
Proof of the Riemann Hypothesis
Marcello Colozzo

Abstract

We prove the Riemann Hypothesis by studying the behavior of a holomorphic
function f̂ (s) which has the same non-trivial zeros as the Riemann zeta function ζ (s).
This function is given by g (s) ≡ f̂ (x+ iy) =

∫ +∞

−∞

ext

ee
t
+1

eiytdt and is for an assigned

x > 0, the Fourier transform of f (x, t) = ext

ee
t
+1

.

1 The Riemann zeta function ζ (s)

1.1 Dirichlet series

As is well known, the Riemann zeta function is defined by:

ζ (s) =
+∞∑

n=1

1

ns
, s = x+ iy (1)

The Dirichlet series (1) is convergent for Re s > 1, and uniformly convergent in any finite
region in which Re s ≥ 1 + δ, δ > 0. It therefore definis an holomorphic function ζ (s) for
Re s > 1 [1].

1.2 The functional equation and the non-trivial zeros

Riemann found the analytic extension (or holomorphic extension) of the sum of the Dirichlet
series (1) over all C except the point z = 1, which turns out to be a simple pole with residue
1.

The aforesaid analytical extension is represented by the following functional equation [1]:

π−
s
2Γ

(s

2

)

ζ (s) = π
s−1

2 Γ

(
1− s

2

)

ζ (1− s) (2)

where Γ (s) is the Eulerian gamma function. The non-trivial zeros of ζ (s) fall in the critical
strip [1]-[2] of the complex plane defined by

A = {s ∈ C | 0 ≤ Re s ≤ 1, −∞ < Im s < +∞} (3)

More precisely, there are no zeros for Re s = 0, Re s = 1 so we should refer to the open strip:

{s ∈ C | 0 < Re s < 1, −∞ < Im s < +∞} (4)

In the following, we will denote the geometric locus (4) by A.
The Eulerian gamma function has no zeros [3], so

s0 ∈ A | ζ (s0) = 0 ⇐⇒ ζ (1− s0) = 0 (5)
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1.3 Symmetries

1.3.1 Complex conjugation

Let f (s) be a complex function defined in a field T ⊆ C. Denoting with s∗ the complex
conjugate of s = x+ iy i.e. s∗ = x− iy, we plan to study the behavior of f (s) with respect
to the complex conjugation s→ s∗. To do this, we separate the real and imaginary parts of
f (s):

f (s) = u (x, y) + iv (x, y)

The following special cases are of interest:

1. u (x, y) ≡ u (x,−y) , v (x, y) ≡ v (x,−y), i.e. u and v are even functions with respect
to the variable y. It follows

f (s∗) = u (x,−y) + iv (x,−y) ≡ u (x, y) + iv (x, y) =⇒ f (s∗) ≡ f (s)

so f (s) is invariant under the transformation s→ s∗.

2. u (x, y) ≡ u (x,−y) , v (x, y) ≡ −v (x,−y), i.e. u is an even function while v is odd
with respect to the variable y. It follows

f (s∗) = u (x,−y) + iv (x,−y) ≡ u (x, y)− iv (x, y) =⇒ f (s∗) ≡ f (s)∗

Example 1 Let’s consider the function f (s) = es = ex (cos y + i sin y), for which

u (x, y) = ex cos y, v (x, y) = ex sin y

So we are in case 2: es
∗

= (es)∗.

For the function ζ (s) the following property holds:

Proposition 2 (Property of complex conjugation)

ζ (s∗) = ζ (s)∗ , ∀s ∈ C\ {1} (6)

Proof. It is sufficient to prove the (6) for Re s > 1, using the representation through the
Dirichlet series (1) since the property is conserved in the holomorphic extension.

ζ (s) =
+∞∑

n=1

n−xn−iy =
+∞∑

n=1

n−xe−iy lnn =
+∞∑

n=1

n−x [cos (y lnn)− i sin (y lnn)]

Separating the real part from the imaginary part:

ζ (s) =
+∞∑

n=1

n−x cos (y lnn)− i

+∞∑

n=1

sin (y lnn)

=⇒ ζ (s∗) =
+∞∑

n=1

n−x cos (y lnn) + i
+∞∑

n=1

sin (y lnn)

from which
ζ (s∗) = ζ (s)∗ (7)
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Figure 1: Trend of Re ζ
(
1
4
+ iy

)
, Im ζ

(
1
4
+ iy

)
.

From this it follows that Re ζ (x+ iy) is an even function with respect to the variable y,
while Im ζ (x+ iy) is an odd function. is an odd function. This is evident in the graph of
fig. 1.

The proposition 2 implies that the non-trivial zeros are symmetric about the real axis
(fig. 2). In fact, if s0 is a non-trivial zero, it must still occur

ζ (s∗0) = ζ (s0)
∗ (8)

But ζ (s0) = 0 =⇒ ζ (s0)
∗ = 0 =⇒ ζ (s∗0) = 0. Stated another way, the nontrivial zeros are

distributed for complex conjugate pairs.

Figure 2: Symmetry of the distribution of zeros with respect to the real axis.

1.3.2 Symmetry about the point
(
1
2
, 0
)

The (5) has an immediate geometric interpretation illustrated in fig. 3 from which we see
that the zeros s0 and 1− s0 are symmetrical with respect to the point

(
1
2
, 0
)
.
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Figure 3: Symmetry of the distribution of zeros with respect to point
(
1
2
, 0
)
.

