -1 

-1 -1 1 

The group operation is multiplication. The identity element is 1. Inverse element: −1−1 = −1. All conditions for the 
group are met. This group is identical to the C 2 group . They are called isomorphic. There are also other isomorphic 
groups. For example, during the operation of reflection 𝜎of the considered rectangle. 

S2 _ 𝐼 𝜎 

𝐼 𝐼 𝜎 
𝜎 𝜎 𝐼 

If we reflect the rectangle twice around the axis, we get the original object, a group with all the properties. 
Such a group is called S 2 and is isomorphic to the group C 2 . Multiplying the coordinates of the vector (2,1) by (-1), 
leads to the reflection of the coordinates relative to the origin. Therefore, the group of numbers (1) and (-1) is also 
isomorphic. 
 2.3 Abelian and non-Abelian groups and subgroups. The considered groups of rotations С3 and reflections S 
3 

 
Figure 2.3. 

Such rotations and reflections also do not change the triangle, and form a group. Let's write a table for it. 

D3 𝐼 𝑅120 𝑅240 𝜎1 𝜎2 𝜎3 

𝐼 𝐼 𝑅120 𝑅240 𝜎1 𝜎2 𝜎3 
𝑅120 𝑅120 𝑅240 𝐼 𝜎2 𝜎3 𝜎1 
𝑅240 𝑅240 𝐼 𝑅120 𝜎3 𝜎1 𝜎2 

𝜎1 𝜎1 𝜎3 𝜎2 𝐼 𝑅240 𝑅120 
𝜎2 𝜎2 𝜎1 𝜎3 𝑅120 𝐼 𝑅240 
𝜎3 𝜎3 𝜎2 𝜎1 𝑅240 𝑅120 𝐼 

Group C3 has subgroups D 3. Turn on 𝑅120with reflection 𝜎1equals reflection 𝜎2. But if we first reflect 𝜎2and then 
rotate 𝑅120, we get a reflection 𝜎3. That is: 𝑅120 ∗ 𝜎1 ≠ 𝜎1 ∗ 𝑅120. But the law of commutativity is not a property of 



the group, and it does not have to be observed. The group D 3 is not abelian, the subgroup C3 is abelian. But if we 
choose the specified triangle, its symmetry under reflections is already broken. 

 
Figure 2.4 

Such symmetry breaking is called spontaneous. 
 2.4 Representation of groups. As stated, the group operation can be any action, multiplication, rotation, 
inversion, whatever. Group elements can also be any abstract objects that can be replaced in isomorphic groups by 
prime numbers (1) and (-1) if the group is commutative. But there are also mathematical objects for which the 
commutativity of multiplication is not observed, for example, matrices . In other words, matrices can also be abstract 
elements of groups. In the considered D 3 matrix, the elements of the group can be represented by matrices, in the 
form: 

𝐼 = (1 0
0 1

),  𝑅120 =
1

2
(−1 − √3

√3 −1
). 𝑅240 =

1

2
( −1  √3

− √3 −1
). 

 𝜎1 =
1

2
(

−1 0

0 1
),  𝜎2 =

1

2
( 1 √3

√3 −1
),  𝜎3 =

1

2
( 1 −√3

−√3 −1
). 

Now the operation of the group D 3 is matrix multiplication. In this case, the structure of the group is preserved: 

𝑅120 ∗ 𝑅120 = 𝑅240, or  
1

2
(−1 − √3

√3 −1
) ∗

1

2
(−1 − √3

√3 −1
) =

1

2
( −1  √3

− √3 −1
), or 

𝑅120 ∗ 𝜎1 = 𝜎3, as: 
1

2
(−1 − √3

√3 −1
) ∗  

1

2
(−1 0

0 1
) =  

1

2
( 1 −√3

−√3 −1
) 

𝜎1 ∗ 𝑅120 = 𝜎2, in the form:   
1

2
(−1 0

0 1
) ∗

1

2
(−1 − √3

√3 −1
) =

1

2
( 1 √3

√3 −1
). 

Rotation matrices do not commute with reflection matrices along the specified axes. But the rotation matrices 

commute with each other. The product 𝑅120 ∗ 𝑅240 = 𝐼, or 
1

2
(−1 − √3

√3 −1
) ∗

1

2
( −1  √3

− √3 −1
) = (1 0

0 1
) = 𝐼, gives 

The single element of the group. All matrices are invertible. 𝑅120
−1 = 𝑅240,  

1

2
(−1 − √3

√3 −1
)

−1

=
1

2
( −1  √3

− √3 −1
). The 

inverse element of the matrix group is represented by the inverse matrix: 𝜎1
−1 = 𝜎1, or (

−1 0

0 1
)

−1

= (
−1 0

0 1
).  

