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Deep Learning for Physics Problems: A Case Study
in Continuous Gravitational Waves Detection

Different propositions for the usage of deep learning algorithms in detecting continuous gravitational waves in both Time & Frequency
domains

Essam Mohamed Farouq El-Tobgi Electronics and Telecommunications Engineer

Abstract—Deep learning has become a powerful tool for solving
a wide variety of problems, including those in physics. In this
paper, we explore the use of deep learning for the detection
of continuous gravitational waves. We propose two different
approaches: one based on time-domain analysis and the other
based on frequency-domain analysis. Both approaches achieve
nearly the same performance, suggesting that deep learning is a
promising technique for this task. The main purpose of this paper
is to provide an overview of the potential of deep learning for
physics problems. We do not provide a performance-measured
solution, as this is beyond the scope of this paper. However,
we believe that the results presented here are encouraging and
suggest that deep learning is a valuable tool for physicists.

Index Terms—deep learning, physics, continuous gravitational
waves, time-domain analysis, frequency-domain analysis.

I. INTRODUCTION

GRAVITATIONAL waves are disturbances or ripples in
the curvature of spacetime, generated by accelerated

masses, that propagate as waves outward from their source
at the speed of light. They were first proposed by Oliver
Heaviside in 1893 and then later by Henri Poincaré in 1905
and subsequently predicted in 1916 by Albert Einstein on
the basis of his general theory of relativity. Later he refused
to accept gravitational waves. Gravitational waves transport
energy as gravitational radiation, a form of radiant energy
similar to electromagnetic radiation.Newton’s law of universal
gravitation, part of classical mechanics, does not provide for
their existence, since that law is predicated on the assumption
that physical interactions propagate instantaneously (at infinite
speed) – showing one of the ways the methods of Newtonian
physics are unable to explain phenomena associated with
relativity.

The first indirect evidence for the existence of gravitational
waves came in 1974 from the observed orbital decay of
the Hulse–Taylor binary pulsar, which matched the decay
predicted by general relativity as energy is lost to gravitational
radiation. In 1993, Russell A. Hulse and Joseph Hooton Taylor
Jr. received the Nobel Prize in Physics for this discovery.
The first direct observation of gravitational waves was not
made until 2015, when a signal generated by the merger
of two black holes was received by the LIGO gravitational
wave detectors in Livingston, Louisiana, and in Hanford,
Washington. The 2017 Nobel Prize in Physics was awarded
to Rainer Weiss, Kip Thorne and Barry Barish for their role
in the direct detection of gravitational waves.

When scientists detected the first class of gravitational
waves in 2015, they expected the discoveries to continue.
There are four classes, yet at present only signals from merging
black holes and neutron stars have been detected. Among those
remaining are continuous gravitational-wave signals. These
are weak yet long-lasting signals emitted by rapidly-spinning
neutron stars. Imagine the mass of our Sun but condensed
into a ball the size of a city and spinning over 1,000 times a
second. The extreme compactness of these stars, composed of
the densest material in the universe, could allow continuous
waves to be emitted and then detected on Earth. There are
potentially many continuous signals from neutron stars in our
own galaxy and the current challenge for scientists is to make
the first detection, and hopefully data science can help with
this mission.

When scientists detected the first class of gravitational
waves in 2015, they expected the discoveries to continue.
There are four classes, yet at present only signals from merging
black holes and neutron stars have been detected. Among those
remaining are continuous gravitational-wave signals. These
are weak yet long-lasting signals emitted by rapidly-spinning
neutron stars. Imagine the mass of our Sun but condensed
into a ball the size of a city and spinning over 1,000 times a
second. The extreme compactness of these stars, composed of
the densest material in the universe, could allow continuous
waves to be emitted and then detected on Earth. There are
potentially many continuous signals from neutron stars in our
own galaxy and the current challenge for scientists is to make
the first detection, and hopefully data science can help with
this mission.