The symmetries just examined imply that the non-trivial zeros are symmetric about the
line Re s = 1/2 and the real axis (fig.(4)).

Figure 4: Symmetry of the distribution of non trivial zeros.

2 A remarkable integral representation

In Quantum Statistical Mechanics [5] the following generalized integrals which are not ele-
mentary expressible often appear

∫ +∞

0

tx−1dt

et ± 1
(9)
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From known results:
∫ +∞

0

tx−1dt

et + 1
=

(
1− 21−x

)
Γ (x) ζ (x) , ∀x ∈ (0,+∞) (10)

∫ +∞

0

tx−1dt

et − 1
= Γ (x) ζ (x) , ∀x ∈ (1,+∞)

where ζ (x) is the Riemann zeta function ζ (s) evaluated for Im s = 0. We rewrite the first
of (10) for Im s 6= 0:

∫ +∞

0

ts−1dt

et + 1
=

(
1− 21−s

)
Γ (s) ζ (s) , Re s > 0 (11)

In the integral we perform the change of variable t = et
′

, so
∫ +∞

0

ts−1dt

et + 1
=

∫ +∞

0

tx−1tiytdt

et + 1
=

∫ +∞

−∞

ext
′

e−t′eiyt
′

et
′

eet
′

+ 1
dt′ =

∫ +∞

−∞

ext
′

eet
′

+ 1
eiyt

′

dt′

Redefining the variable t′ ≡ t:
∫ +∞

0

ts−1dt

et + 1
=

∫ +∞

−∞

ext

eet + 1
eiytdt

so (11) becomes
∫ +∞

−∞

ext

eet + 1
eiytdt =

(
1− 21−s

)
Γ (s) ζ (s) , Re s > 0 (12)

We define

f (x, t) =
ext

eet + 1
,

{
x ∈ (0, 1) parameter
t ∈ (−∞,+∞) independent variable

(13)

It follows (from (12)):

f̂ (s) ≡ f̂ (x+ iy) =

∫ +∞

−∞

f (x, t) eiytdt =
(
1− 21−s

)
Γ (s) ζ (s) , Re s > 0 (14)

Notation 3 The correct notation is

f̂ (x, y) =

∫ +∞

−∞

f (x, t) eiytdt, g (s) = f̂ (x+ iy) , g : A→ C

However to avoid a proliferation of symbols, we use the notation (14). So the symbols
f̂ (x, y) , f̂ (x+ iy) , f̂ (s) denote the same function.

Proposition 4 The function f̂ (s) is holomorphic in the region

A = {s ∈ C | 0 < Re s < 1, −∞ < Im s < +∞}

Proof. It immediately follows from the holomorphy of (1− 21−s) Γ (s) in the region A.

Lemma 5
∣
∣
(
1− 21−s

)
Γ (s)

∣
∣ > 0, ∀s ∈ A (15)

Proof. The inequality (15) derives from the fact that the gamma function has no zeros [3],
while 1− 21−s is manifestly zero-free in A.

Theorem 6 f̂ (s) and ζ (s) have the same (non-trivial) zeros.

Proof. It follows from the lemma 5.
The line Re s = 1/2 is called critical line. G. H. Hardy [4] proved that infinitely many

zeros fall on this line.
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3 Riemann Hypothesis. Fourier Transform

From (14) we see that for a given x̄ ∈ (0, 1) the function f̂ (y) ≡ (x̄+ iy) is the Fourier
transform of (13). By a known property [6] f̂ (y) is uniformly continuous in (−∞,+∞).
Also, by the inversion formula [7]:

ex̄t

eet + 1
=

1

2π
lim

δ→+∞

∫ δ

−δ

(

1−
|y|

δ

)

f̂ (y) e−iytdy (16)

Conjecture 7 (Riemann Hypothesis – RH)
The non-trivial zeros of the Riemann zeta-function have real part x = 1/2.

From proposition 5 follows that the non-trivial zeros of the function

f̂ (x+ iy) =

∫ +∞

−∞

f (x, t) eiytdt, with f (x, t) =
ext

eet + 1
(17)

have real part x = 1/2.
Let us first study the behavior of the function

f (x, t) =
ext

eet + 1
(18)

which for each value of the parameter x ∈ (0, 1) is defined in (−∞,+∞).
Sign and intersections with the axes

It turns out f (x, t) > 0, ∀t ∈ (−∞,+∞) for which the graph of f lies in the semi-plane
of the positive ordinates. It does not intersect the abscissa axis, while it does intersect the
ordinate axis at

(
0, (e+ 1)−1).

Behavior at extremes

After calculations:
lim

t→+∞
f (x, t) = 0+, ∀x ∈ (0, 1)

The order of infinitesimal:

lim
t→+∞

tαf (x, t) = 0+, ∀α > 0 (infinitesimal of infinitely large order) (19)

lim
t→−∞

f (x, t) =

{
1
2

−
, if x = 0

0+, if x > 0
(20)

Precisely:
lim

t→−∞
tαf (x > 0, t) = 0+, ∀α > 0 (21)

Conclusion: for |t| → +∞ the function f (x > 0, t) is an infinitesimal of order infinitely large,
provided that it is x > 0.

