Der Partikelhorizont als Lichtkegel im Standardmodell der Kosmologie (ACDM-Modell)

Autor: Werner Lange, Altos/Paraguay, langealtos werner.lange.altos@gmail.com

Version September 2023

English translation of the title: The particle horizon as a light cone in the standard model of cosmology (ACDM model)

Abstract: It is shown that a particle horizon, related to a reference time t_{min} (e.g. the time of emission of the cosmic microwave background CMB radiation) can be understood as a future partial light cone of a light cone whose past partial light cone has an apex t_{min} . The statement is supported by drawings for different light cone apexes and different particle horizon reference times.

Compared to the version of 22 May 2023, the version presented here contains some clarifications for forward light cones generated at time t_{min} that do not have a cosmological-historical backward light cone.

Zusammenfassung: Es wird gezeigt, dass ein Partikelhorizont, bezogen auf einen Bezugszeitpunkt t_{min} (z.B. den Zeitpunkt der Emission der kosmischen Mikrowellen-Hintergrundstrahlung CMB), als Vorwärts-Teillichtkegel eines Lichtkegels aufgefasst werden kann, dessen Rückwärts-Teillichtkegel einen Scheitelpunkt t_{min} aufweist. Die Aussage wird durch Zeichnungen für verschiedene Lichtkegel-Scheitelpunkte und verschiedene Partikelhorizont-Bezugszeitpunkte untermauert.

Im Vergleich zur Version vom 22. Mai 2023 enthält die hier vorliegende Version einige Klarstellungen für Vorwärts-Lichtkegel, die zum Zeitpunkt t_{min} erzeugt wurden und die über keinen kosmologischhistorischen Rückwärtslichtkegel verfügen.

Inhaltsverzeichnis

1	Voraussetzungen	2
1.1	· · · · · · · · · · · · · · · · · · ·	
1.2		
2	Definition Partikelhorizont mit Bezugszeitpunkt t _{min} (Variante A)	3
3	Auswahl verschiedener Bezugszeitpunkte	4
4	Bezugszeitpunkt 7 Mrd. Jahre nach dem Urknall	6
5	Definition Partikelhorizont mit Bezugszeitpunkt t_{min} (Variante B)	6
6	Partikelhorizonte PH(CMB) und Partikelhorizont PH(Urknall)	7
7	Schnittpunkte zwischen Lichtgeodäten in Zahlen	9
8	Literatur	10

1 Voraussetzungen

1.1 Allgemeine Voraussetzungen

Vorausgesetzt wird das räumlich flache, ewig expandierende Λ CDM-Modell des Universums mit dem Parametersatz Planck18 (vgl. Planck 18 [1], Abstract, Hubble Parameter heute H₀=67.4, Materie-Anteil heute an der Materie/Energie-Dichte des Universums $\Omega_{\rm M}$ =0.315). Betrachtet wird ein im Hubble-Flow treibender Beobachter, dessen heutiger Ort in der Milchstraße (z.B. auf der Erde) gelegen ist und der im räumlichen Ursprung eines Koordinatensystems angenommen wird, bestehend aus 3 Raumachsen und einer Zeitachse. Die anwachsenden Abstände zwischen im Hubble-Flow treibenden, als ruhend angenommenen Objekten können durch einen Skalenfaktor a(t) beschrieben werden, der allein von der Zeit t seit dem Urknall abhängt.

Für den Rahmen dieses Artikels kann die durch den Ursprung verlaufende radiale Raumachse (zweite und dritte Koordinate NULL) samt ihrer positiven Orientierung (erste Koordinate positiv) beliebig gewählt werden. Einmal gewählt, wird sie als fest betrachtet.

In Zeichnungen dargestellt werden die Zeitachse in Milliarden Jahren und die radiale Raumachse in Milliarden Lichtjahren. Die radiale Raumachse mit ihrer positiven Orientierung wird im Weiteren als positive radiale Koordinatenachse bezeichnet. Der Skalenfaktor a ist auf $a(t_0)=1$, t_0 =HEUTE=13.790687 Mrd. Jahre nach dem Urknall, normalisiert. Abstände zwischen Objekten zu einem gemeinsamen Zeitpunkt t werden ausschließlich in physikalischen Koordinaten (physikalischer Abstand bzw. Eigendistanz) gemessen.

