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INTRODUCTION

The four color theorem was demonstrated by Wolfgang HAKEN and Kenneth APPEL in 1976 ( ref [1]). Their
demonstration was strongly inspired by that of Alfred KEMPE (1879) which turned out to be false.

Their demonstration is based on two key concepts.

1) The notion of a set of “inevitable” configurations : any minimal pentachromatic map (the smallest map
requiring five colors to be colored) will contain at least one of the configurations in this set. For example, the
set consisting of the single configuration “a country with five neighbors” is “inevitable”. Any minimal
pentachromatic map will contain “a country with five neighbors”.

2) The other notion is “reducibility”: a configuration is reducible if it can be shown that it cannot belongto a
minimal pentachromatic map.

The demonstration of HAKEN and APPEL consisted in finding an “inevitable” set of “reducible” configurations, i.e.
about 1500 configurations requiring a calculator to verify their reducibility. (This number was subsequently reduced
a little but the calculator remained necessary ...) ( ref [2])

Just as KEMPE had shown that a country with five neighbors was “inevitable” in a minimal pentachromatic map,
HAKEN and APPELshowed that “two neighboring countries each with five neighbors” is an “inevitable” configuration
(ref[3]) (see figure 1)

Figure 1- Two neighboring countries each having five neighbors.

In other words, any minimal pentachromatic map will contain this configuration.

Of course this configuration was considered “irreducible” by the authors, at least with the reduction methods they
used.

The whole idea of this demonstration is to propose a reduction of this configuration.

DEMONSTRATION
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The planar maps we will work on are the same as those of HAKEN and APPEL, namely the normal maps of KEMPE.

A planar map is normal if at no point do more than three countries meet. Furthermore, these maps do not have any
cuts of degree O or degree 1 (a cut being a closed line passing through borders and separating the graph formed by
the map into exactly two subgraphs. The degree of the cut being the number of borders crossed).

A cut of degree O would indicate that the map is not connected and is actually formed of two separate maps.
A degree 1 cut would indicate that the border crossed by the cut is not a border between two countries.
KEMPE showed that if the four color theorem is true for normal maps then it is true for all planar maps.

HAKEN and APPELworked on the “dual” maps of these normal maps (the dual of a map is obtained by replacing the
countries by points and the borders between two countries by connections between these points)

These dual maps are called “triangulation”. The original map is obviously equivalent to its dual map (see figure 2).

Figure 2— A normal planar map and its dual map (triangulation)

For our part, we will work directly on the normal map rather than on its triangulation.

The first thing we're going to do is replace the property “being colorable in four colors” with “being Hamiltonian in
even loops”.

A planar P3 graph (all its points have three neighbors) is Hamiltonian in even loop if it contains one or more loops
consisting of an even number of points and passing through all the points of the graph (see Figure 3).
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Figure 3 - Hamiltonian planar P3 graph in even loops.

In the planar case, we notice that this graph is easy to color in four colors. It is enough to choose two colors for the
inside of the loops and the other two for the outside.

Conversely, if a planar P3 graph is colored in four colors and if we surround the groups of countries having two
arbitrarily chosen colors, we then obtain even loops passing through all the points of the graph (see figure 4).

3

Figure 4 - Countries of color 1 and 3 are surrounded and the graph is indeed Hamiltonian in even loops.

We will no longer say “colorable in four colors” but “Hamiltonian in even loop (HEL)” assuming the equivalence of
these two properties in the case of planar graphs.

There is a simple algorithm (denoted algo. ) to move from one set of even loops to another (see the detailed
description of algo. in Appendix 1). In the case of planar graphs this algorithm corresponds to the permutation of
colors (see Figure 5).

Page 40n 23



3 algo, 3

Figure 5 — lllustration of algo.

Note : This algorithm can be used on any P3 graph having a Hamiltonian in even loops solution (HEL) even if this
graph is not planar.

From now on, we will only be concerned with two colours and they concern “connections” and no longer
“countries”.

A connection is said to be “black” (denoted C=B) if a loop passes through it and it is said to be “white” (denoted
C=W) otherwise (see figure 6).

Figure 6 — Black connection and white connection.

An important property of algo. is that whatever two connections C; and C, belonging to a Hamiltonian in even loops
graph P3 there exists a particular HEL solution such that C; = B and C, = B.

Page 5on 23



There are therefore three possible statuses for a pair of connections C,and C,in aP3 HEL graph :

1. C,andC,each belongto a differentevenloop. We will say that they have a “separate e-e” status (see figure
7a).

2. C;andC,belongto the same even loop and are connected by an even path. We will say that they have an
even status (see figure 7b).