First derivative

f ′ (x, t) ≡
∂

∂t
f (x, t) =

ext
[
x
(
ee

t
+ 1

)
− et+et

]

(eet + 1)
2

For x = 0

f ′ (0, t) = −
et+et

(eet + 1)
2 < 0, ∀t ∈ (−∞,+∞)
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so the function is strictly decreasing.
For x > 0

f ′ (x, t) = 0 ⇐⇒ x
(

ee
t

+ 1
)

− et+et = 0 (22)

The roots of the transcendental equation (22) depend parametrically on x, so let’s denote
them by t∗ (x). For x = 1:

t∗ (1) ≃ 0.246

From (20):
lim
x→0+

t∗ (x) = −∞

so that
0 < x < 1 =⇒ −∞ < t∗ (x) . 0.246 (23)

t∗ (x) is a continuous function, so by the theorem of zeros:

∃ξ ∈ (0, 1) | t∗ (ξ) = 0

Numerically: ξ ≃ 0.731. Some values for assigned x ∈ (0, 1):

t∗

(
1

5

)

≃ −1.07

t∗

(
1

4

)

≃ −0.88

t∗

(
1

2

)

≃ −0.30

t∗

(
2

3

)

≃ −0.07

t∗

(
3

4

)

≃ 0.02

The sign is

−∞ < t < t∗ (x) =⇒ f ′ (x, t) > 0

t∗ (x) < t < +∞ =⇒ f ′ (x, t) < 0

Hence the function is strictly increasing in (−∞, t∗ (x)) and it is strictly decreasing in
(t∗ (x) ,+∞). So t∗ (x) is a point of relative maximum for the function.

Second derivative

f ′′ (x, t) =
ext

[

e2(e
t+t) − ee

t+2t + x2
(
1 + ee

t)2
− (2x+ 1)

(
et+et + e2e

t+t
)]

(1 + eet)
3 (24)

For x = 0

f ′′ (0, t) =
e2(e

t+t) − ee
t+2t −

(
et+et + e2e

t+t
)

(1 + eet)
3

which has a zero in t′∗ (x = 0) ≃ 0.43. The sign is

−∞ < t < t′∗ (x = 0) =⇒ f ′′ (0, t) < 0

t′∗ (x = 0) < t < +∞ =⇒ f ′′ (0, t) > 0
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Figure 5: Trend of f (0, t) .

It follows that the graph of f (0, t) is convex in (−∞, t′∗ (x = 0)) and concave in (t′∗ (x = 0) ,+∞).
So (0.43, 0.18) is an inflection point with an oblique tangent. In fig. 5 we report the graph
of f (0, t).

For x > 0 we perform a qualitative analysis. The parameter x decisively controls the
slope of the graph of f (t) in (−∞, 0) since

∂

∂t
ext = xext

For t ∈ (0,+∞) the slope is controlled by ee
t
in denominator. This implies that the effects

of the parameter x are felt for t ∈ (−∞, 0), while in (0,+∞) the trend is practically
independent of this parameter. Fig. 6 plots f (x, t) for increasing values of the parameter x
starting from x = 0.

***

By a known property of the Fourier transform [6], for a given value of x, the real function∣
∣
∣f̂ (x, y)

∣
∣
∣ is limited. In fact, from (17):

∣
∣
∣f̂ (x, y)

∣
∣
∣ ≤

∫ +∞

−∞

∣
∣
∣
∣

ext

eet + 1

∣
∣
∣
∣
dt =

∫ +∞

−∞

ext

eet + 1
dt

def
= F (x)

It follows

F (x) =

∫ 0

−∞

ext

eet + 1
dt+

∫ +∞

0

ext

eet + 1
dt

︸ ︷︷ ︸

converges ∀x∈R

For x = 0

f (0, t) =
1

eet + 1
−→
t→−∞

1

2
=⇒

∫ 0

−∞

dt

eet + 1
= +∞ =⇒ lim

x→0+
F (x) = +∞

For x > 0 the trend in t ∈ (−∞, 0) is dominated by ext

ext

eet + 1
−→
t→−∞

ext

8



so the integral converges. As x increases in (0, 1) the slope increases, and this favors the con-
vergence of the integral1, simultaneously decreases the area of the rectangleoid and therefore
the value of F (x). This shows that F (x) is strictly decreasing, as confirmed by the graph
fig. 7.

-10 -5 5 10
t

1

4

1

2

Figure 6: Trend of f (x, t) for different values of x. Curve in green: x = 0. The flattest curve
towards the ordinate axis is for x = 1.

Figure 7: Geometric interpretation of F (x) for x = 1
4
, 1
2
. Note the decreasing trend.

A more quantitative analysis can be performed by numerically calculating the integral
F (x) =

∫ +∞

−∞

ext

ee
t
+1
dt for an array of x values, or using the Mathematica built-in function

Zeta[x+iy] for y = 0 and taking into account the (12) for y = Im s = 0:

F (x) =
(
1− 21−x

)
Γ (x) ζ (x)

In other words, we graph with Mathematica the second member of (12). The result is in fig.
8.

1The parameter x therefore controls the speed of convergence of the integral in the interval (−∞, 0).
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Figure 8: Trend of F (x).