Unter Verwendung des Ausdrucks

$$d(a_1,a_2,a_3) = c \ a_3 \int_{a_1}^{a_2} rac{dlpha}{lpha^2 \ H(lpha)}$$

mit dem vom Skalenfaktor a abhängigen Hubble-Parameter

$$H(a) = H_0 E(a)$$

und der Dichtefunktion

$$E(a) = (\Omega_R a^{-4} + \Omega_M a^{-3} + \Omega_A)^{1/2}$$

wird der Lichtkegel LK(T) mit dem Scheitel (des Rückwärts-Teillichtkegels) beim Zeitpunkt T durch den physikalischen Abstand $d_{LK}(T,t)=d(a(t),a(T),a(t))$ vom Beobachter zum Zeitpunkt t umschrieben, wobei ein zum Zeitpunkt t < T (Rückwärts-Lichtkegel) von einem auf dem Lichtkegel gelegenen ruhenden Objekt emittierter, auf den Beobachter gerichteter Lichtstrahl den Beobachter zum Zeitpunkt T erreicht.

Genauere Informationen zu den Voraussetzungen können W. Lange [2], Kap. 1-6, entnommen werden. Alle im folgenden Text ermittelten Zahlen wurden mithilfe des Kosmologie-Rechners Welttabellen [3] ermittelt, mit den auch alle Zeichnungen vorbereitet wurden. Der Strahlungsanteil heute an der Materie/Energie-Dichte wurde von Welttabellen mit $\Omega_{M} = 0.00009209605429$ berechnet, der Anteil dunkler Energie heute ist demnach $\Omega_{\Lambda} = 1 - \Omega_{M} - \Omega_{R} = 0.6849079039$.

1.2 Vorbereitende Bemerkungen zum Verständnis des Artikels

Es folgen einige zusätzliche Bemerkungen zur Orientierung des Lesers. In diesen Bemerkungen treten Symbole und Begriffe auf, die erst später in diesem Artikel genauer erläutert werden.

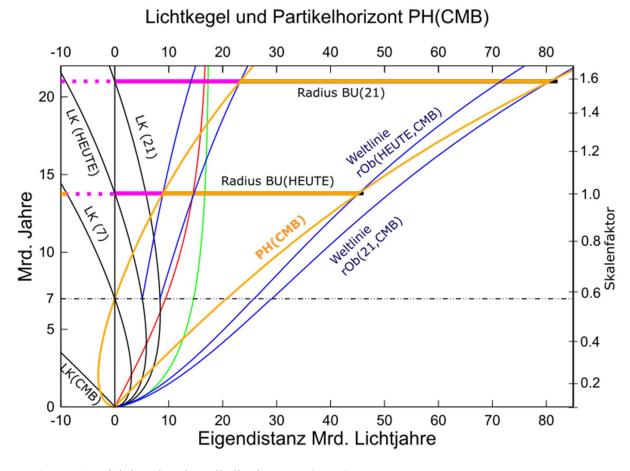
Zum Bezugszeitpunkt t_{min} mit $t_{min} < T$ dienen Schnittpunkte zwischen Lichtkegeln LK(T) (im Weiteren LK(HEUTE) und LK(21) als Beispielen) und der positiven radialen Koordinatenachse als Ausgangspunkte aller weiteren Überlegungen. Die positiven Werte der Schnittpunktkoordinaten, zugleich physikalische Abstände vom Beobachter zum Zeitpunkt t_{min} , markieren die positive Ausrichtung der Koordinatenachse. In diesen Schnittpunkten werden ruhende Objekte angenommen, die in diesen Schnittpunkten Licht in Richtung auf den Beobachter emittieren, das den Beobachter im Scheitelpunkt T des Lichtkegels LK(T) erreicht. Die ruhenden Objekte selbst entfernen sich zwischen den Zeitpunkten t_{min} und T allein aufgrund der Expansion des Universums vom Beobachter.

Zugleich wird am Ort des Beobachters im räumlichen Ursprung des Universums zum Bezugszeitpunkt t_{min} (im Weiteren t_{min} =CMB und t_{min} =7 Mrd. Jahre nach dem Urknall als Beispiele) Licht in Richtung der positiven Halbachse der radialen Raumachse emittiert. Die Geodäte des erzeugten Lichtstrahls kann, wie gezeigt wird, als Vorwärts-Teillichtkegel eines Lichtkegels -LK(t_{min}) interpretiert werden. (-LK(t_{min}) ist Rückwärts-Lichtkegel auf der negativen Halbachse.) Es wird sich erweisen, dass für den Partikelhorizont PH(t_{min}) zum Bezugszeitpunkt t_{min} die Beziehung PH(t_{min}) = -LK(t_{min}) gilt. Es sei noch daran erinnert, dass am jeweiligen Scheitelpunkt (mit dem Wert NULL auf der radialen Koordinatenachse, Übergang vom Rückwärts- zum Vorwärts-Lichtkegel) das Vorzeichen der Lichtkegelkoordinaten wechselt.

