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Abstract. Clifford algebras provide the natural generalizations of com-
plex, dual numbers and quaternions into the concept of non-commutative
Clifford numbers. The paper demonstrates an algorithm for the com-
putation of inverses of such numbers in a non-degenerate Clifford al-
gebra of an arbitrary dimension. The algorithm is a variation of the
Faddeev-LeVerrier—Souriau algorithm and is implemented in the open-
source Computer Algebra System Maxima. Symbolic and numerical ex-
amples in different Clifford algebras are presented.
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1 Introduction

Clifford algebras provide the natural generalizations of complex, dual and split-
complex (or hyperbolic) numbers into the concept of Clifford numbers. The de-
velopment of Clifford algebras is based on the insights of Hamilton, Grassmann,
and Clifford from the 19*" century. After a hiatus lasting many decades, the
Clifford geometric algebra experienced a renaissance with the advent of con-
temporary computer algebra systems. Clifford algebras can be implemented in
a variety of general-purpose computer languages and computational platforms.
Recent years have seen renewed interest in Clifford algebra platforms: notably,
for Maple, Matlab, Mathematica, Maxima, Ganja.js for JavaScript, GaLua for
Lua, Galgebra for Python, Grassmann for Julia.

Computation of Clifford inverses has drawn attention in the literature [1, 4,
6]. The present contribution demonstrates an algorithm for Clifford number in-
version, which involves only multiplications and subtractions and has a variable
number of steps, depending on the maximal grade of the Clifford number. The
algorithm is implemented using the Clifford Maxima package [5]. The algorithm
is a direct translation of the Faddeev-LeVerrier—Souriau (FVS) algorithm for
matrix inverse computation. The algorithm is in fact a proof certificate for the
existence of an inverse. As a side product, the algorithm can compute the char-
acteristic polynomial of the Clifford number and its determinant also without
any resort to a matrix representation.
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2 Notation and Preliminaries

C?,, will denote a Clifford algebra of order n but with unspecified signature.
Clifford multiplication is denoted by simple juxtaposition of symbols. Algebra
generators will be indexed by Latin letters. Multi-indices will be considered as
index lists and not as sets and will be denoted with capital letters. The operation
of taking k-grade part of an expression will be denoted by (.), and in particular
the scalar part will be denoted by (.),. Set difference is denoted by A. Matrices
will be indicated with bold capital letters, while matrix entries will be indicated
by lowercase letters. The scalar product of the blades will be denoted by .

Definition 1. The generators of the Clifford algebra will be denoted by indexed
symbol e. It will be assumed that there is an ordering relation <, such that
for two natural numbers i < j = e; < e;. The extended basis set of the
algebra will be defined as the ordered power set B := {P(E), <} of all generators
E ={ei,...,en} and their irreducible products.

Definition 2. Define the diagonal scalar product matriz as G := {075 = ey *
€J| er,e; € B, I < J}

A Clifford number will be written as A =ay +Y_,_, (A), = a1+ Y_ase;. The
J

maximal grade of A will be denoted by gr[A].

3 Clifford algebra real matrix representation map

In the present article we will focus on non-degenerate Clifford algebras, therefore
the non-zero elements of G are valued in {—1,1}.

Definition 3 (Clifford coefficient map). Define the linear map acting element-
wise Cy : Cl, — R by the action Cy(ax +b) = x for x € R,a,b € B.

Define the Clifford coefficient map indezed by es as Cs(M) := Ag, where
M is the multiplication table of the extended basis M = {R(exren) | enmr,en € B}.

Definition 4 (Canonical matrix map). Define the map 7 : B — Matg (2" x
2"), n=p+q+r as7:es— Ey:= GA; where s is the ordinal of es € B and
Ag is computed as in Def. 3.

Proposition 1. The w-map is linear.

The proposition follows from the linearity of the coefficient map and matrix
multiplication with a scalar.

Theorem 1 (Semigroup property). Let e, and e; be generators of Cl, 4 .
Then the following statements hold

1. The map 7 is a homomorphism with regard to the Clifford product (i.e.
distributes over the Clifford products): m(eses) = m(es)m(es).
2. The set of all matrices Eg forms a multiplicative semigroup.
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Proof. Let Ey = 7(es), Ey = m(er), Est = m(eser). We specialize the result of
Lemma 2 for S = {s} and T' = {t} and observe that mx es; = mx,0, My €st
for A, NV, pu < n and oxmyy = OAMALO LMy - In summary, the map 7 acts on
Cly,,q according to the following diagram:

™

€s E;
het l{Et
st = €gt — T 5 Ey =EE;, st=sUt

Therefore, Eg; = E;E;. Moreover, we observe that w(ese;) = Eg = EJE; =
m(es)m(eq).