4 Zeros of the Fourier Transform

4.1 Introduction

The integral (17) can be seen as:

• complex function of the real variables (x, y) i.e. f̂ (x, y);

• complex function of the complex variable x+ iy;

Due to the symmetry property established in the number 1.2, we can limit the search for
zeros in the region:

A =
{
(x, y) ∈ R2 | 0 < x < 1, −∞ < y < +∞

}
(25)

Search for zeros:

f̂ (x, y) = 0 ⇐⇒

∫ 0

−∞

ext

eet + 1
eiytdt

︸ ︷︷ ︸

I−(x,y)

+

∫ +∞

0

ext

eet + 1
eiytdt

︸ ︷︷ ︸

I+(x,y)

= 0 (26)

As established in § 3

I− (x, y) =

∫ 0

−∞

ext

eet + 1
eiytdt converges if and only if x > 0, (27)

I+ (x, y) =

∫ +∞

0

ext

eet + 1
eiytdt converges for each x ∈ R

We express the complex quantities I± (x, y) in polar representation:

I± (x, y) = F± (x, y) eiϕ±(x,y) (28)

F± (x, y) = |I± (x, y)| ; ϕ± (x, y) = arg I± (x, y) (0 ≤ ϕ± (x, y) < 2π)

From (26):
f̂ (x, y) = 0 ⇐⇒ I− (x, y) = −I+ (x, y) (29)
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Taking into account the (28):
{
F− (x, y) = F+ (x, y)
ϕ− (x, y) = π + ϕ+ (x, y)

(30)

So if s0 = x0 + iy0 is a zero of ζ (s), the ordered pair (x0, y0) ∈ R2 solves the system (30). It
follows that the equality of the modules

F− (x0, y0) = F+ (x0, y0) (31)

expresses a necessary (but not sufficient) condition for s0 = x0 + iy0 to be a zero of ζ (s).

4.2 Remarkable properties of F± (x, y)

Promemoria:

F− (x, y) =

∣
∣
∣
∣

∫ 0

−∞

ext

eet + 1
eiytdt

∣
∣
∣
∣
, F+ (x, y) =

∣
∣
∣
∣

∫ +∞

0

ext

eet + 1
eiytdt

∣
∣
∣
∣

(32)

Proposition 8 The functions (32) are even with respect to the variable y.

Proof. It follows immediately by expressing the exponential eiyt with Euler’s formula.

Notation 9 Parity (+1) is a general property of the modulus of a Fourier transform:

f̂ (y) =

∫ +∞

−∞

f (t) eiytdt =⇒
∣
∣
∣f̂ (−y)

∣
∣
∣ ≡

∣
∣
∣f̂ (y)

∣
∣
∣

Proposition 10

lim
y→±∞

F± (x, y) = 0 (33)

Proof. It follows from a well-known property of Fourier transforms [6]:

lim
y→±∞

∣
∣
∣f̂ (x, y)

∣
∣
∣ = 0 (34)

Alternatively: for an assigned x0 ∈ (0, 1)
∣
∣
∣
∣

∫ 0

−∞

ex0t

eet + 1
eiytdt

∣
∣
∣
∣
=

∣
∣
∣
∣

∫ 0

−∞

ex0t

eet + 1
cos (yt) dt+ i

∫ 0

−∞

ex0t

eet + 1
sin (yt) dt

∣
∣
∣
∣

= |g̃1 (y) + g̃2 (y)|

where

g̃1 (y) =

∫ 0

−∞

ex0t

eet + 1
cos (yt) dt (35)

g̃2 (y) =

∫ 0

−∞

ex0t

eet + 1
sin (yt) dt

It suffices to prove limy→±∞ g̃1 (y) = limy→±∞ g̃2 (y) = 0. Furthermore, taking into account
the proposition 8, it suffices to refer to the case y → +∞. For this purpose we arbitrarily
take ε > 0,then we impose

g̃1 (y) = ε

11



which determines δε > 0

g̃1 (δε) = ε⇐⇒

∫ 0

−∞

ex0t

eet + 1
cos (δεt) dt = ε

We have to show that

y > δε =⇒ g̃1 (y) =

∣
∣
∣
∣

∫ 0

−∞

ex0t

eet + 1
cos (yt) dt

∣
∣
∣
∣
< ε

For this purpose we consider the integrand function

ψ (y, t) =
ex0t

eet + 1
cos (yt) dt (36)

which for a given y is a cosine oscillation between the curves of equation η = ± ex0t

ee
t
+1

as can

be seen in fig. 9. As y increases, the ≪density≫ of the number of oscillations increases as we
can see from the graph in fig. 10.

Figure 9: Trend of ψ (y, t) = ex0t

ee
t
+1

cos (yt) dt for x0 =
1
4
, y = 2.

It follows a reduction of the area of the rectangleoid and therefore of g̃1 (y). For y → +∞
the predicted density diverges positively and the area of the rectangleoid tends to zero. So:

∀ε > 0, ∃δε > 0 | y > δε =⇒ g̃1 (y) < ε

i.e.
lim

y→+∞
g̃1 (y) = 0

In a similar way we arrive at limy→+∞ g̃2 (y) = 0.

Proposition 11 The functions F± (x, y) are analytic in A.
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Figure 10: Trend of ψ (y, t) = ex0t

ee
t
+1

cos (yt) dt for x0 =
1
4
, y = 14.