The analysis of the abstract operations of a group can thus be replaced by the study of the properties of 
matrices. But matrices can also be considered as operators acting on vectors. For example, when rotating a vector 

(
0
1

)by𝑅120 , we get:
1

2
(

−1 − √3

√3 −1
) ∗ (

0
1

) = (
− √3/2
−1/2

) rotated vector, or: 

(0
1

)on 𝑅120, we get 
1

2
( −1  √3

− √3 −1
) ∗ (0

1
) = ( √3/2

−1/2
). 

  
Figure 2.5  

Multiplying the remaining matrices by any of these three vectors will translate the vector into one of these three. 
We get the same symmetrical triangle. That is, matrices are representations of operations. 

2.5. In group theory there are many theorems: discrete groups, normal subgroups, classes, factor - groups ... . 

Let us consider the groups A and, in physical theories. In the previous group, for example D 3, we considered the symmetries 
of a triangle under rotations and reflections. Similarly, one can consider the symmetries of a square in the group D 4 
for 4 turns, in a regular pentagon D 5 for 5 turns, a hexagon D 6 for 6 turns ... . A regular ( N → ∞) square turns into a 
circle, with the radius rotated by the angle (α). The circle is invariant under rotations through any angle (α). But here 
there are no elements of the groups considered earlier (𝑅)and (𝜎). 



        
Figure 2.6 

In such a symmetry group of a circle, a group parameter is introduced, by the angle of rotation 𝑅𝛼 . In this group, we 
obtain a continuous transition from one element of the group (𝑅𝛼)to another (𝑅𝛼+△𝛼). These are the groups L and. 
Here there is (𝑅0 = 𝐼)an identity element, the inverse element of the group (𝑅𝛼

−1 = 𝑅2𝜋−𝛼). The elements of the 
group are also represented by matrices. If we consider rotations of the coordinate system 𝑋𝑌 → 𝑋̅𝑌̅, we obtain for  

𝑅1(𝑅𝑋1𝑅𝑌1)and 𝑅2(𝑅𝑋2𝑅𝑌2):  𝑅1 ∗ 𝑅2 = |𝑅1||𝑅2| cos(𝛽 − 𝛼) = (𝑅𝑋1𝑅𝑋2 + 𝑅𝑌1𝑅𝑌2), 
|𝑅1||𝑅2| cos(𝛽 − 𝛼) = |𝑅1| cos(𝛼) |𝑅2| cos(𝛽) + |𝑅1|𝑠𝑖𝑛 (𝛼)|𝑅2|𝑠𝑖𝑛 (𝛽), 

cos(𝛽 − 𝛼) = cos(𝛼) cos(𝛽) + 𝑠𝑖𝑛 (𝛼)𝑠𝑖𝑛 (𝛽), 
cos(𝛽 + 𝛼) = cos(𝛽 − (−𝛼)) = cos(−𝛼) cos(𝛽) + 𝑠𝑖𝑛 (−𝛼)𝑠𝑖𝑛 (𝛽), 

cos(𝛽 + 𝛼) = cos(𝛼) cos(𝛽) − 𝑠𝑖𝑛 (𝛼)𝑠𝑖𝑛 (𝛽) 
|𝑅1| ∗  (|𝑅2| cos(𝛽 + 𝛼) = 𝑋̅) = |𝑅1| cos(𝛼) ∗ (|𝑅2|cos(𝛽) = 𝑋) − |𝑅1| 𝑠𝑖𝑛(𝛼) ∗ (|𝑅2|𝑠𝑖 𝑛(𝛽) = Y)  

𝑋̅ = 𝑋 cos(𝛼) − 𝑌𝑠𝑖 𝑛(𝛼).   Similarly, next: 
|𝑅1||𝑅2|  sin(𝛽 + 𝛼) = |𝑅1||𝑅2| cos(90 − (𝛽 + 𝛼)) =  |𝑅1||𝑅2| cos((90 − 𝛼) − 𝛽) 
|𝑅1||𝑅2| sin(𝛽 + 𝛼) = |𝑅1||𝑅2| cos(90 − 𝛼) cos(𝛽) + |𝑅1||𝑅2| 𝑠𝑖𝑛(90 − 𝛼) 𝑠𝑖𝑛(𝛽) 

|𝑅1| ∗ (|𝑅2| sin(𝛽 + 𝛼) = 𝑌̅) = |𝑅1| sin(𝛼) ∗ (|𝑅2| cos(𝛽) = X) +  |𝑅1| cos(𝛼) ∗ (|𝑅2|𝑠𝑖𝑛(𝛽 = 𝑌) 
𝑌̅ = 𝑋 sin(𝛼) + 𝑌𝑐𝑜𝑠(𝛼). 