For the semi-group property observe that since 7 is linear it is invertible.
Since 7 distributes over Clifford product its inverse 7~1 distributes over matrix
multiplication:

Wﬁl(E‘gEt) = Wﬁl(Est) =eyq = egep = 7T71(E5) ﬂfl(Et)

However, C/), 4 is closed by construction, therefore, the set {E}_ is closed under
matrix multiplication.

Proposition 2. Let L := {l;|l; € B} be a column vector and Ry be the first
row of E;. Then ! : E, — R,L.

Proof. We observe that by the Prop. 4 the only non-zero element in the first row
of E, is oym1, = 1. Therefore, R;L = e,.

Theorem 2 (Complete Real Matrix Representation). Define the map
g : A — GA as matriz multiplication with G. Then for a fized multiindex s
m = Cs0g = goCs. Further, ™ is an isomorphism inducing a Clifford algebra
representation in the real matriz algebra:

71'
Clp (R) m———— Maty (2" x 2")

a1

Proof. The m-map is a linear isomorphism. The set {E,} forms a multiplicative
group, which is a subset of the matrix algebra Matg(N x N), N = 2". Let
7(es) = Es and 7(e;) = E;. It is claimed that

1. E;E; # 0 by the Sparsity Lemma 1.
2. E;E; = —E;E; by Prop. 5.
3. E;E; = 0,1 by Prop. 6.

Therefore, the set {Es}g(ﬁ{)l} is an image of the extended basis B. Here P(n)
denotes the power set of the indices of the algebra generators.
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What is special about the above representation is the relationship
trA = 2" (A), (1)

for the image m(A) = A of a general multivector element A and it will be used
further in the proof of FVS algorithm.

Remark 1. The above construction works if instead of the entire algebra C¥,, ,
we restrict a multivector to a sub-algebra of a smaller grade max grd = r. In
this case, we form grade-restricted multiplication matrices G, and M,..

4 FVS multivector inversion algorithm

Multivector inverses can be computed using the matrix representation and the
characteristic polynomial. The matrix inverse is A~1 = A /det A, where”denotes
the matrix adjunct operation and det A is the matrix determinant. The formula
is not practical, because it requires the computation of n?+1 determinants. With
the help of the Cayley-Hamilton Theorem, the inverse of A can be expressed as
a polynomial in A. The inverse can be computed as the last step of the FVS
algorithm [3]. The algorithm has a direct representation in terms of Clifford
multiplications as follows:

Theorem 3. Suppose that A € Cl, 4 is a multivector of mazimal grade r <
p + q. The Clifford inverse, if it exists, can be computed by the algorithm in
k= 2["/21 steps as

m1:A Clz—kA*l
mngmg—t1 02:—§A*m1
my = Amp_1 — tg|lcg = —A*xmyp_q

until the step where my = 0 so that

mEg—1

A7t =~ 2)

Ck
The inverse does not exist if ¢, = —det A = 0.
The (reduced) characteristic polynomial of the multivector A of mazimal
grade r is
paN) =N e N g e (3)

Proof. The proof follows from the homomorphism of the 7 map. We recall the
statement of FVS algorithm:

pa(N) =det M\, = A) = N"+ e\ 14 cpoiA+e,, n=dim(A)
where

M1 =A tl = tI‘[Ml] C1 = —tl
M, = AM; — 11, to = %tl‘[AMl] co = —to

M, = AM,,_1 — t, 1|t = %tr[AMn—l} Cn = —1tn
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The matrix inverse can be computed from the last step of the algorithm as
A~! =M, _1/t, under the obvious restriction ¢, # 0.

Therefore, the k' step of the algorithm is 7' : M = AM,_; — t;I —
my = Amy_1 — tg. Furthermore, m commutes with the trace operator giving
7 (tr[My]) = n(my)y; hence, t, = n{my),. Moreover, the FVS algorithm
terminates with M,, = 0, which corresponds to the limiting case n = 2P+¢
wherever A contains all grades.