2 Definition Partikelhorizont mit Bezugszeitpunkt t_{min} (Variante A)

Im Weiteren wird der Partikelhorizont mit Bezugszeitpunkt t_{min} nach dem Vorbild von M. Roos 2003 [4], S. 39 ff. definiert.

<u>Pefinition Partikelhorizont mit Bezugszeitpunkt t_{min} (Variante A):</u> Der (physikalische) Partikelhorizont zum Zeitpunkt t ist die größte-Entfernung, aus der den Beobachter seit einem Zeitpunkt t_{min} Photonen (oder mit Lichtgeschwindigkeit übermittelte Informationen) erreicht haben können. Die Entfernung wird (auf der positiven radialen Koordinatenachse) gemessen zum gemeinsamen Zeitpunkt t zwischen dem Beobachter und dem als ruhend angenommenen Objekt, das die Photonen (oder Informationen) zum Zeitpunkt t_{min} (ebenfalls auf der positiven radialen Koordinatenachse) in Richtung auf den Beobachter übermittelt hatte. Der Zeitpunkt t_{min} wird auch als Bezugszeitpunkt (oder Emissionszeitpunkt) des Partikelhorizonts bezeichnet.


Korollar: Emittiert zu einem Zeitpunkt t_{min} mit $t_{min} < t$ ein auf dem Lichtkegel LK(t) gelegenes ruhendes Objekt Photonen in Richtung auf den Beobachter, so ist der (physikalische) Abstand dieses Objekts vom Beobachter zum Zeitpunkt t der Partikelhorizont zum Zeitpunkt t mit dem Bezugszeitpunkt t_{min} .

Während für Lichtkegel in Zeichnungen als Argument der Scheitelpunkt verwendet wird, z.B. LK(T), werden Partikelhorizonte in der Form PH(t_{min}) mit dem Bezugszeitpunkt als Argument dargestellt. PH(CMB) und PH(Urknall) werden zusätzlich für t_{min} =CMB und t_{min} =Urknall verwendet. Die Formel für den (physikalischen) Abstand des Beobachters vom Partikelhorizont PH(t_{min}) zum Zeitpunkt t kann in der Form $d_{PH}(t_{min},t)$ = $d(a(t_{min}),a(t),a(t))$ leicht gemäß M. Roos 2003 [4], S. 39 ff. hergeleitet werden.

3 Auswahl verschiedener Bezugszeitpunkte

Häufigste Wahl für den Zeitpunkt t_{min} ist die Wahl t_{min} = CMB = 371′127 Jahre = 0.000′371′127 Mrd. Jahre nach dem Urknall, der Zeitpunkt der Emission der Mikrowellen-Hintergrundstrahlung. Sofern in der Literatur der Begriff Partikelhorizont ohne Bezugszeitpunkt verwendet wird, so ist damit der Partikelhorizont mit dem Bezugszeitpunkt Urknall (t_{min} = 0 Mrd. Jahre) gemeint. Um das Thema für Zeichnungen zweckmäßig ausleuchten zu können, soll ein weiterer Partikelhorizont mit einem Bezugszeitpunkt von 7 Mrd. Jahren nach dem Urknall betrachtet werden.

Der (physikalische) Partikelhorizont zum Zeitpunkt t, bezogen auf den Bezugszeitpunkt t_{min} , begrenzt den Raum des <u>Beobachtbaren Universums</u> zum Zeitpunkt t mit Bezugszeitpunkt t_{min} (dem frühesten Emissionszeitpunkt), d.h. der Partikelhorizont begrenzt jenen Teils des Universums, das seit dem Zeitpunkt t_{min} in kausalen Kontakt mit dem Beobachter gekommen ist.