Finally, we get the transformations: 

|
𝑋̅ = 𝑋 cos(𝛼) − 𝑌𝑠𝑖 𝑛(𝛼) 

𝑌̅ = 𝑋 sin(𝛼) + 𝑌𝑐𝑜𝑠(𝛼) 
|or (𝑋̅

𝑌̅
) = (

𝑋
𝑌

) (
cos(𝛼) − sin(𝛼)

sin(𝛼) cos(𝛼)
) 

  (𝑋̅
𝑌̅

) = (
𝑋
𝑌

) ∗ 𝑅𝛼    where is  𝑅𝛼 = (
cos(𝛼) − sin(𝛼)

sin(𝛼) cos(𝛼)
)the matrix of the group A and. 

The previously considered cases of rotation by 120 0 and 240 0 are special cases of rotations 𝑅𝛼 . 

𝑅120 = (
cos(120) − sin(120)

sin(120) cos(120)
) =

1

2
(

−1 −√3

√3 −1
) 

This is a ( 𝑅𝛼) SO (2) matrix , i.e. a Special ( det ( 𝑅𝛼)=1) Orthogonal ( 𝑅𝛼(𝑅𝛼)Т = 𝐼) matrix where the transposed 

matrix (𝑅𝛼)Т = (𝑅𝛼)−1is equal to the inverse. This is ( 𝑅𝛼) the rotation matrix, abelian. 

The matrix of the scaling operation (
𝑀 0
0 𝑀

)with the parameter (M=2), performs (
2 0
0 2

) (
1
1

) = (
2
2

)an increase  

(𝑀 > 1) or decrease (  0 < 𝑀 < 1) of the original vector. The parameter (M ) can be taken out of brackets, then we 

will get М (
1 0
0 1

)a group generator in brackets, not attached to the elements of the group. 

 Angle (𝛼) the group parameter 𝑅𝛼 = (
cos(𝛼) − sin(𝛼)

sin(𝛼) cos(𝛼)
)is also taken out 𝑅0 = 𝐼, the rotation by 0 0 does 

nothing, it gives the identity matrix. Turning an angle (△ 𝛼 → 0)gives  (𝑅△𝛼 = 𝐼 +△ 𝛼𝐿) transformation where(𝐿)  
rotation generator. Then  (𝑅𝛼+△𝛼 = 𝑅△𝛼𝑅𝛼)to rotate by an angle ( 𝛼 +△ 𝛼), you must first rotate by an angle ( 𝛼), 
then by an angle ( △ 𝛼). Substituting the values, we get: (𝑅𝛼+△𝛼 = (𝐼 +△ 𝛼𝐿)𝑅𝛼 = 𝑅𝛼 +△ 𝛼𝐿𝑅𝛼). Further, in the 

usual order, we obtain: (𝑅𝛼+△𝛼 − 𝑅𝛼 =△ 𝛼𝐿𝑅𝛼), 𝑙𝑖𝑚
𝑅𝛼+△𝛼−𝑅𝛼

△𝛼→0
= 𝐿𝑅𝛼 , 

𝑑𝑅𝛼

𝑑𝛼
= 𝐿𝑅𝛼 , 

𝑑𝑅𝛼

𝑅𝛼
= 𝐿𝑑𝛼, 𝑅𝛼 = 𝑒𝛼𝐿 , solution 

of the differential equation, with the group generator (
𝑑𝑅𝛼

𝑑𝛼
)0 = 𝐿. These equations are similar to the Schrödinger 

equation: 
𝑑𝑈

𝑑𝑡
= −𝑖𝐻𝑈, with solutions: 𝑈 = 𝑒−𝑖𝑡𝐻. Here the group generator is represented by the Hamilton 

operator, and instead of turning by an angle, time is considered. In our case of rotations, the group generator is 
equal to the derivative of the group elements at zero rotation angle. We take the derivatives, substitute the value of 
the angle and get the group generator. 
𝑑𝑅𝛼

𝑑𝛼
= (

−𝑠𝑖𝑛(0) − cos(0)

cos(0) −sin(0)
) = (

0 −1
1 0

) = 𝐿. Or  
𝑑𝑅𝛼

𝑑𝛼
= 𝐿𝑅𝛼 , in the form: 

𝑑𝑅𝛼

𝑑𝛼
= (

0 −1
1 0

) (
cos  (𝛼) − sin(𝛼)

sin(𝛼) cos(𝛼)
). 

Here: cos2 (𝛼) + sin2 (𝛼) = 1, as expected. Then the rotated and original vector is represented as: 𝑉̅ = 𝑒
𝛼(

0 −1
1 0

)
𝑉, 

 



 where: 𝑒
𝛼(

0 −1
1 0

)
is the matrix of the group element. Now we rotate the vector by an angle ( 𝛼) without using 

trigonometric functions. The generators themselves say a lot about the band itself. For example, the scale generator 

𝑒
𝑚(

1 0
0 1

)
= 𝑒

(
m 0
0 m

)
is represented as a group element. The scale factor is: 𝑀 = 𝑒𝑚the exponent of the group 

parameter ( m ). 
2.6. The elements of the groups L and are found by matrix exponentiation of the generators of the Lie 

groups. The elements themselves are considered as generators acting on the vector. These operators change the 

vector. But the invariant always remains unchanged in the group. Group generator L and: 𝐿 = (
1 0
0 1

