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Abstract. Clifford algebras provide the natural generalizations of com-
plex, dual numbers and quaternions into the concept of non-commutative
Clifford numbers. The paper demonstrates an algorithm for the com-
putation of inverses of such numbers in a non-degenerate Clifford al-
gebra of an arbitrary dimension. The algorithm is a variation of the
Faddeev–LeVerrier–Souriau algorithm and is implemented in the open-
source Computer Algebra System Maxima. Symbolic and numerical ex-
amples in different Clifford algebras are presented.
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1 Introduction

Clifford algebras provide the natural generalizations of complex, dual and split-
complex (or hyperbolic) numbers into the concept of Clifford numbers. The de-
velopment of Clifford algebras is based on the insights of Hamilton, Grassmann,
and Clifford from the 19th century. After a hiatus lasting many decades, the
Clifford geometric algebra experienced a renaissance with the advent of con-
temporary computer algebra systems. Clifford algebras can be implemented in
a variety of general-purpose computer languages and computational platforms.
Recent years have seen renewed interest in Clifford algebra platforms: notably,
for Maple, Matlab, Mathematica, Maxima, Ganja.js for JavaScript, GaLua for
Lua, Galgebra for Python, Grassmann for Julia.

Computation of Clifford inverses has drawn attention in the literature [1, 4,
6]. The present contribution demonstrates an algorithm for Clifford number in-
version, which involves only multiplications and subtractions and has a variable
number of steps, depending on the maximal grade of the Clifford number. The
algorithm is implemented using the Clifford Maxima package [5]. The algorithm
is a direct translation of the Faddeev–LeVerrier–Souriau (FVS) algorithm for
matrix inverse computation. The algorithm is in fact a proof certificate for the
existence of an inverse. As a side product, the algorithm can compute the char-
acteristic polynomial of the Clifford number and its determinant also without
any resort to a matrix representation.
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2 Notation and Preliminaries

Cℓn will denote a Clifford algebra of order n but with unspecified signature.
Clifford multiplication is denoted by simple juxtaposition of symbols. Algebra
generators will be indexed by Latin letters. Multi-indices will be considered as
index lists and not as sets and will be denoted with capital letters. The operation
of taking k-grade part of an expression will be denoted by ⟨.⟩k and in particular
the scalar part will be denoted by ⟨.⟩0. Set difference is denoted by △. Matrices
will be indicated with bold capital letters, while matrix entries will be indicated
by lowercase letters. The scalar product of the blades will be denoted by ∗.

Definition 1. The generators of the Clifford algebra will be denoted by indexed
symbol e. It will be assumed that there is an ordering relation ≺, such that
for two natural numbers i < j =⇒ ei ≺ ej. The extended basis set of the
algebra will be defined as the ordered power set B := {P (E),≺} of all generators
E = {e1, . . . , en} and their irreducible products.

Definition 2. Define the diagonal scalar product matrix as G := {σIJ = eI ∗
eJ | eI , eJ ∈ B, I ≺ J}.

A Clifford number will be written as A = a1 +
∑r

k=1 ⟨A⟩k = a1 +
∑
J

aJeJ . The

maximal grade of A will be denoted by gr[A].

3 Clifford algebra real matrix representation map

In the present article we will focus on non-degenerate Clifford algebras, therefore
the non-zero elements of G are valued in {−1, 1}.

Definition 3 (Clifford coefficient map). Define the linear map acting element-
wise Ca : Cℓn 7→ R by the action Ca(ax+ b) = x for x ∈ R, a, b ∈ B.

Define the Clifford coefficient map indexed by eS as CS(M) := AS, where
M is the multiplication table of the extended basis M = {R(eMeN ) | eM , eN ∈ B}.

Definition 4 (Canonical matrix map). Define the map π : B 7→ MatR(2
n×

2n), n = p+ q+ r as π : eS 7→ Es := GAs where s is the ordinal of eS ∈ B and
AS is computed as in Def. 3.

Proposition 1. The π-map is linear.

The proposition follows from the linearity of the coefficient map and matrix
multiplication with a scalar.