Proof. From the holomorphy of the function

f̂ (x+ iy) =

∫ +∞

−∞

ext

eet + 1
eiytdt

follows the analyticity of real functions u (x, y) = Re f̂ , v (x, y) = Im f̂ [9]. Dalla (26):

∣
∣
∣f̂ (x+ iy)

∣
∣
∣

2

=
∣
∣I− (x, y)2 + I+ (x, y)

∣
∣
2

After some algebra:

u (x, y)2 + v (x, y)2 = F− (x, y)2 + F+ (x, y)2 + 2J (x, y) (37)

where
J (x, y) = [Re I− (x, y)] [Re I+ (x, y)] + [Im I− (x, y)] [Im I+ (x, y)]

For the above, the first member function of (37) is analytic, hence the analyticity of the sum
F− (x, y)2 + F+ (x, y)2 + 2J (x, y) and therefore, some F± (x, y).

Proposition 12 For a given y ∈ R, the function F− (x, y) is monotonically decreasing in
(0, 1).

Proof. Given arbitrarily y0 ∈ R, let’s say:

f− (x) = F− (x, y0) =

∣
∣
∣
∣

∫ 0

−∞

ext

eet + 1
eiy0tdt

∣
∣
∣
∣

(38)

If y0 = 0

f− (x) =

∣
∣
∣
∣

∫ 0

−∞

ext

eet + 1
dt

∣
∣
∣
∣
=

∫ 0

−∞

ext

eet + 1
dt

Derivating with respect to x and taking into account the uniform convergence of the integral:

f ′

− (x) =

∫ 0

−∞

text

eet + 1
dt < 0, ∀x ∈ (0, 1)

13



so F− (x, 0) is monotonically decreasing in (0, 1).
For y0 6= 0, expanding the imaginary exponential we have::

f− (x) = |g1 (x) + ig2 (x)|

where

g1 (x) =

∫ 0

−∞

ext

eet + 1
cos (y0t) dt (39)

g2 (x) =

∫ 0

−∞

ext

eet + 1
sin (y0t) dt

So

f− (x) = +

√

g1 (x)
2 + g2 (x)

2

It suffices to show that g1 (x) and g2 (x) are monotonically decreasing in (0, 1). Precisely, for
an assigned t < 0, however we take x′, x′′ ∈ (0, 1) with x′′ > x′, we have:

ex
′′t < ex

′t =⇒
ex

′′t

eet + 1
<

ex
′′t

eet + 1
=⇒

∫ 0

−∞

ex
′′t

eet + 1
cos (y0t) dt <

∫ 0

−∞

ex
′t

eet + 1
cos (y0t) dt

so g1 (x) is monotonically decreasing. This conclusion is corroborated by the graph of fig.
11.

Figure 11: Trend of the integrand function of g1 (x) respectively for x = 2/5 and x = 2/3, and
for y0 = 2. The value assumed by g1 (x) for these values of x, is the area of the rectangleoid
related to the sinusoidal oscillations. As x increases, these oscillations reduce in amplitude
so that the area decreases.

We proceed in a similar way for g2 (x).

Proposition 13 For a given y ∈ R, the function F+ (x, y) is monotonically increasing in
(0, 1).

Proof. Given arbitrarily y0 ∈ R, let’s say:

f+ (x) = F+ (x, y0) =

∣
∣
∣
∣

∫ +∞

0

ext

eet + 1
eiy0tdt

∣
∣
∣
∣

(40)
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If y0 = 0

f+ (x) =

∣
∣
∣
∣

∫ +∞

0

ext

eet + 1
dt

∣
∣
∣
∣
=

∫ +∞

0

ext

eet + 1
dt

Derivating with respect to x and taking into account the uniform convergence of the integral:

f ′

− (x) =

∫ +∞

0

text

eet + 1
dt > 0, ∀x ∈ (0, 1)

so F+ (x, 0) is monotonically increasing in (0, 1).
For y0 6= 0

f+ (x) = |h1 (x) + ih2 (x)|

where

h1 (x) =

∫ +∞

0

ext

eet + 1
cos (y0t) dt (41)

h2 (x) =

∫ +∞

0

ext

eet + 1
sin (y0t) dt

So

f+ (x) = +

√

h1 (x)
2 + h2 (x)

2

It suffices to show that h1 (x) and h2 (x) are monotonically increasing in (0, 1). Precisely, for
an assigned t > 0, however we take x′, x′′ ∈ (0, 1) with x′′ > x′, we have:

ex
′′t > ex

′t =⇒
ex

′′t

eet + 1
>

ex
′′t

eet + 1
=⇒

∫ +∞

0

ex
′′t

eet + 1
cos (y0t) dt >

∫ +∞

0

ex
′t

eet + 1
cos (y0t) dt

so h1 (x) is monotonically increasing. This conclusion is corroborated by the graph of fig.
12.

Figure 12: Trend of the integrand function of h1 (x) respectively for x = 2/5 e x = 2/3, and
for y0 = 14. The value assumed by h1 (x) for these values of x, is the area of therectangleoid
related to the sinusoidal oscillations. As x increases, these oscillations grow in amplitude so
that the area increases.

We proceed in a similar way for h2 (x).
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Proposition 14 The functions F± (x, y) have no zeros.