Fig. 1. Gravitational wave frequency vs. h0 strain sensitivity
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This image, taken from a 2021 paper by the LIGO-Virgo-
KAGRA collaboration, shows the maximum amplitude of
a continuous wave any of these neutron stars could emit
without being found by the search analyses. Circled stars
show results constraining the physical properties of specific
neutron stars. Traditional approaches to detecting these weak
and hard-to-find continuous signals are based on matched-
filtering variants. Scientists create a bank of possible signal
waveform templates and ask how correlated each waveform is
with the measured noisy data. High correlation is consistent
with the presence of a signal similar to that waveform. Due to
the long duration of these signals, banks could easily contain
hundreds of quintillions of templates; yet, with so many
possible waveforms, scientists don’t have the computational
power to use the approach without making approximations
that weaken the sensitivity to the signals.

II. DATASET ANALYSIS & EXPLORATION

Our dataset is free and available on Kaggle from the
European Gravitational Observatory(EGO) and comes in
Hierarchical Data Format (HDF) which is a set of file formats
(HDF4, HDF5) designed to store and organize large amounts
of data. Originally developed at the U.S. National Center
for Supercomputing Applications, it is supported by The
HDF Group, a non-profit corporation whose mission is to
ensure continued development of HDF5 technologies and the
continued accessibility of data stored in HDF. In keeping with
this goal, the HDF libraries and associated tools are available
under a liberal, BSD-like license for general use. HDF is
supported by many commercial and non-commercial software
platforms and programming languages. The freely available
HDF distribution consists of the library, command-line
utilities, test suite source, Java interface, and the Java-based
HDF Viewer (HDFView). The current version, HDF5, differs
significantly in design and API from the major legacy version
HDF4.

Fig. 2. HDF5 data files structure

The HDF5 format is designed to address some of the
limitations of the HDF4 library, and to address current and
anticipated requirements of modern systems and applications.
In 2002 it won an R&D 100 Award. HDF5 simplifies the

file structure to include only two major types of object: HDF
Structure Example

• Datasets, which are typed multidimensional arrays
• Groups, which are container structures that can hold

datasets and other groups

As when it comes to out dataset structure, it comes as
follows:

• ID is the top group of the HDF5 file and links the
datapoint to it’s label in the train labels csv (group)

• frequency Hz contains the range frequencies measured
by the dectors (dataset)

• H1 contains the data for the LIGO Hanford decector
(group)

• L1 contains the data for the LIGO Livingston decector
(group)
- SFTs is the Short-time Fourier Transforms amplitudes
for each timestamp at each frequency (dataset)
- timestamps contains the timestamps for the measure-
ment (dataset)

As when it comes to the data labels frequency it shows that
the dataset is imbalanced which indicated the usage of a more
convenient performance measurement metric like F-Measure:

Fig. 3. Dataset labels frequency

The target labels; 1 if the data contains the presence of a
gravitational wave, 0 otherwise. (Please note the presence of
a small number of files labeled -1. Physicists are currently
unable to determine the status of these files.)

Now we get to the spectrogram analysis which is a visual
representation of the spectrum of frequencies of a signal
as it varies with time. When applied to an audio signal,
spectrograms are sometimes called sonographs, voiceprints, or
voicegrams. When the data are represented in a 3D plot they
may be called waterfall displays.
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Fig. 4. H and L detectors real and imaginary components visualization

As when it comes to frequencies and timestamps distribu-
tions, they were as follows:

Fig. 5. Frequency values distribution

We notice the frequency variation is not that critical that is
why during the time domain conversion process we would use
the mean value of all the set of frequencies.

Fig. 6. The distribution for timestamps of both classes

III. TIME DOMAIN DATASET CONVERSION

The STFT is invertible, that is, the original signal can be
recovered from the transform by the inverse STFT. The most
widely accepted way of inverting the STFT is by using the
overlap-add (OLA) method, which also allows for modifi-
cations to the STFT complex spectrum. This makes for a
versatile signal processing method, referred to as the overlap
and add with modifications method.

The inverse Fourier transform of X(t,w) for t fixed:

Fig. 7. The inverse Fourier transform equation

The inverse Fourier transform output was as follows:
• Signal size in frequency domain is 4655
• Signal size in Time domain is 1670786
• Signal size in Time domain(resamples) is 16707
As it seems the original time domain sequence size is way

too large that’s why we will be resampling the signal in order
to be able to deal with it during modeling. This will reduce
tremendous amount of data informativity but will help the
correct architecture to converge and also will be friendly when
it comes to computational resources.