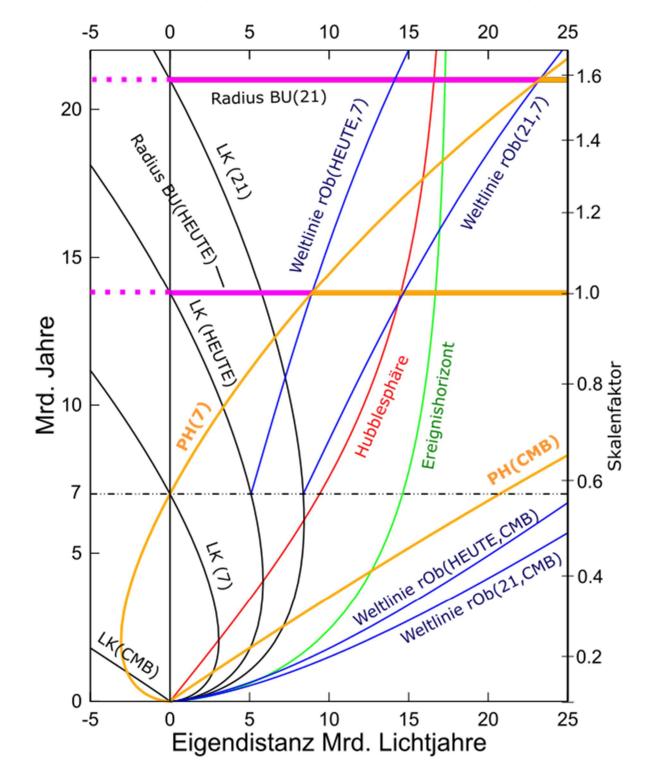


Abbildung 1: Lichtkegel und Partikelhorizont PH(CMB)

Erläutert werden die Beziehungen zwischen Lichtkegeln und Partikelhorizont anhand der Abbildungen 1 und 2, wobei die zweite Zeichnung einfach dadurch entsteht, dass die erste rechts bei einem Abstand von 25 Mrd. Lichtjahren vom Beobachter abgeschnitten wird. Nur in der zweiten Zeichnung werden vollständig die zahlreichen Linien der linken Seite der ersten Zeichnung erläutert. An den Scheitelpunkten der Lichtkegel LK(HEUTE) und LK(21) ist jeweils der positive Radius des zugehörigen Beobachtbaren Universums, BU(HEUTE) und BU(21) eingezeichnet. BU(HEUTE) und BU(21) sind nach ihren Bezugszeitpunkten farblich unterschiedlich markiert. Das Beobachtbare Universum zum Bezugszeitpunkt 7 Mrd. Jahre nach dem Urknall wird durch die Farbe magenta gekennzeichnet. Die Farben magenta und orange gemeinsam umschreiben das Beobachtbare Universum

zum Bezugszeitpunkt CMB. Die kurze angehängte schwarze Linie verweist auf den Übergang zum Beobachtbaren Universum zum Bezugszeitpunkt Urknall.

Abbildung 2: Lichtkegel und Partikelhorizont PH(7)

Die Formel $d_{PH}(t_{min},t)=d(a(t_{min}),a(t),a(t))$ für den Wert des Partikelhorizonts zum Bezugszeitpunkt t_{min} an der Stelle t ist offensichtlich (Vertauschung der Integrationsgrenzen) der negative

Wert -d(a(t),a(t_{min}),a(t)) des Lichtkegels LK(t_{min}) an der Stelle t. Zwar wird beim Partikelhorizont im Normalfall nur der positive Anteil ($t_{min} \le t$ – bei Interpretation als Lichtkegel der Vorwärts-Lichtkegel) betrachtet, es spricht aber prinzipiell nichts dagegen, den Partikelhorizont PH(t_{min}) insgesamt einfach als den Lichtkegel -LK(t_{min}) mit einem Rückwärts-Lichtkegel auf der negativen radialen Achse zu interpretieren.

4 Bezugszeitpunkt 7 Mrd. Jahre nach dem Urknall

Der Partikelhorizont mit dem Bezugszeitpunkt 7 Mrd. Jahre nach dem Urknall ist in Abbildung 2 genauer behandelt. Einzige Funktion des Lichtkegels LK(7) in der Zeichnung ist seine Beziehung zum Partikelhorizont PH(7).

