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  Abstract:

A solution of general relativity is presented that describes an Alcubierre [1] propulsion system in 

which it is possible to travel at superluminal speed while reducing the energy density and energy  by

an arbitrary value, and eliminating the event horizon, for superluminal motions,which would have 

otherwise led to to explosion of the spaceship (instability of the warp bubble [7]).

       

1  Introduzione:

Alcubierre [1] in 1994 proposed a solution of the equations of general relativity which provides the

only viable means to accelerate a spaceship up to superluminal velocities without using wormholes.

A problem was soon identified: Pfenning [4] showed that the required energy is comparable to the

total energy of the universe and that it is negative.This is treated in publications [11] and [12], and

solves the problems of the amount of energy, (arbitrarily reducing the amount). Later Hiscock [10]

proved the existence of an event horizon for superluminal speed, which implies an instability of the

warp bubble due to Hawking radiation, leading to the explosion of the spaceship [7].

Note: In the following we adopt the notation used by Landau and Lifshitz in the second volume

(“The Classical Theory of Fields”) of their well known Course of Theoretical Physics [13].
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    We start with the metric

ds2
=(D ( x , y , z−k (t ))2−v 2 f (x , y , z−k (t ))

2

a (x , y , z−k (t ))2 )dt 2+2 v
f (x , y , z−k (t))
a ( x , y , z−k (t))

dt dz−dx2
−dy2

−dz2     (1)

          In implicit form it is:

      ds2
=D (x , y , z−k (t))2dt 2

−[dz−v f (x , y , z−k (t ))a(x , y , z−k (t ))
dt ]

2

−dx 2
−dy2

                   (2)

• 1)-The Pfenning zone is the zone within the interval: R−Δ
2

<r<R+Δ
2

      where

Δ≪1 R is the radius of the Warp bubble and Δ is the wall thickness of the Warp 

bubble R≫Δ .

•   2)- r=( x2
+ y2

+(z−k (t))2
)

1
2   and  

dk (t)
dt

=v=const   

•    3)-In the Pfenning zone we let a (r )=a (x , y , z−k (t ))≫1 , da (r )/ dr≤a(r )

(there is the source of   esotic   matter)                    

      

      

       the energy can be reduced by an arbitrary  value in Pfenning  zone (example for D=1 [11],[12]),

        for D≠1 ,energy density and energy  see appendix 4.3 

      Einstein Equations: Gik=
8πG

c4
T ik         T ik  (energy-impulse tensor) 

     2. Values of the functions used in the metric (1):

 The functions f = f (r)= f (x , y , z−k (t ))  , a=a(r )=a ( x , y , z−k (t)) and 

D=D(r )=D(x , y , z−k ( t)) can assume  the  following  values:

• 1)-inside the warp bubble (0<r<R−Δ
2

) f (r )=k and a (r )=1 , D(r )=1

• 2)-outside the warp bubble (r>R+ Δ
2

)    f (r )=0 and a (r )=1 , D(r )=1
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• 3)-in the Alcubierre warped region (R−Δ
2

<r<R+Δ
2

) 0< f (r )<k , f (r ) is

f (r )=−k
(r−R−Δ

2
)

Δ    (Pfenning zone [4]) and a=a(r )=a ( x , y , z−k (t))≫1

(possessing extremely large values)  and ∂ia≤a ,∂i ,k a≤a or  da (r) /dr≤a(r )

       

and 10≤k≤1000 , 10≤D=D(r )≤1000

2.1 Value of the speed of the spaceship inside the warp bubble:

            Since the f  is not inside the warp bubble as in [4], but with a generic value 

            f (r ) , it follows that the speed of the spaceship within it is:

                                                                       
dz
dt

=v f                                                          (3)

           assuming 0≤v=v (t)<1 ,as can be seen   from the metric:     

                     

                                            ds2
=dt 2−[dz−v f (x , y , z−k (t ))a( x , y , z−k (t))

dt]
2

−dx2
−dy2                       (4)

 a=a(r )=1  inside the warp bubble.