Fig. 8. The signal visualization in time domain

IV. SIMULATING GRAVITATIONAL WAVES

The gravitational waveform simulation of Riroriro is based
upon the methods of Buskirk and Babiuc-Hamilton (2019),
a paper which describes a computational implementation
of an earlier theoretical gravitational waveform model by
Huerta et al. (2017), using post-Newtonian expansions and an
approximation called the implicit rotating source to simplify
the Einstein field equations and simulate gravitational waves.
Riroriro’s calculation of signal-to-noise ratios (SNR) of
gravitational wave events is based on the methods of Barrett
et al. (2018), with the simpler gravitational wave model
Findchirp (Allen et al. (2012)) being used for comparison
and calibration in these calculations.

The implemented Python function returns two waves that
represent orthogonal/diagonal waves. The output timescale
that is returned is non-linear, so to convert these signals
into uniform sampled signals as in the dataset, we need to
resample. The function below will resample the gravitational
wave signals to 2048Hz. It is crude though, based on nearest
sample, but good enough for studying spectrums. Interpolation
would be more proper.

When a gravitational wave passes by Earth, it squeezes and
stretches space. LIGO can detect this squeezing and stretching.
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Each LIGO observatory has two “arms” that are each more
than 2 miles (4 kilometers) long. A passing gravitational wave
causes the length of the arms to change slightly. The observa-
tory uses lasers, mirrors, and extremely sensitive instruments
to detect these tiny changes.

Fig. 9. The signal strain amplitude graph

Now after resampling the signal to 2048Hz (only the
orthogonal part)

Fig. 10. The signal strain amplitude resampled to 2048Hz

Now we explore the amplitude vs. distance graph (inverse
square law verification):

Fig. 11. The signal strain amplitude vs. distance

Surprisingly we can notice that gravitational waves ampli-
tude doesn’t follow the inverse square law but why?

In order to answer this question we have to explain the
difference between monopolic, diapolic and quadrapolic sig-
nals. First off, there are fundamental ways that light and
gravitational waves are the same. They both:

• do carry energy,
• do reach infinite distances,
• do spread out over space (in roughly a sphere) as you

move farther away,
• and will be detectable, at a certain distance, in proportion

to the magnitude of the signal.

Because the geometry of space is the same for both light
and gravitation, the difference between these two behaviors
must lie in the nature of the signal that we can detect.

To understand that, we need to understand how gravity is a
fundamentally different kind of force than electromagnetism.
This will lead us to better understand how gravitational
radiation (our gravitational waves) behave differently than
electromagnetic radiation (light) when we allow it to
propagate across the vast distances of intergalactic space.

If you want to create electromagnetic or gravitational radia-
tion. The simplest way you could imagine — which (spoiler)
doesn’t work — would be to spontaneously create or destroy
charge in a region of space. Having a charge pop into (or out
of) existence would create radiation of a very specific type:
monopole radiation. Monopole radiation is what happens when
you have a change in the amount of charge that’s present.
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Fig. 12. Charge preservance in electromagnetism

We cannot do this for either electromagnetism or gravi-
tation, however. In electromagnetism, electric charge is con-
served; in gravitation, mass/energy is conserved. The fact that
we don’t get monopole radiation is important for the stability
of our Universe. If charge or mass could spontaneously be
created or destroyed, existence would be extremely different!

If charge and mass/energy are conserved, then the next step
is to either move your charges (or masses) rapidly back-and-
forth, or to take charges of opposite signs and change the
distance between them. This would create what we call dipole
radiation, which changes the distribution of charge without
changing the total amount of charge.

In electromagnetism, this creates radiation, because moving
an electric charge back-and-forth changes the electric and
magnetic fields together. This matters, because changing elec-
tric and magnetic fields that are mutually perpendicular to
each other and in-phase if wis what an electromagnetic wave
actually is. This is the simplest way to make light, and it
radiates just like you’re familiar with. The light carries energy,
and the energy is what we detect, which is why objects appear
dimmer as 1/r2 the farther away they are.