Theorem 1 (Semigroup property). Let es and et be generators of Cℓp,q .
Then the following statements hold

1. The map π is a homomorphism with regard to the Clifford product (i.e. π
distributes over the Clifford products): π(eset) = π(es)π(et).

2. The set of all matrices Es forms a multiplicative semigroup.
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Proof. Let Es = π(es),Et = π(et),Est = π(eset). We specialize the result of
Lemma 2 for S = {s} and T = {t} and observe that mλλ′ est = mλµσµmµλ′ est
for λ, λ′, µ ≤ n and σλmλλ′ = σλmλµσµmµλ′ . In summary, the map π acts on
Cℓp,q according to the following diagram:

es Es

eset ≡ est Est ≡ EsEt, st = s ∪ t

et

π

Et

π

Therefore, Est = EsEt. Moreover, we observe that π(eset) = Est = EsEt =
π(es)π(et).

For the semi-group property observe that since π is linear it is invertible.
Since π distributes over Clifford product its inverse π−1 distributes over matrix
multiplication:

π−1(EsEt) ≡ π−1(Est) = est ≡ eset = π−1(Es) π
−1(Et)

However, Cℓp,q is closed by construction, therefore, the set {E}s is closed under
matrix multiplication.

Proposition 2. Let L := {li| li ∈ B} be a column vector and Rs be the first
row of Es. Then π−1 : Es 7→ RsL.

Proof. We observe that by the Prop. 4 the only non-zero element in the first row
of Es is σ1m1s = 1. Therefore, RsL = es.

Theorem 2 (Complete Real Matrix Representation). Define the map
g : A 7→ GA as matrix multiplication with G. Then for a fixed multiindex s
π = Cs ◦ g = g ◦ Cs. Further, π is an isomorphism inducing a Clifford algebra
representation in the real matrix algebra:

Cℓp,q(R) MatR (2n × 2n)
π

π−1

Proof. The π-map is a linear isomorphism. The set {Es} forms a multiplicative
group, which is a subset of the matrix algebra MatR(N × N), N = 2n. Let
π(es) = Es and π(et) = Et. It is claimed that

1. EsEt ̸= 0 by the Sparsity Lemma 1.
2. EsEt = −EtEs by Prop. 5.
3. EsEs = σsI by Prop. 6.

Therefore, the set {ES}P (n)
S={1} is an image of the extended basis B. Here P (n)

denotes the power set of the indices of the algebra generators.
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What is special about the above representation is the relationship

trA = 2n ⟨A⟩0 (1)

for the image π(A) = A of a general multivector element A and it will be used
further in the proof of FVS algorithm.

Remark 1. The above construction works if instead of the entire algebra Cℓp,q
we restrict a multivector to a sub-algebra of a smaller grade max grA = r. In
this case, we form grade-restricted multiplication matrices Gr and Mr.

4 FVS multivector inversion algorithm

Multivector inverses can be computed using the matrix representation and the
characteristic polynomial. The matrix inverse is A−1 = Â/detA, whereˆdenotes
the matrix adjunct operation and detA is the matrix determinant. The formula
is not practical, because it requires the computation of n2+1 determinants. With
the help of the Cayley-Hamilton Theorem, the inverse of A can be expressed as
a polynomial in A. The inverse can be computed as the last step of the FVS
algorithm [3]. The algorithm has a direct representation in terms of Clifford
multiplications as follows:

Theorem 3. Suppose that A ∈ Cℓp,q is a multivector of maximal grade r ≤
p + q. The Clifford inverse, if it exists, can be computed by the algorithm in
k = 2⌈r/2⌉ steps as

m1 = A c1 = −kA ∗ 1
m2 = Am2 − t1 c2 = −k

2A ∗m1

. . . . . .
mk = Amk−1 − tk ck = −A ∗mk−1

until the step where mk = 0 so that

A−1 = −mk−1

ck
(2)

The inverse does not exist if ck = −detA = 0.
The (reduced) characteristic polynomial of the multivector A of maximal

grade r is
pA(λ) = λk + c1λ

k−1 + . . . ck−1λ+ ck (3)