)changes the 

element of the Lie group 𝑅𝛼 = 𝑒
±𝛼(

1 0
0 1

)
, as the scaling operator. Acting 𝑅𝛼on the column of point coordinates, we 

obtain radially diverging (converging) points with a constant angle (𝛼). The group generator 𝐿 = (
0 −1
1 0

) gives the 

group element 𝑅𝛼 = 𝑒
±𝛼(

0 −1
1 0

)
,  as a point moving in a circle. The length of the vector is constant. ). The group 

generator  𝐿 = (
0 1
1 0

) gives the group element 𝑅𝛼 = 𝑒
±𝛼(

0 1
1 0

)
as a point moving along a hyperbola. Exponentiating 

such a generator gives Λ = (
ch(𝛼) sh(𝛼)

sh(𝛼) ch(𝛼)
), the Lorentz group. This takes place:     ch2(𝛼) − sh2(𝛼) = 1, as 

expected. Recall the graphs of these functions 𝑌 = 𝑌0ch (𝛼 =
𝑋=𝑍

𝑌0
)in the form: 

  
Figure 2.7 

Here the Lorentz group Λ = (
ch(𝛼) sh(𝛼)

sh(𝛼) ch(𝛼)
), together with ch2(𝛼) − sh2(𝛼) = 1and elements of the group in the 

form  𝑅𝛼 = 𝑒
±𝛼(

0 1
1 0

)
represented in hyperbolic functions 𝑒𝑧 = 𝑐ℎ(𝑧) + 𝑠ℎ(𝑧). At the same time, we derived 

transformations of the relativistic dynamics 𝑅𝛼 = (
cos(𝛼) − sin(𝛼)

sin(𝛼) cos(𝛼)
)of the Lie group matrix, with the generator 

already in the trigonometric 𝑒𝑖𝑧 = 𝑐𝑜𝑠(𝑧) + 𝑖𝑠𝑖𝑛(𝑧)functions 𝑅𝛼 = 𝑒
𝑖𝛼(

0 −1
1 0

)
of the group elements. There is a 

problem in the relativistic solutions of the invariant Dirac equation. The action of a quantum cannot 

  tFp be fixed in space or time . This is due to the non-zero angle of parallelism 

or trajectory or space-matter quantum. There is only a certain probability of action. 

Transformations of the relativistic dynamics of the wave - function of the quantum field with the probability 

density ( ) of interaction in the field (Fig. 3) correspond to the Globally Invariant , 

Lorentz group. These transformations correspond to rotations in the plane of the circle S, and 
relativistically - to the invariant Dirac equation. 

,  and  .  
Such invariance gives the conservation laws in the equations of motion. For transformations of relativistic 

dynamics in hyperbolic motion, 

.   .  . 
 

 . 
The invariance of conservation laws is violated. To save them, calibration fields are introduced. They 

compensate for the extra term in the equation. 



,  and  . 

Now, substituting the value of the wave function into such an equation, we 
obtain an invariant equation of relativistic dynamics.

 

,  or  . 
This equation is invariant to the original equation 

  

in conditions   , and  𝐴𝜇(𝑋) = 𝐴̅𝜇(𝑋) + 𝑖
𝜕𝑎(𝑋)

𝜕𝑥𝜇
, 

the presence of a scalar boson , within the gauge field (Fig. 3). These 

conditions (
𝜕𝑎(𝑋)

𝜕𝑥𝜇
≡ 𝑓′(𝑥) = 0)give constant extremals (𝑓𝑚𝑎𝑥) dynamic 𝑎(𝑋) = 𝑓(𝑥) ≠ 𝑐𝑜𝑛𝑠𝑡 space-matter in 

global invariance. And there are no scalar bosons here. These are:  𝐴𝜇(𝑋) = 𝐴̅𝜇(𝑋) + 𝑖
𝜕𝑎(𝑋)

𝜕𝑥𝜇
, known gauge 

transformations. 𝑎(𝑋)– 4-vector (𝐴0, 𝐴1, 𝐴2, 𝐴3)electromagnetic scalar (𝜑 = 𝐴0)and vector (𝐴⃗ = 𝐴1, 𝐴2, 𝐴3)   

potential in Maxwell electrodynamics: 𝐸⃗⃗ = −∇𝜑 −
𝜕𝐴

𝜕𝑡
, and 𝐵⃗⃗ = −∇x𝐴⃗, gradient and curl, or 𝐹𝜇𝜈 = 𝜕𝜇𝐴𝜈 − 𝜕𝜈𝐴𝜇   , 

 with tensor ( 𝐹𝜇𝜈), (𝐸𝑋 , 𝐸𝑌, 𝐸𝑍, 𝐸𝑋 , 𝐸𝑌, 𝐸𝑍)components and Lorentz transformations. The derivative of the scalar 

function is added to such a potential, which does not change the potential itself. This is the key point. In the Yang-
Mills theory, it is represented by a symmetry group, 𝐴𝜇 = 𝛺(𝑥)𝐴𝜇(𝛺)−1(𝑥) + 𝑖𝛺(𝑥)𝜕𝜇(𝛺)−1(𝑥), where  