Fig. 13. Electromagnetic wave propagation

In gravity, however, freely moving a mass doesn’t make
gravitational radiation, because there’s a conservation rule
about masses in motion: the conservation of momentum. Sim-
ilarly, separating masses doesn’t make gravitational radiation
either, because the center of mass remains constant. There’s
also a conservation rule about masses moving at a certain
distance from the center of mass: the conservation of angular
momentum.

Because energy, momentum, and angular momentum are
conserved, you have to go past both monopole and dipole

moments; you need a specific change in how the masses are
distributed around their mutual center of mass. The simplest
way to imagine this is to take two masses and have them
mutually rotate around their center of mass, which results in
what we call quadrupole radiation.

The amplitude of gravitational quadrupolar radiation falls
off as 1/r, meaning the total energy falls off as 1/r2, just as it
did for electromagnetic radiation. But this is where the funda-
mental difference between gravitation and electromagnetism
comes in. There’s a big difference between what you can
physically detect for quadrupole and dipole radiation.

For electromagnetic (dipole) radiation, when the photons
hit your detectors, they get absorbed, causing a change in the
energy levels, and that change in energy — which remember,
falls off as 1/r2 — is the signal you observe. That’s why
objects appear to dim according to an inverse square law.

For gravitational (quadrupole) radiation, however, it doesn’t
get directly absorbed in a detector. Rather, it causes objects to
move towards or apart from one another in proportion to the
amplitude of the wave. Even though the energy falls off as 1/r2,
the amplitude only falls off as 1/r. That’s why gravitational
waves fall off according to a different law than electromagnetic
waves.

But the amplitude, as we received it, compressed and
expanded the entire Earth by about the diameter of three
protons. The energy is huge and falls off as 1/r2, but we
cannot detect energy for gravitational waves. We can only
detect amplitude, which (thankfully) only falls off as 1/r, which
is a very good thing. The amplitudes may be tiny, but if we
can detect any signal at all, it’s only a small step forward to
detecting that same magnitude signal at any distance.

V. GRAVITATIONAL WAVE SIGNAL GENERATION

The unusual dataset division which is normally splits as
80:20 but in our case it is 1:16 indicates that the competition
creators are encouraging participants to generate their own
data.

Standard CW signals can be parameterised in terms of two
sets of parameters: the Doppler-modulation parameters gamma
and the amplitude parameters A.

The former encode how the frequency of a signal modulates
due to its intrinsic frequency evolution and the movement of
the Earth in the Solar system, while the latter describes the
overall amplitude of a CW depending on the parameters of
the source.

For a CW emitted by a rapidly-spinning and isolated neu-
tron star (NS), Doppler-modulation parameters include the
frequency F0 and the linear spindown parameter F1, both
taken at a reference time tref, and the sky position in terms
of the right ascension Alpha and declination Delta angles of
equatorial coordinates. Amplitude parameters, on the other
hand, include the average amplitude of a CW signal h0, the
initial phase of the signal phi, the polarization angle psi and
(the cosine of) the inclination angle of the source cosi, which
gives us the relative orientation of the NS with respect to the
detector.

As described before, the amplitude of a CW signal is usually
expressed in terms of the noises’s amplitude using depth D or
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signal-to-noise ratio (SNR) p. For our purposes, the former is
essentially a quotient

Fig. 14. The noises’s amplitude using depth expression

while the latter is a more involved expression which also
depends on the duration of the dataset at hand and the
detector’s response function. It is important to note, however,
that p and D scale reciprocally: ”weak” signals have a low
SNR and a high depth (since they are ”buried deeper into the
noise” than a strong signal).

As mentioned before from the split of train and test datasets
the challenge creators are encouraging participants to generate
their own data but in out case we will keep it at the point
of generating samples for explanations and the imbalanced
classes problem will be solved with the class weight parameter
while training.

A specific sample requires of background noise and op-
tionally a signal. In order to generate noise, one needs to
specify a set of detectors (H1 or L1 in this case), the duration
of the sample and the Amplitude Spectral Density of the
noise sqrtSX. CW analyses are simple in this front, as sqrtSX
is proportional to the (stationary) standard deviation of an
underlying zero-mean Gaussian process.

Sample duration can be specified in two ways. If the sample
contains contiguous data (i.e. the detector was taking science-
quality data uninterrupted), one can simply specify the starting
time and duration of the sample using tstart and duration. Data
with gaps, on the other hand, can be generated by specifying
a specific set of timestamps using the timestamps option.