Now the real speed of the ship depends  only on f   and v

That is, taking into account this paragraph and paragraph 2, one has:

                                                                   
dz
dt

=k v                 10≤k≤1000                      (5)

the choice of 10≤k≤1000  and of 10≤D≤1000 with 0≤v=v (t)<1  solves the problem of

the event horizon (See following paragraphs).
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 3 The  Hiscock solution for  our  metric in study [10]:

Starting from the solution (1), in the case in two-dimensional coordinates t and z after mathematical

elaborations and with the transformation of coordinates dz '=dz−v f dt (for our conditions, 

inside the warp bubble) one gets:

      

                                                             ds2
=H (r )dT 2

−
D2

(r )
H (r )

dz ' 2                                           (6)

      
        where
                                                                                                                  
  

                                                            H (r )=D2−v2[ f − f
a ]

2

                                                 (7)

        For the demonstration see appendix.

       3.1 Studies on the horizon of events, for our conditions (example):

        If for example D=100 ,then  we place k=kmax=100  and v=0.99  so the speed 

       of the spaceship (internal warp bubble) is  dz ' /dt=k v=99 in multiples of  c c=1 (speed 

       of   light), equation (5), H (r )   for all r is:
            

• 1)- H (r )=1−v2[ f− f
a ]

2

=1 for r>R+Δ
2

• 2)- H (r)=D2
−v2

[ f−
f
a
]

2

≈D 2
− f (r)2 v2

≥D2
−k2 v2

=1002
−992

>1 for  R−Δ
2

<r<R+Δ
2

• 3)- H (r )=1−v2[ f− f
a ]

2

=1 for 0<r<R−Δ
2

as can be seen there is no event horizon up to a real rate of 100 c, equations (6), (7).
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3.2 Speed light signals in various zones,respect to a ship's observer:

      In general, the metric (1) in an implicit form is, in the two-dimensional case:

ds2
=D2dt 2

−[dz−v f (x , y , z−k (t ))
a(x , y , z−k (t ))

dt ]
2

   that with the new variable z '

with the substitution dz '=dz−v f dt at the speed of light ds2
=0  with respect to the 

     
      center of the warp bubble:
                                                        

                                                       
dz '
dt

=±D−v ( f −
f
a

)                                                       (8)

                
       that for the three spacial zones you have, for our conditions:

• 1)-
dz '
dt

=±1  for r>R+Δ
2

• 2)-
dz '
dt

±D− f (r )v ≥±D−k v≈±100−99 for R−Δ
2

<r<R+Δ
2

• 3)-
dz '
dt

=±1 for 0<r<R−Δ
2

the plus sign corresponding to light signals that propagates in the z-axis positive, the minus sign to  

signals moving along the negative z-axis.
 

4 appendix, demonstration of relations (6) and (7):

4.1appendix:

ds2
=D2dt 2−[dz−v f /a dt ]2                                                                                               (9)

dz=dz '+v f dt                                                                                                                  (10)

ds2
=D2dt 2−[dz '+v f dt−v f /adt ]2                                                                               (11)

 

g (r )= f (r )− f (r )/a (r )                                                                                                    (12)
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ds2
=D2dt 2−dz ' 2−2 v g (r )dz ' dt−(v g (r ))2dt2                                                              (13)

ds2
=[D2

−(v g (r))2
]dt 2−2v g (r )dz ' dt−dz ' 2                                                                 (14)

4.2 appendix:

ds2
=H (r )dT 2

−D 2
(r )/H (r )dz ' 2                                                                                     (15)

dT=dt−v g (r )/H (r )dz '                                                                                                  (16)

ds2
=H (r )dt2−2v g (r)dz ' dt+H (r)(v g (r )/H (r ))2dz ' 2−D 2dz ' 2/H (r)                     (17)