 𝛺(𝑥) = 𝑒𝑖𝜔, and 𝜔is an element of any ( SU ( N ), SO ( N ), Sp ( N ), E 6 , E 7 , E 8, F 4 , G 2 ) of the group L and,  
𝐴µ → 𝐴µ + 𝜕𝜇𝜔. In reality, this is a fixed state of a dynamic function: 𝐾𝑌 = 𝜓 + 𝑌0, in quantum relativistic dynamics. 

Relatively speaking, at each fixed point: 𝑎 (
𝑋≡𝑍

𝑌0
) = 𝑐𝑜𝑛𝑠𝑡, there is its own (angle of inclination of the branches) 

hyperbolic cosine, 𝐾𝑌 = 𝑌0𝑐ℎ(
𝑋≡𝑍

𝑌0
) ≡ 𝑒

𝑎(
𝑋≡𝑍

𝑌0
)
, already in the orthogonal (𝑌𝑍 ⊥ 𝑋)) plane, and, moreover, outside 

the dynamic in quantum relativistic dynamics (𝑌0). Thus, scalar bosons in gauge fields are created artificially to 
eliminate the shortcomings of the Theory of Relativity in quantum fields. 
 

3. symmetries in classical and quantum relativistic dynamics 

3.1. Lorentz transformations in physics are considered as: 𝑥̅ =
𝑥+𝑤𝑡

√1−𝑤2
, 𝑡̅ =

𝑡+𝑤𝑥

√1−𝑤2
, 𝑐 = 1. These two formulas 

are represented as a single matrix expression. 
1

√1−𝑤2
(

1 𝑤
𝑤 1

) (
𝑡
𝑥

) =
1

√1−𝑤2
(

𝑡 + 𝑤𝑥
𝑤𝑡 + 𝑥

) = (𝑡̅

𝑥̅
).  Λ = (

ch(𝛼) sh(𝛼)

sh(𝛼) ch(𝛼)
) 

The matrix action converts non-primed vector coordinates to primed ones. The angle of rotation in hyperbolic 
transformations is related to the hyperbolic arc tangent .𝛼 = 𝑎𝑟𝑐  𝑡ℎ(𝑤) and find this angle from the speed, which 
approaches unity: 𝑤 → (с = 1). The mathematical apparatus of group theory is thus quite universal in the Euclidean 
axiomatics of space-time. They are known: 

1. “A point is that, part of which is nothing”) (“Beginnings” of Euclid) . and whether the Point is that which has no parts, 
2. Line - length without width.  
3. And the 5th postulate about parallel straight lines that do not intersect. If a line intersecting two lines forms interior 

one-sided angles less than two lines, then, extended indefinitely, these two lines will meet on the side where the angles are less 
than two lines. 



or  
drawing. 3.1  Euclidean axiomatics 

That is, through a point outside the line, you can draw only one straight line, parallel to the line. 
3.2. in fact, in the "Unified Theory 2", undecidable in the Euclidean axiomatics are noted contradictions. That 

is, many lines in one line (length without width), again a line. Is it a line or many lines? Similarly, the set of points in 
one point is again a point. Is it a point or a set of them? The Euclidean Elements do not provide answers to such 
questions. well-known problems 
5th postulate, the solution of which opened Lobachevsky geometry and Riemannian space. 

 
Figure 3.2 dynamic space of a pencil of parallel lines 

 There are real facts of the dynamic space of a bunch of straight lines that do not intersect, that is, parallel to 
the original line AC at infinity, presented in the "Unified Theory 2". And moving along the line (AC), there will be a 
dynamic space nearby, which we will not be able to get into in principle. 
Infinity cannot be stopped, so this already dynamic space always exists. And already the properties of this dynamic 
(𝜑 ≠ 𝑐𝑜𝑛𝑠𝑡) spaces are presented as properties of matter, the main property of which is movement. There is no 
matter outside such space, and there is no space without matter. Space-matter is one and the same. 
 In such a dynamic space-matter, the Euclidean axiomatics is presented as a special case  zero (𝜑 = 0)angle 
of parallelism. At the same time solving the set problem exactly straight lines in one straight parallel lines as " length 
without breadth " . 
 The main property of a dynamic space-matter is a dynamic (𝜑 ≠ 𝑐𝑜𝑛𝑠𝑡) angle of parallelism. In this case, the 
Euclidean space in the XYZ axes loses its meaning. 

 
figure 3.3 dynamic space-matter 

In "Unified Theory 2  " (), Transformations of relativistic dynamics in the Special Theory of Relativity and quantum 
relativistic dynamics (it is fashionable to say Quantum Relativity Theory), are presented in one mathematical truth, 
form. We are talking about the relativistic dynamics of the radius-vector of a dynamic sphere with a non-stationary 
Euclidean space-time , on the trajectory (X-) or ( Y -) of the quantum ( X ±) ( Y ±), respectively, of the dynamic space-
matter. Consider, for example, a quantum ( X ±) of a dynamic space-matter. 