Proof. Proceeding by absurdity

∃ (ξ, η) ∈ A | F− (ξ, η) = 0 (42)

Since F− (x, η) is monotonically decreasing for x ∈ (0, 1) (proposition 12), the (42) implies

F− (x, η) > 0 for 0 < x < ξ

F− (x, η) < 0 for ξ < x < 1

The second is absurd since F− is nonnegative. We proceed in a similar way for F+. The
absurd proves the assertion.

From the proposition just proved it follows that the only zeros of F± (x, y) are at infinity
in the y coordinate (proposition 10).
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4.3 Study of surfaces S±

As established in the section 4.1, for the search for the zeros of f̂ (x, y) we must impose

F− (x, y) = F+ (x, y) ⇐⇒

∣
∣
∣
∣

∫ 0

−∞

ext

eet + 1
eiytdt

∣
∣
∣
∣
=

∣
∣
∣
∣

∫ +∞

0

ext

eet + 1
eiytdt

∣
∣
∣
∣

(43)

From the impossibility of solving the equation (43) follows the need to force its solutions by
examining the intersection of the two open surfaces S− and S+, of cartesian representation:

S± : z = F± (x, y) , (x, y) ∈ A (44)

having assigned an orthogonal cartesian referenceR (Oxyz). An obvious parametrization of
S± is

x = u, y = v, z = F± (u, v) , (u, v) ∈ A

whose Jacobian matrix is:

J± (u, v) =

(
1 0 ∂F±

∂u

0 1 ∂F±

∂v

)

=⇒ rank (J± (u, v)) = 2, ∀ (u, v) ∈ A (45)

From the proposition 11 the functions F± (u, v) are analytic, so taking into account (45)
we have that the surfaces S± they are regular analytics2.

From the proposition 8 follows the symmetry of S± with respect to the y axis. Further-
more, S± are plotted in the half-space z > 0. Inequality in the strict sense is a consequence
of the proposition 14.

From the proposition 10 it follows that for y → ±∞ the surfaces S±≪recline≫ on the
coordinate plane xy.

An obvious implicit representation of S± is

G± (x, y, z) = 0 (46)

being G± (x, y, z) = F± (x, y)− z defined in B = A× [0,+∞). From the regularity of S± [8]

∇G± (x, y, z) 6= 0, ∀ (x, y, z) ∈ B

Thus the normal unit vector fields for both surfaces are uniquely determined.

n
(±)
1 (x, y, z) =

∇G± (x, y, z)

|∇G± (x, y, z)|
, n

(±)
2 (x, y, z) = −

∇G± (x, y, z)

|∇G± (x, y, z)|
, ∀ (x, y, z) ∈ B

hence the adjustability of S±.
Given this, we study the sections of these surfaces or the intersections with planes parallel

to the coordinate planes. We start with the intersection of S− with a plane π0 parallel to
the coordinate plane xz, so its equation is y = y0 with y0 assigned arbitrarily. Let γ− be
the orthogonal projection of this intersection on the xz plane. By varying y0 we obtain the
family of plane curves with one parameter:

F− = {γ− : z = F− (x, y)} (47)

2A surface is called regular analytic if however we take its regular parametric representation x =
x (u, v) , y = y (u, v) , z = z (u, v) , (u, v) ∈ B ⊆ R, the functions x (u, v) , y (u, v) , z (u, v) are analytic
in B.
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where the single curves have in common the asymptote x = 0, since

lim
x→0+

F− (x, y) = +∞, ∀y ∈ R (48)

From the first of (32):

F− (x, y) ≤

∫ 0

−∞

∣
∣
∣
∣

ext

eet + 1
eiyt

∣
∣
∣
∣
dt =

∫ 0

−∞

∣
∣
∣
∣

ext

eet + 1

∣
∣
∣
∣

∣
∣eiyt

∣
∣

︸︷︷︸

=1

dt =

∫ 0

−∞

ext

eet + 1
dt = F− (x, 0)

Furthermore

sup
R

(
1

eet + 1

)

=
1

2
=⇒

∫ 0

−∞

ext

eet + 1
dt <

1

2

∫ 0

−∞

extdt =
1

2x

So

0 < F− (x, y) ≤ F− (x, 0) <
1

2x
, ∀x ∈ (0, 1) (49)

From (49) it follows that the curves γ− are contained in the internally connected domain
which is identified with the rectangleoid related to F− (x, 0) of basis (0, 1):

D− =
{
(x, y) ∈ R2 | 0 < x < 1, 0 ≤ y ≤ F− (x, 0)

}
(50)

The curve z = F− (x, 0) is manifestly the intersection of S− with the coordinate plane xz.
Note that F− (x, 0) can be evaluated exactly for x = 1. In fact, by means of an elementary
substitution we arrive at:

F− (1, 0) =

∫ 0

−∞

etdt

eet + 1
= 1 + ln 2− ln (1 + e) ≃ 0.38 (51)

For each x ∈ (0, 1) the function can only be determined numerically, obtaining the trend
plotted in fig. 13.

Figure 13: Trend of F− (x, 0). The curvers γ− curves are plotted in the domain D−.