Data is saved as a list of Short Fourier Transforms (SFTs).
The duration and windowing of these SFTs can also be
modified using Tsft, SFTWindowType and SFTWindowBeta.
Most analyses tune Tsft around 1800 seconds order to ensure
the power of a putative CW signal stays within a bin.

Fig. 15. Generated data sample spectrogram for real and imaginary parts of
the signal from H1 and L1 detectors

VI. MODELING IN TIME DOMAIN USING LSTM BASED
NETWORK

Long short-term memory (LSTM) is an artificial neural
network used in the fields of artificial intelligence and deep
learning. Unlike standard feedforward neural networks, LSTM
has feedback connections. Such a recurrent neural network
(RNN) can process not only single data points (such as
images), but also entire sequences of data (such as speech
or video). For example, LSTM is applicable to tasks such
as unsegmented, connected handwriting recognition, speech
recognition, machine translation, robot control, video games,
and healthcare. LSTM has become the most cited neural
network of the 20th century. LSTM networks are well-suited
to classifying, processing and making predictions based on
time series data, since there can be lags of unknown duration
between important events in a time series. LSTMs were
developed to deal with the vanishing gradient problem that
can be encountered when training traditional RNNs. Relative
insensitivity to gap length is an advantage of LSTM over
RNNs, hidden Markov models and other sequence learning
methods in numerous applications.

The compact forms of the equations for the forward pass of
an LSTM cell with a forget gate are:

Fig. 16. LSTM gates equations

When it comes to the proposed LSTM architecture, it comes
as follows:

Fig. 17. LSTM architecture with 17,931,265 trainable parameters
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VII. MODELING IN TIME DOMAIN USING TRANSFORMER
BASED NETWORK

The paper ‘Attention Is All You Need’ introduces a novel
architecture called Transformer consisting mainly of an en-
coder and a decoder. Both encoder and decoder are composed
of modules that can be stacked on top of each other multiple
times, which is described by Nx in the figure. We see that
the modules consist mainly of Multi-Head Attention and Feed
Forward layers. The inputs and outputs (target sentences) are
first embedded into an n-dimensional space since we cannot
use strings directly.

One slight but important part of the model is the positional
encoding of the different words. Since we have no recurrent
networks that can remember how sequences are fed into a
model, we need to somehow give every word/part in our
sequence a relative position since a sequence depends on
the order of its elements. These positions are added to the
embedded representation (n-dimensional vector) of each word.

Fig. 18. Attention mechanism illustration

Let’s start with the left description of the attention-
mechanism. It’s not very complicated and can be described
by the following equation:

Fig. 19.

Q is a matrix that contains the query (vector representation
of one word in the sequence), K are all the keys (vector
representations of all the words in the sequence) and V are
the values, which are again the vector representations of all
the words in the sequence. For the encoder and decoder, multi-
head attention modules, V consists of the same word sequence
than Q. However, for the attention module that is taking into
account the encoder and the decoder sequences, V is different
from the sequence represented by Q.

This means that the weights are defined by how each word
of the sequence (represented by Q) is influenced by all the
other words in the sequence (represented by K). Additionally,

the SoftMax function is applied to the weights a to have a
distribution between 0 and 1. Those weights are then applied
to all the words in the sequence that are introduced in V (same
vectors than Q for encoder and decoder but different for the
module that has encoder and decoder inputs).

When it comes to the proposed transformer architecture, it
comes as follows:

Fig. 20. Transformer architecture with 138,003,641 trainable parameters
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VIII. MODELING IN FREQUENCY DOMAIN USING CNN
BASED NETWORK AND SPECTROGRAM AS INPUT

Convolutional neural network (CNN, or ConvNet) is a
class of artificial neural network (ANN), most commonly
applied to analyze visual imagery. CNNs are also known as
Shift Invariant or Space Invariant Artificial Neural Networks
(SIANN), based on the shared-weight architecture of the
convolution kernels or filters that slide along input features
and provide translation-equivariant responses known as feature
maps. Counter-intuitively, most convolutional neural networks
are not invariant to translation, due to the downsampling
operation they apply to the input. They have applications in
image and video recognition, recommender systems, image
classification, image segmentation, medical image analysis,
natural language processing, brain–computer interfaces, and
financial time series.