 
Figure 3.4 quantum of dynamic space-matter 

We see that the dynamic radius-vector (К) in the sphere with non-stationary Euclidean space-time has projections (К 

Y ) in the plane of the circle of the dynamic sphere, and projections (К Х ) on the (Х-) trajectories. On ( n ) convergence, 
as we already know and see, there are two trajectories of ( Y ±) quantum closed on ( Y - ) . As already noted, at each 

point fixed in the experiment with ( 𝑖𝜓 = √(+𝜓)(−𝜓)) wave function, there is a hyperbolic cosine with different 

slope angles of the graph branches. In the section of the circle, the point fixed in the experiment with  

 ( 𝑖𝜓 = √(+𝜓)(−𝜓)) wave function, we have trigonometric functions, with different radii of the circle in different 
fixed points (X-) of the trajectory of the space-matter quantum. As we see at fixed points, fixed experimental facts, 

both representations of the Lorentz group are valid and correspond to the truth. Terms of 𝐴𝜇(𝑋) = 𝐴̅𝜇(𝑋) + 𝑖
𝜕𝑎(𝑋)

𝜕𝑥𝜇
  

the Dirac equation and conditions 𝐴𝜇 = 𝛺(𝑥)𝐴𝜇(𝛺)−1(𝑥) + 𝑖𝛺(𝑥)𝜕𝜇(𝛺)−1(𝑥), where: 𝛺(𝑥) = 𝑒𝑖𝜔, in the Yang-

Mills theory are not violated. Here:  

𝑒𝑖𝜔 = cos 𝜔 + 𝑖𝑠𝑖𝑛 𝜔)  , and ( 𝑖𝑠𝑖𝑛 𝜔 ≡ 𝐾𝑌 = √(+ sin  𝜔)(− sin  𝜔) = 𝑖𝜓 = √(+𝜓)(−𝜓). 

The identity matrices of (𝑅𝛼)group elements, cos2 (𝛼) + sin2 (𝛼) = 1for any rotations and (Λ) groups:  
 ch2(𝛼) − sh2(𝛼) = 1, and their derivatives in the form of group generators (reducible to zero initial conditions) are 
unchanged. But the very dynamics of such conditions, that is, the quantum relativistic dynamics of the dynamic 
sphere radius vector with non-stationary Euclidean space-time, we have lost it 𝑎(𝑋) ≠ 𝑐𝑜𝑛𝑠𝑡. represented by a matrix 
with a dynamic wave function: 𝑖𝜓 = 𝑖𝑠𝑖𝑛 𝜔 ≡ ±𝐾𝑌 in an experiment, as an argument, as a fixed fact of reality. But 
there is no theory, or models, equations of such "hidden processes", as we see. It must be said that in the dynamic 
space-matter, there is a space-matter, which we cannot get into in principle. We can't get in, by definition. 
 Let us present a tabular (comparative) analysis of the representations of the Lorentz groups of the relativistic 
dynamics of the Special Theory of Relativity and quantum relativistic dynamics, in full, without the condition (c=1) of 
the speed of light. 

𝑅𝛼 = (
cos(𝛼) − sin(𝛼)

sin(𝛼) cos(𝛼)
),cos2 (𝛼) + sin2 (𝛼) = 1  

 
 
𝑅𝛼=0 = 𝐼,(𝑅△𝛼 = 𝐼 +△ 𝛼𝐿)   
(𝑅𝛼+△𝛼 = (𝐼 +△ 𝛼𝐿)𝑅𝛼 = 𝑅𝛼 +△ 𝛼𝐿𝑅𝛼). 

  (𝑅𝛼+△𝛼 − 𝑅𝛼 =△ 𝛼𝐿𝑅𝛼), 𝑙𝑖𝑚
𝑅𝛼+△𝛼−𝑅𝛼

△𝛼→0
= 𝐿𝑅𝛼 , 

𝑑𝑅𝛼

𝑑𝛼
=

𝐿𝑅𝛼 , 𝑅𝛼 = 𝑒𝛼𝐿 , solution of the differential equation, 

with group generator (
𝑑𝑅𝛼

𝑑𝛼
)0 = 𝐿. 