We denote by γ+ the orthogonal projections of the intersections of S+ with π0. It follows
that whatever the value of the parameter y, we have:

γ+ : z = F+ (x, y)

18



and therefore constituting a family F+ of plane curves with one parameter. It turns out:

F+ (x, y) =

∣
∣
∣
∣

∫ +∞

0

ext

eet + 1
eiytdt

∣
∣
∣
∣
≤ F+ (x, 0) (52)

From (52) it follows that the curves γ+ are contained in the internally connected domain
which is identified with the rectangleoid related to F+ (x, 0) of basis (0, 1):

D+ =
{
(x, y) ∈ R2 | 0 < x < 1, 0 ≤ y ≤ F+ (x, 0)

}
(53)

where the curve z = F+ (x, 0) is the intersection of S+ with the xz plane. F+ (x, 0) can also
be evaluated exactly for x = 1:

F+ (1, 0) =

∫ +∞

0

etdt

eet + 1
= −1 + ln (1 + e) ≃ 0.31 (54)

For each x ∈ (0, 1) the function can be determined only numerically, obtaining the trend
plotted in fig. 14. In fig. 15 we report the trend of both curves.

Figure 14: Trend of F+ (x, 0). The curvers γ+ curves are plotted in the domain D−. D+.

Since S± are symmetrical with respect to the xz plane, y and −y identify the same curve:

γ± : z = F± (x, y) ≡ F± (x,−y)

Furthermore, taking into account the propositions 12-13, we have:

0 < F+ (x, y) ≤ F+ (x, 0) < F+ (1, 0) < F− (1, 0) < F− (x, 0) , 0 < x < 1

from which
F+ (x, 0) < F− (x, 0) , ∀x ∈ (0, 1)

It follows the non-existence of trivial zeros in the critical strip. This confirms a known result
[1][2].

We arrive at the same conclusion by looking for the solutions of the equation in x

F− (x, 0) = F+ (x, 0) ⇐⇒

∫ 0

−∞

ext

eet + 1
dt =

∫ +∞

0

ext

eet + 1
dt
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Figure 15: Trend of F± (x, 0). The curve below has the equation z = F+ (x, 0) and the
rectangoloid related to this function is D+ (in fig.it is not indicated for graphical reasons).

Turns out

∄x ∈ (0, 1) |

∫ 0

−∞

ext

eet + 1
dt =

∫ +∞

0

ext

eet + 1
dt

since mis (R−) > mis (R+) where

R− =

{

(t, η) ∈ R | −∞ < t ≤ 0, 0 ≤ η ≤
ext

eet + 1

}

(55)

R+ =

{

(t, η) ∈ R | 0 ≤ t < +∞, 0 ≤ η ≤
ext

eet + 1

}

as we see in fig. 16.

Figure 16: The regions (55) for an assigned x ∈ (0, 1).

We conclude the study of the intersections of S± with planes parallel to the coordinate
plane xz, observing that the monotonicity of the corresponding functions is exactly what
we expect, since the assumed values are correlated to the absolute maximum of the module∣
∣
∣f̂ (x, y)

∣
∣
∣ of the Fourier transform as a function of x. Recalling that the ≪dominant≫ integral

is the one relating to the interval (−∞, 0) it follows that this amplitude diverges as x→ 0+

to then become monotonically decreasing as 0 < x < 1.
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***

As regards the intersections of S± with planes parallel to the yz coordinate plane, we
limit ourselves to observing that qualitatively we have the typical oscillating behavior of a
Fourier transform.

Finally, the study of the intersections of S± with planes parallel to the xy plane (contour
lines) is impractical due to the implicit representation of these geometric loci:

∣
∣
∣
∣

∫ 0

−∞

ext

eet + 1
eiytdt

∣
∣
∣
∣
= C−,

∣
∣
∣
∣

∫ +∞

0

ext

eet + 1
eiytdt

∣
∣
∣
∣
= C+

dove C± > 0.
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5 Proof of RH

Lemma 15 Given arbitrarily ȳ ∈ R, the set of points of intersection of the curves

γ̄− : z = F− (x, ȳ)

γ̄+ : z = F+ (x, ȳ) ,

either it is the empty set or it reduces to a single point.

Proof. It follows immediately from the monotonicity property proved in the propositions
12-13. Graphically in fig. 17.

Figure 17: Proof of lemma 15:if the intersection exists, it is unique.

It is known that ζ (s) has infinitely many non-trivial zeros in A. It follows that f̂ (s) has
infinitely many non-trivial zeros in A.

Theorem 16 The non-trivial zeros of f̂ (s) have real part 1/2.

Proof. Absurdly: (x0, y0) is a non-trivial zero with x0 6= 1/2. This implies

F− (x0, y0) = F+ (x0, y0)

The curves

γ
(0)
− : z = F− (x, y0) (56)

γ
(0)
+ : z = F+ (x, y0).

intersect3 at (x0, z0), where z0 = F− (x0, y0) = F+ (x0, y0) > 0. By the previous lemma the
point (x0, z0) is unique. But this contradicts the symmetry property of the distribution of
zeros according to which (1− x0, y0) is still a zero and therefore (1− x0, z0) is a second point
of intersection of the curves (56), hence the assertion.

Graphically in figg. 18-19-20.

3By the proposition 14 the functions F± are finitely zero-free, so z0 > 0.
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Figure 18: Proof of the theorem 18. The intersection between the curves (56) occurs at the
single point (x0, z0). But for the symmetry of the zeros, there must be a second point of
intersection (1− x0, z0) between the same curves. If such an intersection exists, it necessarily
occurs with another curve identified by y′0 6= y0.