Die gestrichelte waagerechte Linie bei 7 Mrd. Jahren nach dem Urknall schneidet nicht nur den Scheitelpunkt beider Lichtkegel, nämlich LK(7) und den als Lichtkegel interpretierten Partikelhorizont PH(7), sondern zusätzlich die beiden Lichtkegel LK(HEUTE) und LK(21). An diesen beiden zuletzt erwähnten Schnittpunkten sollen (als ruhende Objekte modellierte) Galaxien rOb(HEUTE,7) und rOb(21,7) angenommen werden (Abstände vom Beobachter: 5.094521 und 8.378498 Mrd. Lichtjahre), die Licht in Richtung auf den Beobachter emittieren, das den Beobachter an den jeweiligen Scheitelpunkten erreicht. Die blauen Weltlinien dieser Galaxien, die sich nur aufgrund der Expansion des Universums vom Beobachter entfernen, schneiden jeweils den Partikelhorizont PH(7) zu den Zeitpunkten HEUTE und 21 Mrd. Jahre nach dem Urknall genau in den Punkten, in denen der Partikelhorizont PH(7) das in magenta eingefärbte Beobachtbare Universum BU(HEUTE) bzw. BU(21) zum Bezugszeitpunt 7 Mrd. Jahre nach dem Urknall begrenzt (Abstände vom Beobachter: 8.924479 und 23.220942 Mrd. Lichtjahre). Man stellt unter anderem fest, dass die Weltlinien der Galaxien vor den jeweiligen Schnittpunkten weiter vom Beobachter entfernt sind als der Partikelhorizont.

Auch wird durch die Zeichnung noch einmal deutlich, was mit dem Partikelhorizont gemäß Definition Variante A gemeint ist: es handelt sich um den Abstand von jener Galaxie zum gemeinsamen Zeitpunkt t (hier am Beispiel HEUTE bzw. 21 Mrd. Jahre nach dem Urknall), die Licht zum Zeitpunkt t_{min} (hier 7 Mrd. Lichtjahre nach dem Urknall) in Richtung auf den Beobachter emittiert hat, das den Beobachter zum Zeitpunkt t erreicht. Während die Photonen des Lichtstrahls auf den Beobachter gerichtet sind und diesen schließlich erreichen, entfernt sich die Galaxie aufgrund der Expansion des Universums mehr und mehr vom Beobachter. Die Abstände zum Zeitpunkt t_{min} (7 Mrd. Jahre nach dem Urknall) waren zuvor erwähnt. (Hinweis zur Nomenklatur: Die Bemerkung gilt, auf den Partikelhorizont zum Bezugszeitpunkt t_{min} bezogen, für jedes $t > t_{min}$. Angewandt wird die genannte Regel hier allerdings auf die Scheitelpunkte von Lichtkegeln, wofür wir in der Formel für den Lichtkegel den Buchstaben T verwendet hatten).

5 Definition Partikelhorizont mit Bezugszeitpunkt t_{min} (Variante B)

Da man den Partikelhorizont PH(7) als Vorwärtslichtkegel des Lichtkegels –LK(7) interpretieren kann, bietet sich eine zweite Definition für den Partikelhorizont an.

Definition Partikelhorizont mit Bezugszeitpunkt t_{min} (Variante B): Haben auf dem negativen Lichtkegel $-LK(t_{min})$ (auf der negativen Halbachse der radialen Koordinatenachse) vor dem Zeitpunkt t_{min} (also auf dem Rückwärts-Lichtkegel, $t < t_{min}$) emittierte Photonen den Beobachter im Scheitelpunkt t_{min} passiert oder wurden Photonen zum Bezugszeitpunkt am Ort des Beobachters erzeugt und in Richtung der positiven radialen Koordinatenhalbachse emittiert, so ist der (physikalische) Abstand dieser Photonen vom Beobachter auf dem Vorwärts-Lichtkegel zum Zeitpunkt t (mit $t > t_{min}$) der Partikelhorizont mit Bezugszeitpunkt t_{min} (in physikalischen Koordinaten) zum Zeitpunkt t. Anstelle von Photonen könnte man auch wieder von mit Lichtgeschwindigkeit übermittelten Informationen sprechen.

Es treffen sich auf dem Partikelhorizont zum Zeitpunkt t mit Bezugszeitpunkt t_{min} also ruhende Objekte, die zum Zeitpunkt t_{min} auf dem Lichtkegel LK(t) gelegen waren, mit (beweglichen) Photonen, die vor dem Zeitpunkt t_{min} auf dem Lichtkegel -LK(t_{min})=PH(t_{min}) emittiert wurden und den Beobachter zum Zeitpunkt t_{min} passiert haben oder die zum Bezugszeitpunkt t_{min} erzeugt wurden.