Proof. The proof follows from the homomorphism of the π map. We recall the
statement of FVS algorithm:

pA(λ) = det (λIn −A) = λn + c1λ
n−1 + . . . cn−1λ+ cn, n = dim(A)

where
M1 = A t1 = tr[M1] c1 = −t1
M2 = AM1 − t1In t2 = 1

2 tr[AM1] c2 = −t2
. . . . . . . . .
Mn = AMn−1 − tnIn tn = 1

n tr[AMn−1] cn = −tn
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The matrix inverse can be computed from the last step of the algorithm as
A−1 = Mn−1/tn under the obvious restriction tn ̸= 0.

Therefore, the kth step of the algorithm is π−1 : Mk = AMk−1 − tkI 7→
mk = Amk−1 − tk. Furthermore, π commutes with the trace operator giving
π−1 (tr[Mk]) = n ⟨mk⟩0; hence, tk = n ⟨mk⟩0. Moreover, the FVS algorithm
terminates with Mn = 0, which corresponds to the limiting case n = 2p+q

wherever A contains all grades.
On the other hand, [2] make the observation that according to the Bott

periodicity the number of steps can be reduced to 2⌈n/2⌉. This can be proven as
follows. Consider the isomorphism Cℓp,q ⊃ Cℓ+p,q

∼= Cℓq−1,p−1. Therefore, if a
property holds for an algebra of dimension n it will hold also for the algebra of
dimension n−2. Therefore, suppose that for n even the characteristic polynomial
is square free: pA(v) ̸= q(v)2 for some polynomial. We proceed by reduction.
For n = 2 in Cℓ2,0 and A = a1 + e1a2 + e2a3 + e3a4 we compute pA(v) =(
a21 − a22 − a23 + a24 − 2a1v + v2

)2
and a similar result holds also for the other

signatures of Cℓ2 . Therefore, we have a contradiction and the dimension can be
reduced to k = n/2. In the same way, suppose that n is odd the characteristic
polynomial is square free. However, for n = 3 in Cℓ3,0 and A = a1 + e1a2 +
e2a3 + e3a4 + a5e12 + a6e13 + a7e23 + a8e123 it is established that pA(v) = q(v)2

for q(v) = (a21 − a22 − a23 − a24 + a25 + a26 + a27 − a28 + 2i(−a4a5 + a3a6 − a2a7 +
a1a8) − 2a1v − 2ia8v + v2)(a21 − a22 − a23 − a24 + a25 + a26 + a27 − a28 + 2i(a4a5 −
a3a6 + a2a7 − a1a8)− 2a1v+ 2ia8v+ v2). Similar results hold also for the other
signatures of Cℓ3 . Therefore, we have a contradiction and the dimension can
be reduced to k = (n + 1)/2. Therefore, overall, one can reduce the number of
steps to k = 2⌈n/2⌉.

As a second case, suppose that gr[A] = r. Let Er be the set of all blades of
grade ≤ r. We compute the restricted multiplication tables M(Er) and respec-
tively G(Er) and form the restricted map πr. Then

πr(AA−1) = πr(A)πr(A
−1) = AA−1 = In, n = 2r

Therefore, the FVS algorithm terminates in k = 2r steps. Observe that π−1 :
AMk 7→ Amk. Therefore, tr[AMk] will map to nA ∗mk by eq. 1. Now, suppose
that tk ̸= 0; then for the last step of the algorithm we obtain:

Amk−1 − tk = 0 ⇒ A
mk−1

tk
= 1 ⇒ A−1 =

mk−1

tk

Furthermore, we can always embed the Clifford number A into higher dimen-
sional algebra according to the above congruence, therefore the number of steps
can be ultimately reduced to k = 2⌈r/2⌉.