Figure 19: Proof of the theorem 18. As established in fig. 18, the only intersection to which
a zero of f̂ (x, y) corresponds can only occur on the straight line r′ : x = 1/2. Precisely, on
the segment

{
(x, z) ∈ R2 | x = 1

2
, 0 < z < F+

(
1
2
, 0
)}

.
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Figure 20: Proof of the theorem 18. Three-dimensional representation.

6 Conclusion

The conclusion of our work is graphically interpreted in fig. 21.

Figure 21: Graphic interpretation.

We now premise the following theorem for the proof of which we refer to [9].

Theorem 17 The function g (s) is holomorphic and not identically zero in a connected field
T .

The derivative of the set of zeros of g (s) belonging to T ,is contained in ∂T .

Roughly speaking, the set of zeros of a holomorphic function in a connected field T is at
most countably infinite, and any accumulation points belong to the boundary of T .

By the theorem 16 the intersections of the cross sections of S± which give rise to non
trivial zeros are realized only for x = 1/2, corresponding to the critical line. As previously
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Figure 22: Value y< of parameter y.

established, there is necessarily a minimum value y< of the parameter y corresponding to
the first intersection (fig. 22).

It follows that the orthogonal projection C ′
0 on the xy plane of the place C0 of intersection

of S− with S+, is :

C ′

0 =

{

(x, z) ∈ A | x =
1

2
, |y| > y>

}

(57)

where the presence of the absolute value derives from the symmetry of the S± with respect
to the xz plane. From (57) we see that C ′

0 is the critical line without the open segment of
extremes

(
1
2
,±y>

)
(fig. 23). In fig. 24 we report the qualitative trend of the projection C ′′

0

of C0 on the coordinate plane zy.

Figure 23: Projection of the point of intersection of S−with S+ on the xy coordinate plane.

By the Hardy-Littlewood theorem [4] on the critical line there are infinitely many zeros
of ζ (s) and therefore of f̂ (s). Denoting this set with H we have H ⊂ C ′

0 with H countably
infinite by virtue of the theorem 17.

If s0 =
1
2
+ iy0 is an element of H i.e. f̂

(
1
2
, y0

)
= 0, for the (30)

{
F−

(
1
2
, y0

)
= F+

(
1
2
, y0

)

ϕ−

(
1
2
, y0

)
= π + ϕ+

(
1
2
, y0

) (58)
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Figure 24: Projection of the point of intersection of S−with S+ on the zy coordinate plane.

In other words, the condition F− (x, y) = F+ (x, y) generates the set of points C0 and therefore
the set C ′

0. The condition on the phase ϕ−

(
1
2
, y0

)
= π + ϕ+

(
1
2
, y0

)
whatever

(
1
2
, y0

)
∈ H,

generates the countability of H. We note incidentally that by virtue of the proposition 14
the case F±

(
1
2
, y0

)
= 0 never arises, which would reduce the equation F− (x, y) = F+ (x, y)

to the identity 0 = 0 and to the condition on the phase to an indeterminacy.
Recalling that F± (x, y) = |I± (x, y)| we have the graphical representation of fig. 25 in

the complex plane containing the co-domain of the functions

I± (x, y) : A→ C

Let y< < y′0 6= y0 such that s0 =
(
1
2
+ iy′0

)
/∈ H i.e. f̂

(
1
2
, y′0

)
6= 0. We still have F−

(
1
2
, y′0

)
=

F+

(
1
2
, y′0

)
but

ϕ−

(
1

2
, y′0

)

6= π + ϕ+

(
1

2
, y′0

)

as illustrated in fig. 26.

Figure 25: The complex numbers I−
(
1
2
, y0

)
=

∫ 0

−∞

et//2

ee
t
+1
eiy0tdt, I+

(
1
2
, y0

)
=

∫ +∞

0
et//2

ee
t
+1
eiy0tdt

have phases that differ by π.
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Figure 26: I numeri complessi I−
(
1
2
, y′0

)
=

∫ 0

−∞

et//2

ee
t
+1
eiy

′
0
tdt, I+

(
1
2
, y′0

)
=

∫ +∞

0
et//2

ee
t
+1
eiy

′
0
tdt non

sono in opposizione di fase.

We define

∆ϕ (y) = ϕ−

(
1

2
, y

)

− ϕ+

(
1

2
, y

)

, ∀y ∈ Y (59)

0 ≤ ∆ϕ (y) < 2π

being
Y = (−∞, y<] ∪ [y<,+∞)

i.e. the projection of C ′
0 onto the xy coordinate plane. It follows

H =

{(
1

2
, y

)

∈ C ′

0 | ∆ϕ (y) = π

}

(60)

As stated above, the equation ∆ϕ (y) = π admits infinitely many roots yk (con k ∈ Z).
Follows:

zk = F−

(
1

2
, yk

)

= F+

(
1

2
, yk

)

, k ∈ Z

let’s say

Z =

{

zk = F−

(
1

2
, yk

)}

k∈Z

⊂ [0, zmax] , zmax = F+

(
1

2
, 0

)

which is the image of the sequence of elements of R defined by the restriction of F−

(
1
2
, y
)
to

the set whose elements are the imaginary part yk of the zeros. For the above, Z is countably
infinite and being limited, by the Bolzano-Weierstrass theorem, admits at least one point of
accumulation. The latter is the image, through F−

(
1
2
, yk

)
of the points at infinity along the

critical line.
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