H (r )=D2
−(v g (r ))2    (v g (r ))2

=D2
−H (r)                                                              (18)

ds2
=H (r )dt2−2 v g (r)dz ' dt−D 2dz ' 2 /H (r )−H (r )dz ' 2/H (r )+D2dz ' 2/H (r )          (19)

ds2
=H (r )dt2−2 v g (r)dz ' dt−dz ' 2                                                                                  (20)

ds2=[D2−(v g (r ))2]dt 2−2v g (r )dz ' dt−dz ' 2                                                                  (21)

4.3 appendix:computation energy density and energy for our metric (1):

   The energy density is (in the Eulerian observers,see [1]), similar to [12] :

          (energy density)=−
1
4
k v2 x

2
+ y2

D (r )2 r 2 h(r )        k=c4
/8πG                           (22)

           where h(r )  is given by: 

h(r )=[
1

a (r)2 (
df (r )
dr

)
2

+(
f (r )2

a (r )4 )(
da (r )
dr

)
2

−2
df (r )
dr

f (r )
a (r )3

da (r )
dr

]                               (23)

  

    if  Δ≪1 , a (r )≫1 and   da (r) /dr≤a(r )  ,  (da (r )/dr )2≤a (r )2 a (r )>
1
Δ

  [12]  

   the dominant term is:

                                               h(r )(
−1
a(r )Δ

)
2

                                                                (24)

      and a (r )=A=const≫1 in the Pfenning zone  (example A=1050 ) [12]:
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(energy density)−
1
4
k v2 x

2
+ y2

r2

1
D(r)2a (r )2 (

−1
Δ )

2

=−
1
4
k v2 r

2
(sinϑ)

2

r 2

1
D(r )2a (r )2 (

−1
Δ )

2

   

similar computation   [12] in  Pfenning zone R−Δ
2

<r<R+Δ
2

(there is the source of esotic     

       matter)                                                                                                                                              

                    

                   then ∣energy density∣≤∣−
1
4
k v2 1

D(r )2 A2 (
−1
Δ

)
2

∣≪1 , 10≤D=D(r )≤1000

        

   

   and  the average value of D(r )  in the region 10≤〈 D(r)〉≤1000  implies energy  E (similar   

   computation in  [12],paragraphs 2.1):

  

             E−3v2 10−17
/〈 D(r )〉 joule  , ∣E∣<3v2 10−17 joule in the Pfennig zone    

      

              (energy is very small compared with Casimir effect [12]).

5 As time passes in the Pfennig zone:

The presence of a D function different from the one in the  Pfenning zone, implying a relativistic

effect (dilation of time) in this zone, was maintained at a reasonable value. This allows superluminal

motions without an event horizon, with values of D chosen by us. This may bring a deterioration of

exotic matter, but I think that the the functions D stays within reasonable values in a a range that is

not very problematic.For example, a trip lasting one year at a speed limit of about 100 times c (in

this case D=100), implies a time dilation in Pfenning zone of 100 years of exotic matter, and 1000

years with D=1000,  therefore at a speed limit  of 1000 c.  This deterioration is  possible but not

demonstrated  for  the  exotic  matter   in  the   Pfenning  zone;  it  could  also  be  compensated  by

appropriate breaks during the trip for a possible restructuring of the warp bubble.

6 Conclusion: The calculations indicate that the propulsion system of Alcubierre as modified in this

paper  permits speeds higher  than  the  speed  of  light without  problems  of:energy  density,  the

components of the stress-energy tensor, and energy as reducible to any arbitrary value, [11], [12].

The  events  horizon  is  removed (see  paragraphs  3,  3.1,  3.2) and  the  ship (not  necessary  the

Krasnikov tube [14]) can be handled without problems. The speed of the warp bubble reaches a
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value between 10, 100 and 1000 times that of light, and the instability of the warp bubble (Hawking

radiation feedback) is eliminatated with D≠1 , something that would have otherwise led to the

explosion of the ship [7].
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