5 Implementation

Computations are performed using the Clifford package in Maxima [5]. The
function below returns the inverse (if it exists) and the characteristic polynomial
pA(v) of the Clifford expression A.
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Listing 1.1. FVS Maxima code for the Clifford package

1 f ad l e v i c g 2 cp (A, v ) :=block ( [M: 1 ,K, i : 1 , n , k : maxgrade (A) , cq , c , s s ] ,
n : 2 ˆ ( c e i l i n g (k/2) ) ,
array ( c , n+1) , f o r r : 0 thru n+1 do c [ r ] : 1 ,
A: ra t (A) , s s : c [ 1 ] * vˆˆn ,
whi l e i<n and K#0 do (

6 K: dotsimpc ( expand (A.M) ) ,
cq :−n/ i * s c a l a r p a r t (K) ,
i f debug1=a l l then p r in t ( ” t {” , i , ”}=” , cq , ” m {” , i , ”}=

” ,K, ”\\\\” ) ,
i f K#0 then

M: ra t (K + cq ) ,
11 c [ i +1] : cq , s s : s s+c [ i +1]*vˆˆ(n−i ) ,

i : i+1
) ,
K: dotsimpc ( expand (A.M) ) ,
cq :−n/ i * s c a l a r p a r t (K) ,

16 i f debug1=a l l then p r in t ( ” t {” , i , ”}=” , cq , ” m {” , i , ”}=” ,K,
”\\\\” ) ,

s s : s s+cq ,
i f cq=0 then cq : 1 , M: f a c t o r (−(M) /cq ) ,
[M, s s ]

) ;

6 Experiments

Example 1. Let us compute a rational example in Cℓ2,5 . Let A = 1+5e1e3e4−
2e1e5. Then for the maximal representation we have k = 23 = 8 steps.

t1 = −8 m1 = 1 + 5(e1e3e4)− 2(e1e5)
t2 = 112 m2 = −28− 30(e1e3e4) + 12(e1e5)
t3 = −560 m3 = 210 + 390(e1e3e4)− 156(e1e5)
t4 = 3976 m4 = −1988− 1360(e1e3e4) + 544(e1e5)
t5 = −12320 m5 = 7700 + 8580(e1e3e4)− 3432(e1e5)
t6 = 54208 m6 = −40656− 14520(e1e3e4) + 5808(e1e5)
t7 = −85184 m7 = 74536 + 53240(e1e3e4)− 21296(e1e5)
t8 = 234256 m8 = 234256

Therefore, A−1 = 1
22 (1− 5e1e3e4 + 2e1e5) and pA(v) = 234256 − 85184v +

54208v2 − 12320v3 +3976v4 − 560v5 +112v6 − 8v7 + v8. On the other hand, for
the reduced algorithm will run in k = 2⌈3/2⌉ = 4 steps.

t1 = −4 m1 = 1 + 5(e1e3e4)− 2(e1e5)
t2 = 48 m2 = −24− 10(e1e3e4) + 4(e1e5)
t3 = −88 m3 = 66 + 110(e1e3e4)− 44((e1e5)
t4 = 484 m4 = −484

and pA(v) = 484 − 88v + 48v2 − 4v3 + v4, which squared gives the above poly-
nomial.
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Example 2. Consider Cℓ5,2 and let A = 1− e2 + e1 e2 e3 e4 e5 e6 e7. Then

A−1 =
1

5
− 1

5
e2 −

3

5
(e1 e2 e3 e4 e5 e6 e7) +

2

5
(e1 e3 e4 e5 e6 e7)

A Supporting results

Definition 5 (Sparsity property). A matrix has the sparsity property if it
has exactly one non-zero element per column and exactly one non-zero element
per row. Such a matrix we call sparse.

Lemma 1 (Sparsity lemma). If the matrices A and B are sparse then so is
C = AB. Moreover,

cij =

{
0

aiqbqj

(no summation!) for some index q.

Proof. Consider two sparse square matrices A and B of dimension n. Let cij =∑
µ aiµbµj . Then as we vary the row index i then there is only one index q ≤ n,

such that aiq ̸= 0. As we vary the column index j then there is only one index
q ≤ n, such that bqj ̸= 0. Therefore, cij = (0; aiqbqj) for some q by the sparsity
of A and B. As we vary the row index i then cqj = 0 for i ̸= q for the column j
by the sparsity of A. As we vary the column index j then ciq = 0 for j ̸= q for
the row i by the sparsity of B. Therefore, AB is sparse.