When it comes to the proposed CNN architecture, it comes
as follows:

Fig. 21. CNN architecture with 1,097,985 trainable parameters

Fig. 22. CNN base architecture visualization

IX. MODELING IN FREQUENCY DOMAIN USING VIT
BASED NETWORK AND SPECTROGRAM AS INPUT

The concept of Vision Transformer (ViT) is an extension of
the original concept of Transformer. It is only the application
of Transformer in the image domain with slight modification
in the implementation in order to handle the different data
modality. More specifically, a ViT uses different methods for
tokenization and embedding. However, the generic architecture
remains the same. An input image is split into a set of image
patches, called visual tokens. The visual tokens are embedded
into a set of encoded vectors of fixed dimension. The position
of a patch in the image is embedded along with the encoded
vector and fed into the transformer encoder network which is
essentially the same as the one responsible for processing the
text input. There are multiple blocks in the ViT encoder and
each block consists of three major processing elements: Layer
Norm, Multi-head Attention Network (MSP) and Multi-Layer
Perceptrons (MLP). Layer Norm keeps the training process
on track and let model adapt to the variations among the
training images. MSP is a network responsible for generation
of attention maps from the given embedded visual tokens.
These attention maps help network focus on most important
regions in the image such as object(s).

Fig. 23. Vision transformer illustration

The differences between CNNs and Vision Transformers are
many and lie mainly in their architectural differences. In fact,
CNNs achieve excellent results even with training based on
data volumes that are not as large as those required by Vision
Transformers. This different behaviour seems to derive from
the presence in the CNNs of some inductive biases that can be
somehow exploited by these networks to grasp more quickly
the particularities of the analysed images even if, on the other
hand, they end up limiting them making it more complex to
grasp global relations.

On the other hand, the Vision Transformers are free from
these biases which leads them to be able to capture also global
and wider range relations but at the cost of a more onerous
training in terms of data. Vision Transformers also proved
to be much more robust to input image distortions such as
adversarial patches or permutations. However, choosing one
architecture over another is not always the wisest choice,
and excellent results have been obtained in several Computer
Vision tasks through hybrid architectures combining convolu-
tional layers with Vision Transformers.
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Implementing patches generation as a layer with the follow-
ing characteristics:

• Image size: 360 X 360
• Patch size: 40 X 40
• Patches per image: 81
• Elements per patch: 1600

Fig. 24. Input image before being divided into patches

Fig. 25. Input image divided into patches

The PatchEncoder layer will linearly transform a patch by
projecting it into a vector of size projection dim. In addition,
it adds a learnable position embedding to the projected
vector. The ViT model consists of multiple Transformer
blocks, which use the layers.MultiHeadAttention layer as a
self-attention mechanism applied to the sequence of patches.
The Transformer blocks produce a [batchsize, numpatches,
projectiondim] tensor, which is processed via a Dense head to
produce the final output. So to sum this up we are using the
vision transformer here to work as an image embedding layer
which will extract the required features and then pass the
feature vector to the following fully connected layer to further
processing until we reach the final layer with the sigmoid

activation function to output the prediction probability.

When it comes to the proposed ViT architecture, it comes
as follows:

Fig. 26. ViT architecture with 53,965,057 trainable parameters

X. RESULTS INTERPRETATION

As expected the CNN model could converge faster 3x than
the ViT model as the available dataset size isn’t the ideal
for such architecture(we’re talking about 600 instances here)
which is based on vision transformers which in turn needs
more data than CNN to work properly. The models loss
curves are descending but it doesn’t mean that the models
are learning well, that’s why further INVESTIGATION and
IMPROVEMENTS shall be done on this work to find out
whether the imbalanced classes is the main issue here or if
we need to try feature extraction techniques(noise cancellation
filters, etc.) other than using the SFT’s available. As when
it comes to the F Measure value the models achieved an
average of 80.59% on training and an unchangeable average
of 77.50% on validation meaning that more data is required
to be generated to compensate the imbalance in the dataset.
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Fig. 27. LSTM based model learning curve

Fig. 28. ViT vs. CNN learning curve
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