Definition Variante A behandelt zum Zeitpunkt *t* (z.B. *t*=HEUTE) beobachtbare Ereignisse, Definition Variante B Ereignisse, die nur durch die kosmologische Theorie erschlossen werden können.

6 Partikelhorizonte PH(CMB) und Partikelhorizont PH(Urknall)

Beide Definitionen können auch auf den Partikelhorizont PH(CMB) angewandt werden, der in Abbildung 1 thematisiert ist. Allerdings kann nicht mehr von Galaxien gesprochen werden. Wir nehmen einfach hypothetische ruhende Objekte rOb(HEUTE,CMB) und rOb(21,CMB) am Ort der Emission in Richtung auf den Beobachter an. Zum Zeitpunkt der Emission der Mikrowellen-Hintergrundstrahlung, 371′127 Jahre nach dem Urknall, liegen diese ruhenden Objekte 41.447549 bzw. 46.720514 Millionen Lichtjahre vom Beobachter entfernt auf den Lichtkegeln LK(HEUTE) bzw. LK(21). Die Weltlinien (in blau) dieser ruhenden Objekte schneiden in Abbildung 1 schließlich in einer (physikalischen) Entfernung von 45.874209 bzw. 80.642966 Mrd. Lichtjahren vom Beobachter den Partikelhorizont PH(CMB) bei *t*=HEUTE bzw. *t*=21 Mrd. Jahren nach dem Urknall.

Rückwärts-Lichtkegel LK(CMB) und Partikelhorizont

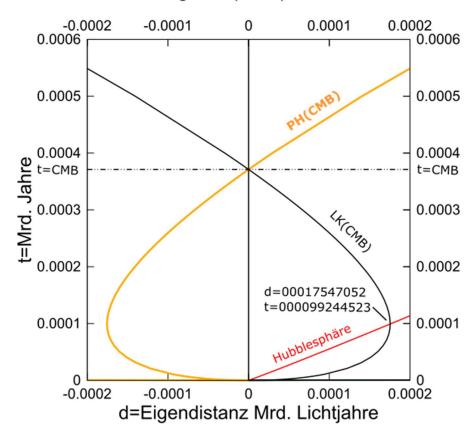
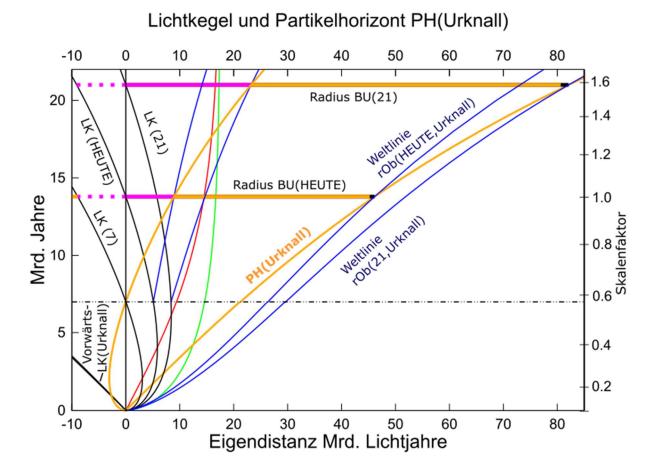


Abbildung 3: Rückwärts-Lichtkegel LK(CMB) und Partikelhorizont

Der Zusammenhang zwischen LK(CMB) und PH(CMB) entspricht dem zwischen LK(7) und PH(7), allerdings lassen sich die Beziehungen aufgrund unterschiedlicher Größenverhältnisse nicht mehr in nur einer Zeichnung darlegen. Abbildungen 3 und 4 sind Ausschnitte aus Abbildung 1. Abbildung 3 zeigt den Rückwärtslichtkegel LK(CMB) zusammen mit seiner negativen Variante -LK(CMB)=PH(CMB).

Die Koordinaten des Schnittpunkts von LK(CMB) mit der Hubblesphäre (dem größten Abstand des Rückwärtslichtkegels vom Beobachter) sind zahlenmäßig aufgeführt.

Ereignishorizont sowie LK(7), LK(HEUTE), LK(21) liegen in Abbildung 3 zeichnerisch (von den Achsen ununterscheidbar) über der positiven, PH(7) über der negativen waagerechten Koordinatenachse bei (ungefähr) t=0.