(
𝑑𝑅𝛼

𝑑𝛼
)𝛼=0 = (

−𝑠𝑖𝑛(0) − cos(0)

cos(0) −sin(0)
) = (

0 −1
1 0

) = 𝐿   

(0 −1
1 0

) = 𝐿, group generator 

𝑅𝛼 = 𝑒𝛼𝐿 = 𝑒
𝛼∗(

0 −1
1 0

)
, 𝛼- group parameter 

 

Λ = (
ch (

𝑋≡𝑍

𝑌0
) sh (

𝑋≡𝑍

𝑌0
)

sh (
𝑋≡𝑍

𝑌0
) ch (

𝑋≡𝑍

𝑌0
)

),ch2 (
𝑋≡𝑍

𝑌0
) − sh2 (

𝑋≡𝑍

𝑌0
) = 1   

Λ0 (
𝑋=0

𝑌0
) = 𝐼, (Λ△𝑋 = 𝐼 + △ (

𝑋

𝑌0
) ∗ 𝐿)   

 Λ𝑋+△𝑋

𝑌0

= (𝐼 +△∗ 𝐿) Λ𝑋+△𝑋

𝑌0

,(𝑥/𝑦0) 

  Λ𝑥+△𝑥/𝑦0
−  Λ(𝑥/𝑦0) =△ (𝑥/𝑦0) ∗ 𝐿 Λ(𝑥/𝑦0), 

𝑑 Λ(𝑥/𝑦0)

𝑑(𝑥/𝑦0)
= 𝐿 Λ(𝑥/𝑦0) , 𝑥 ≠ 𝑐𝑜𝑛𝑠𝑡, 𝑦0 ≠ 𝑐𝑜𝑛𝑠𝑡, dynamic sphere, 

 Λ(𝑥/𝑦0) = 𝑒(𝑥/𝑦0)𝐿, (
𝑑 Λ(𝑥/𝑦0)

𝑑(𝑥/𝑦0)
)(𝑥/𝑦0)=0 = 𝐿. 

(
𝑑 Λ(𝑥/𝑦0)

𝑑(𝑥/𝑦0)
)(𝑥/𝑦0)=0 = (

𝑠ℎ(0) ch(0)

ch(0) 𝑠ℎ(0)
) = (

0 1

1 0
) = 𝐿   

(
0 1
1 0

) = 𝐿, group generator 

 Λ(𝑥/𝑦0) = 𝑒(𝑥/𝑦0)∗(
0 1
1 0

)
, (𝑥/𝑦0)- group parameter 

 

𝑅𝛼 ∗  Λ(𝑥/𝑦0) = 𝑒
𝛼∗(

0 −1
1 0

)
∗ 𝑒

(𝑥/𝑦0)∗(
0 1

1 0
)
, simultaneous dynamics of circular and hyperbolic motion 

Radius vector (its vertices) of dynamic(𝑦0 ≠ 𝑐𝑜𝑛𝑠𝑡) spheres. 



Special theory of relativity 

𝑥̅ =
𝑥−𝑤𝑡

√1−(𝑤/𝑐)2
,𝑡̅ =

𝑡−𝑤𝑥/𝑐2

√1−(𝑤/𝑐)2
  

𝑤̅ =
𝑥−𝑤𝑡

𝑡−𝑤𝑥/𝑐2, 

Lorentz group 

Λ =
1

√1−(𝑤/𝑐)2
(1 𝑤/𝑐2

𝑤 1
),Λ ∗ (

𝑡
𝑥

) = (𝑡̅

𝑥̅
) 

1

√1−(𝑤/𝑐)2
(1 𝑤/𝑐2

𝑤 1
) (

𝑡
𝑥

) =
1

√1−(𝑤/𝑐)2
(𝑡 − 𝑤𝑥/𝑐2

−𝑤𝑡 + 𝑥
) = (𝑡̅

𝑥̅
),   

𝑡̅ =
𝑡−𝑤𝑥/𝑐2

√1−(𝑤/𝑐)2
. 𝑥̅ =

−𝑤𝑡+𝑥

√1−(𝑤/𝑐)2
. exactly the same dynamics 

quantum relativistic dynamics 

𝐾𝑌
̅̅̅̅ =

𝑎11𝐾𝑌−𝑐𝑇

√1−(𝑎22)2
. 𝑇̅ =

𝑎22𝑇−𝐾𝑌/𝑐

√1−(𝑎22)2
. 