On the other hand, [2] make the observation that according to the Bott
periodicity the number of steps can be reduced to 2/™/21. This can be proven as
follows. Consider the isomorphism Cf, , D Cl}, = Cly_1, 1. Therefore, if a
property holds for an algebra of dimension n it will hold also for the algebra of
dimension n—2. Therefore, suppose that for n even the characteristic polynomial
is square free: pa(v) # q(v)? for some polynomial. We proceed by reduction.
For n = 2 in Clyy and A = a1 + e1az + e2a3 + ezas we compute py(v) =
(a% —a% — a3+ a3 —2a1v+ v2)2 and a similar result holds also for the other
signatures of C¥y . Therefore, we have a contradiction and the dimension can be
reduced to k = n/2. In the same way, suppose that n is odd the characteristic
polynomial is square free. However, for n = 3 in Cl3 ¢ and A = a1 + e1a2 +
e2a3 + e3a4 + asers + ageys + areas + agepas it is established that pa(v) = q(v)?
for g(v) = (a} — a3 — a3 — a3 + a2 + a} + a% — a3 + 2i(—asas + azag — azay +
aag) — 2a1v — 2iagv + v?)(a? — a3 — a3 — a3 + a2 + a + a? — a2 + 2i(asas —
azag + asay — ajag) — 2a1v + 2iagv + v?). Similar results hold also for the other
signatures of C'¢5 . Therefore, we have a contradiction and the dimension can
be reduced to k = (n + 1)/2. Therefore, overall, one can reduce the number of
steps to k = 2[/21

As a second case, suppose that gr[A] = r. Let E,. be the set of all blades of
grade < r. We compute the restricted multiplication tables M(E,.) and respec-
tively G(E,) and form the restricted map 7,. Then

T (AA™ Y = 1. (A (A =AA T =1,, n=2"

Therefore, the FVS algorithm terminates in & = 2" steps. Observe that 7! :
AM;, — Amy,. Therefore, tr[AM}] will map to nA xmy, by eq. 1. Now, suppose
that ¢ £ 0; then for the last step of the algorithm we obtain:

mg—1 — 1= A~ — mg—1

k tx

Amp_1—t,=0= A

Furthermore, we can always embed the Clifford number A into higher dimen-
sional algebra according to the above congruence, therefore the number of steps
can be ultimately reduced to k = 2[7/21,

5 Implementation

Computations are performed using the Clifford package in Maxima [5]. The
function below returns the inverse (if it exists) and the characteristic polynomial
pa(v) of the Clifford expression A.
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Listing 1.1. FVS Maxima code for the Clifford package
1 fadlevicg2cp (A, v):=block ([M:1,K,i:1,n,k: maxgrade(A) ,cq,c,ss],
n:2"(ceiling (k/2)),
array (c,n+1), for r:0 thru n+l do c[r]:1,
A:rat(A), ss:c[l]*v""n,
while i<n and K#0 do (
6 K:dotsimpc (expand (A.M)),
cq:—n/ixscalarpart (K),
if _debugl=all then print(7t_-{",i,”}=",cq,” mA{”,i,”}=

DL
if K#0 then
M: rat(K + cq),
11 c[i+1]:cq, ss:ss+c[i+1]*v""(n—i),

i:i+1
)
K:dotsimpc (expand (A.M) ) ,
cq:—n/ixscalarpart (K),

16 if _debugl=all then print("t_-{",i,”}=",cq,” m{",i,”}=" K,
"N\
ss :ss+cq,
if cq=0 then cq:1, M:factor(—(M)/cq),
M, ss]
)

6 Experiments

Ezample 1. Let us compute a rational example in Cly 5 . Let A =1+ 5ejezeq —
2e1e5. Then for the maximal representation we have k = 23 = 8 steps.

tl = -8 mq 1+ 5(616364) — 2(6165)

to = 112 meo = —28 — 30(616364) + 12(6165)

t3 = =560 m3 =210+ 390(ejeszes) — 156(eqes5)

ty = 3976 my = —1988 — 1360(816364) + 544(6165)

ts = —12320 ms = 7700 + 8580(e1ezeq) — 3432(eqes)

tg = 54208 mg = —40656 — 14520(e1eseq) + 5808(eqes)
t7 = —85184 my = 74536 + 53240(ejeseq) — 21296(eqe5)
tg = 234256 mg = 234256

Therefore, A=1 = % (1 —bereseq + 2e1e5) and pa(v) = 234256 — 85184v +
5420802 — 1232003 + 3976v* — 560v° 4+ 1120% — 80”7 4+ v8. On the other hand, for
the reduced algorithm will run in k& = 2/3/21 = 4 steps.

tl =—4 my = 1+ 5(616364) — 2(6165)

to = 48 mo = —24 — 10(616364) + 4(6165)
t3 = —88 m3 = 66 + 110(616364) — 44((6165)
ty =484 my = —484

and pa(v) = 484 — 88v + 48v? — 4v3 4+ v, which squared gives the above poly-
nomial.
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Ezample 2. Consider Cls 5 and let A =1—ez+e1ezezeqeseser. Then

1 1 3 2
Al :g—geQ—g (61626364656667)+5 (e1eseseseger)

A Supporting results

Definition 5 (Sparsity property). A matriz has the sparsity property if it
has exactly one non-zero element per column and exactly one non-zero element
per row. Such a matriz we call sparse.