Lemma 2 (Multiplication Matrix Structure). For the multi-index disjoint
sets S ≺ T the following implications hold for the elements of M :

mµλ eS mµλ′eT

mλµeS mλµmµλ′eS△T mλλ′′eS△T

∃

∃λ′ > λ

∃ ∃λ′′ = λ′

so that mλλ′ = mλµσµmµλ′ for some index µ.

Proof. Suppose that the ordering of elements is given in the construction of
Cℓp,q,r . To simplify presentation, without loss of generality, suppose that es
and et are some generators. By the properties of M there exists an index λ′ > λ,
such that eMeL′ = mµλ′ et, L

′\M = T for L ≺ L′. Choose M , s.d. L ≺ M ≺ L′.
Then for L ≺ M ≺ L′ and S ≺ T

eMeL = mµλ es, L△M = S ⇔ eLeM = mλµ es

eMeL′ = mµλ′ et, L′△M = T
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Suppose that eset = est, st = S ∪ T = S△T . Multiply together the diagonal
nodes in the matrix

eL eMeM︸ ︷︷ ︸
σµ

eL′ = mλµmµλ′ est

Therefore, s ∈ L and t ∈ L′. We observe that there is at least one element (the
algebra unity) with the desired property σµ ̸= 0.

Further, we observe that there exists unique index λ′′ such that mλλ′′est.
Since λ is fixed. This implies that L′′ = L′ ⇒ λ′′ = λ′. Therefore,

eLeL′ = mλλ′est, L′△L = {s, t}

which implies the identitymλλ′ est = mλµσµmµλ′ est. For higher graded elements
eS and eT we should write eS△T instead of est.

Proposition 3. Consider the multiplication table M. All elements mkj are dif-
ferent for a fixed row k. All elements miq are different for a fixed column q.

Proof. Fix k. Then for eK , eJ ∈ B we have eKeJ = mkjeS , S = K△J . Suppose
that we have equality for 2 indices j, j′. Then K△J ′ = K△J = S. Let δ = J∩J ′;
then

K△ (J ∪ δ) = K△J = S ⇒ K△δ = S ⇒ δ = ∅
Therefore, j = j′. By symmetry, the same reasoning applies to a fixed column q.

Proposition 4. For es ∈ E the matrix As = Cs(M) is sparse.

Proof. Fix an element es ∈ E. Consider a row k. By Prop. 3 there is a j, such
ekj = es. Then akj = mkj , while for i ̸= j aki = 0.

Consider a column l By Prop. 3 there is a j, such ejl = es. Then ajl = mjl,
while for i ̸= j ail = 0. Therefore, As has the sparsity property.

Proposition 5. For generator elements es and et EsEt +EtEs = 0.

Proof. Consider the basis elements es and et. By linearity and homomorphism
of the π map (Th. 1): π : eset+ etes = 0 7→ π(eset)+π(etes) = 0. Therefore, for
two vector elements EsEt +EtEs = 0.

Proposition 6. EsEs = σsI

Proof. Consider the matrix W = GAsGAs. Then wµν =
∑

λ σµσλaµλaλν
element-wise. By Lemma 1 W is sparse so that wµν = (0;σµσqaµqaqν).

From the structure of M for the entries containing the element eS we have
the equivalence {

eMeQ = asµqeS , S = M△Q

eQeM = asqµeS ,

After multiplication of the equations we obtain eMeQeQeM = asµqeSa
s
qµeS , which

simplifies to the First fundamental identity :

σqσµ = asµqa
s
qµσs (4)
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We observe that if σµ = 0 or σq = 0 the result follows trivially. In this case
also σs = 0. Therefore, let’s suppose that σsσqσµ ̸= 0. We multiply both sides
by σsσqσµ to obtain σs = σqσµa

s
µqa

s
qµ. However, the RHS is a diagonal ele-

ment of W, therefore by the sparsity it is the only non-zero element for a given
row/column so that W = E2

s = σsI.
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