 𝑎11 = cos (𝜑𝑌 ) ≠ 𝑐𝑜𝑛𝑠𝑡, 
  𝑎22 = cos (𝜑𝑋) ≠ 𝑐𝑜𝑛𝑠𝑡, 

𝑤̅ =
𝑎11𝐾𝑌−𝑐𝑇

𝑎22𝑇−𝐾𝑌/𝑐
= 

𝑎11𝑊𝑌−𝑐

𝑎22−𝑊𝑌/𝑐
, 

(Quantum Theory of Relativity) 

𝑄 =
1

√1−(𝑎22)2
(

𝑎22 1/𝑐
𝑐 𝑎11

),𝑄 ∗ (
𝑇

𝐾𝑌
) = (𝑇̅

𝐾
) 

1

√1 − (𝑎22)2
(

𝑎22 1/𝑐
𝑐 𝑎11

) (
𝑇

𝐾𝑌
) =

1

√1 − (𝑎22)2
(

𝑎22𝑇 − 𝐾𝑌/𝑐
𝑎11𝐾𝑌 − 𝑐𝑇

) = (𝑇̅
𝐾

) 

(𝑎11 ≠ 𝑎22) ≠ 𝑐𝑜𝑛𝑠𝑡, 

 (𝑎22 1/𝑐
𝑐 𝑎11

) = 𝑎11 ∗ 𝑎22 − 𝑐 ∗ 1

𝑐
= 0. 𝑎11 ∗ 𝑎22 = 𝑐 ∗

1

𝑐
= 1 . 

from where follows:     𝑎11 ∗ 𝑎22 = cos(𝜑𝑌) ∗ cos(𝜑𝑋 ) = 1 , 

In the case of quantum relativistic dynamics, as we see, the symmetry condition follows: under the 
conditions (𝑎11 ≠ 𝑎22) ≠ 𝑐𝑜𝑛𝑠𝑡, we get: 𝑎11 ∗ 𝑎22 = cos(𝜑𝑌) ∗ cos(𝜑𝑋) = 1, in nonzero  values angles of parallelism 
 (𝜑𝑌 ≠ 0),  (𝜑Х ≠ 0), for the conditions of the denominator√1 − (𝑎22)2 ≠ 0 , (𝑋±)quantum. Exactly the same 
transformations  (𝑌±) quantum, with the terms of the denominator √1 − (𝑎11)2 ≠ 0. But the angles of parallelism 
cannot be 900. This means  (𝜑 ≠ 900)that there are limit angles of parallelism, which correspond to the constants of 
interactions, in the form: cos(𝜑𝑌)𝑚𝑎𝑥 = 𝛼(𝑌±) = 1/137.036, and: cos2(𝜑𝑋)𝑚𝑎𝑥 = 𝐺(𝑋±) = 6.67 ∗ 10−8.  
 In the "Unified Theory 2 ", we considered the unified Criteria for the Evolution of dynamic space-matter in 
multidimensional space-time. In particular, charge: q = ПК ( Y+ =X -) in electro ( Y+ =X -) magnetic fields, and mass:  
 m = ПК (X+=Y-) in gravity (X+=Y-) mass fields . We have also considered models of proton quantum fields:  

(Х±= 𝑝+) = (𝒀−= 𝛾0
+)(𝑿+= 𝜈𝑒

−)(𝒀−= 𝛾0
+),  and:   (𝑌±= е−) = (𝑿+= 𝜈𝑒

−)(𝒀−= 𝛾+)(𝑿+= 𝜈𝑒
−) electron. 

Then the conditions: 𝑎22
2 ∗ 𝑎11  = cos2(𝜑𝑋 ) cos(𝜑𝑌) = 1, quantum relativistic dynamics (𝑋±) quantum take the form: 

(𝑋 ±) = (X+= Y−)2 ∗ ( Y+ = X −), or: ПК ∗ cos2(𝜑𝑋) cos(𝜑𝑌) = 1 ∗ ПК. 
(ПК(X+= Y −) = m0 = 1) ∗ 𝑐𝑜𝑠2(𝜑𝑋)𝑚𝑎𝑥 𝑐𝑜𝑠(𝜑𝑌)𝑚𝑎𝑥 = 1 ∗ (ПК( Y+ = X −) =  q0 = 1), 

Scale (𝑎22), in quantum state:𝑎22
2 ∗ 𝑎11  = cos2(𝜑𝑋 ) cos(𝜑𝑌) = 1 matrix (1 𝛼

1 1
)

2

= (1 − 𝛼)2. Then: 

(m0 = 1) ∗ (1 − 𝛼)2(𝑐𝑜𝑠2(𝜑𝑋 )𝑚𝑎𝑥 = 𝐺)(𝑐𝑜𝑠(𝜑𝑌)𝑚𝑎𝑥 = 𝛼) = 1 ∗ 𝑞,  
𝑞( Y+ = X −) = (1 − 𝛼)2 ∗ 𝐺 ∗ 𝛼 = (1 − 1/137.036)2 ∗ 6.67 ∗ 108 ∗ (1/137.036) = 4.8 ∗ 10−10. 

We have obtained an electric charge in the symmetry group of its quantum relativistic dynamics. 
 In the same way, by scaling the symmetry group 𝑄 = 𝑒(𝑋,𝑌)∗𝐿  of quantum relativistic dynamics (it is fashionable 
to say in the Quantum Relativity Theory), but already of mass fields, one can search for the mass spectrum of 
elementary particles. This is different from the symmetries of Lorentz groups in gauge fields. 
 