Lichtkegel und ruhende Objekte bei t=CMB

0.03 0.04 0.06 0.07 0.08 0.09 0.05 Weltine roblike if E. Cans 0.001 0.001 0.0008 0.0008 Ereignishorizont 0.0006 0.0006 0.0004 0.0004 t=CMB 0.0002 0.0002 0 0.06 0.03 0.04 0.05 0.07 0.08 0.09 d=Eigendistanz Mrd. Lichtjahre

Abbildung 4: Lichtkegel und ruhende Objekte bei t=CMB

Abbildung 4 zeigt in blau den Anfang der Weltlinien ruhender Objekte, die sich aufgrund der Expansion des Universums von den Orten auf den Lichtkegeln LK(HEUTE) und LK(21) entfernen. Diese Objekte befanden sich bei t=CMB an jenem Ort, von dem Licht in Richtung auf den Beobachter emittiert wurde. Dieses Licht hat den Beobachter im jeweiligen Scheitel der beiden Lichtkegel (HEUTE bzw. 21 Mrd. Jahre nach dem Urknall) erreicht. (Lichtkegel und Weltlinien liegen anfangs nahe beisammen und sind in der Zeichnung nicht unterscheidbar.)

Abschließend ersetzt Abbildung 5 bei sonst gleichem Aufbau wie Abbildung 1 den Partikelhorizont PH(CMD) durch den Partikelhorizont PH(Urknall) und die Weltlinien der ruhenden Objekte der PH(CMD)-Zeichnung durch die Weltlinien solcher mitbewegten Objekte, die PH(Urknall) bei t=HEUTE bzw. t=21 Mrd. Jahre nach dem Urknall schneiden. Beide Weltlinien haben ihren Anfangspunkt bei t=0. PH(Urknall)=-LK(Urknall) (nur auf der positiven Achse) und LK(Urknall) (nur auf der negativen Achse) können als Nur-Vorwärts-Lichtkegel interpretiert werden. Die Weltlinien (in blau) der ruhenden Objekte rOb(HEUTE,Urknall) und rOb(21,Urknall) schneiden in einer (physikalischen) Entfernung von 46.132820 bzw. 82.088286 Mrd. Lichtjahren vom Beobachter den Partikelhorizont PH(Urknall) bei t=HEUTE bzw. t=21 Mrd. Jahren nach dem Urknall.

Abbildung 5: Lichtkegel und Partikelhorizont PH(Urknall)

7 Schnittpunkte zwischen Lichtgeodäten in Zahlen

Unter den vielen Schnittpunkten zwischen Weltlinien sollen hier kurz die Schnittpunkte zwischen Lichtkegeln und Partikelhorizonten genauer dargelegt werden. Es treffen sich bei den genannten Koordinaten also Lichtstrahlen, die von Schnittpunkten zwischen Lichtkegeln und positiver radialer Koordinatenachse bei t=7 Mrd. Jahre nach dem Urknall und t=CMB auf den Beobachter gerichtet wurden (die physikalischen Abstände vom Beobachter wurden in den Kapiteln 4 und 6 erwähnt), mit Lichtstrahlen, die bei t=7 Mrd. Jahre nach dem Urknall und t=CMB vom Ort des Beobachters in Richtung auf die positive radiale Koordinatenachse (also exakt in Gegenrichtung) emittiert wurden.

Schnittpunkt	Zeit Mrd. Jahre nach dem	Physikalischer Abstand vom
	Urknall	Beobachter Mrd. Lichtjahre
LK(HEUTE), PH(7)	9.9255255	3.3422263
LK(21), PH(7)	12.287032	6.5974122
LK(HEUTE), PH(CMB)	1.8085524	5.0503486
LK(21), PH(CMB)	2.5309729	7.1389424

8 Literatur

- [1] N. Aghanim et al.: Planck 2018 results. VI. Cosmological parameters, arXiv 1807.06209v4, August 2021, https://arxiv.org/pdf/1807.06209.pdf
- [2] W.Lange: Von Lichtkegeln im Standardmodell der Kosmologie (ΛCDM-Modell), viXra 2212.0155, https://vixra.org/abs/2212.0155
- [3] Kosmologie-Rechner WELTTABELLEN Weltlinien des Standardmodells der Kosmologie (ΛCDM-Modell) in Tabellenform, viXra 2209.0113, https://vixra.org/abs/2209.0113
- [4] Matts Roos: Introduction to Cosmology, Third Edition, Wiley Chichester 2003