Lemma 1 (Sparsity lemma). If the matrices A and B are sparse then so is
C = AB. Moreover,
0
Cii —
Y Qigbg;

(no summation!) for some indezx q.

Proof. Consider two sparse square matrices A and B of dimension n. Let ¢;; =
> u aiub,j. Then as we vary the row index 7 then there is only one index ¢ < n,
such that a;q # 0. As we vary the column index j then there is only one index
g < n, such that by; # 0. Therefore, ¢;; = (0; aiqbq;) for some ¢ by the sparsity
of A and B. As we vary the row index ¢ then ¢,; = 0 for ¢ # ¢ for the column j
by the sparsity of A. As we vary the column index j then ¢;; = 0 for j # ¢ for
the row i by the sparsity of B. Therefore, AB is sparse.

Lemma 2 (Multiplication Matrix Structure). For the multi-index disjoint
sets S < T the following implications hold for the elements of M :

N > A
mux€es —————— My xer

3 N =N

MAPES ————— MApMuN ESAT ———— 35 MAN'ESAT

s0 that myyx = my,o,muy for some index fi.

Proof. Suppose that the ordering of elements is given in the construction of
Clp q.r - To simplify presentation, without loss of generality, suppose that e
and e; are some generators. By the properties of M there exists an index ' > A,
such that exrer = myy e, L'\M =T for L < L'. Choose M,s.d. L <M < L'.
Then for L<M < L' and S < T

emer =myyes, LAM =5 & epey =myy, e
emer =myx e, L'AM =T
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Suppose that ege; = egy, st = SUT = SAT. Multiply together the diagonal
nodes in the matrix
€L eMeNM €L’ = MMy Est
——
T
Therefore, s € L and ¢t € L’. We observe that there is at least one element (the
algebra unity) with the desired property o, # 0.

Further, we observe that there exists unique index M\’ such that my\eg;.
Since A is fixed. This implies that L” = L’ = X’ = X. Therefore,

ererr = Mx) €st, L/AL = {S,t}

which implies the identity may es¢ = ma0umux €s¢. For higher graded elements
es and e we should write egar instead of eg;.

Proposition 3. Consider the multiplication table M. All elements my; are dif-
ferent for a fixed row k. All elements myq are different for a fixed column q.

Proof. Fix k. Then for ex,e; € B we have exe; = myjes, S = KAJ. Suppose
that we have equality for 2 indices j, 7. Then KAJ' = KAJ = S. Let § = JN.J/;
then

KAN(JU)=KANJ=S=KAN5=S=6d=0

Therefore, j = j'. By symmetry, the same reasoning applies to a fixed column g.
Proposition 4. For e; € E the matriz Ay = Cs(M) is sparse.

Proof. Fix an element e; € E. Consider a row k. By Prop. 3 there is a j, such
ei; = €s. Then ap; = my;, while for ¢ # j ar; = 0.

Consider a column [ By Prop. 3 there is a j, such e;; = e;. Then a;; = m;,
while for i # j a;; = 0. Therefore, A has the sparsity property.

Proposition 5. For generator elements es and e; EE; + E;E; = 0.

Proof. Consider the basis elements e; and e;. By linearity and homomorphism
of the 7 map (Th. 1): 7 : eser +eres = 0 — 7(eser) + w(eres) = 0. Therefore, for
two vector elements E.E; + E,E, = 0.

Proposition 6. E;Es = 0,1
Proof. Consider the matrix W = GAJGAg. Then wy, = >, 0,0 a0
element-wise. By Lemma 1 W is sparse so that w,, = (0;0,04auq0q.)-

From the structure of M for the entries containing the element es we have
the equivalence

{eMeQ =a,.es, S =MAQ
eQem = agues,
After multiplication of the equations we obtain eyregegen = a;,,€sag,€s, which

simplifies to the First fundamental identity:

0q0u = ;400,05 (4)
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We observe that if 0, = 0 or 0, = 0 the result follows trivially. In this case
also o, = 0. Therefore, let’s suppose that o,040, # 0. We multiply both sides
by 05040, to obtain o5 = o40,a;,a,,. However, the RHS is a diagonal ele-
ment of W, therefore by the sparsity it is the only non-zero element for a given

row/column so that W = E2 = o, L.
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