3. C;and(C;belongto the same evenloop and are connected by an odd path. We will say that they have an odd
status (see figure 7c).

9]

(7a) “separate e-e” status (7b) “even” status (7c) “odd” status

Figure 7 — the three statuses linked to the ownership of algo.

Note : A couple C; and C, can have several statuses.
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We will now demonstrate a theorem that will be necessary for the demonstration of the main theorem. It is the
double status theorem.

Double Status Theorem:

In a planar P3 graph of rank less than ng (ng is the rank of the minimal map) if two non-consecutive connections C,
and C, belonging to the same country have an “odd” status and if no degree 3 cut passes through these two
connections then they have at least one other status among the following three statuses: “separated e-e” or
“separated 0-0” or “even”.

The “separated 0-0” status meansthat C; and C, each belongto a different odd loop (a graph P3 can be HEL and have
Hamiltonian in odd loops solutions (HOL)).

Demonstration:

If two connections C; and C, non-consecutive and belonging to the same country, have an odd status then consider

the following transformation (see figure 8):
A B
— | D
™ T
This transformation preserves planarity because C; and C, belong to the same country.

/ odd path \

odd loop

Figure 8 - Transformation

We see that this transformed graph is Hamiltonian in odd loops but since its rank has not changed and it does not
have a degree 1 cut by virtue of the hypotheses, it is also HEL.

Given an HEL solution passing through C'; and C', we therefore have the following three cases (see figure 9):

N AN

. : even 3 odd
C 1 C 2 path 1 c 2 path

S A S NN

(9a) separate e-e status (9b) even status (9c) odd status

Figure 9—The three possible statuses for C'; and C',

Page 70n 23



Which gives after the restoration of C;and C,

even
loop
€ loop
2
/ C2 /
\ y @ b m
even path

(10a) even status (10b) separate e-e status (10c) separate 0-o status

Figure 10 — the three statuses of C, and C, after recovery

We have clearly demonstrated the double status theorem (see Appendix 2 for an example of the application of this
theorem).

Note : If we could have demonstrated as easily that two connections with even status could have another status
among the statuses “odd”, “separated e-e” and “separated 0-0” then the demonstration of the four color theorem
would have been even simpler.
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Let us now return to the proof of the four color theorem and present our reduction (see Figure 11):

Figure 11 - we replace the configuration “two neighboring countries each havingfive neighbors” by the three
connections AB, FC and ED

The reduced graph is obtained by removing four connections (see Figure 12).

Figure 12 - The four connections deleted.

Itis therefore of rank ny— 4 and is consequently HEL
We will assume that planarity is preserved and that there are no cuts of degree 0 or degree 1.

We notice that whatever the colors (B and W) taken by C;, C, and C;in the reduced graph, it is always possible to
“restore” the initial configuration.

Figure 13 illustrates seven of the eight possible cases and their restoration. In the case where all three connections
Ci, G, and C; are black then there are two possible restorations (see Figure 14).
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(a)

(c)

(e)

o

o

(8)

Figure 13 - recovery results.
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(a) (b)

Figure 14 — The two restorations in the case of three black connections.

i

We see thatif all these restorations were in even loops then the four color theorem would be demonstrated. But is
this really the case?

There are only three cases where this recovery is not HEL. This is when C, =B, C,= B and C;= W, C; and C, having odd
status (Figure 15), respectively C, =B, C, =W and C; =B, C; and C; having odd status (Figure 16) and C; =W, C,=Band
C; =B and C, and C; having odd status (Figure 17).

odd loop —

/

odd path
~

Figure 15 - Case 1: C, =B, C, =B and C;=W, C, and C, having an odd status and its restoration.
We see that two odd loops are formed.
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odd path
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odd loop

Figure 16 - Case 2: C, =B, C, =W and C; =B, C; and C; having an odd status and its restoration.
We see that two odd loops are formed.

odd path

e

3>

L)

!

odd loop

Figure 17 - Case 3: C; =W, C, =B and C; =B and C, and C; having an odd status and its restoration.
We see that there is formation of two odd loops.

These three cases are actually the same because it is possible to move from one to the other by algo. (applied to the
reduced graph) (see figure 18).
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odd path e odd path odd path
s

Figure 18 - According to algo. if, in case 1, we choose to keep C, black for the application of algo. then algo. will make
C, white and C; black with C; and C; of odd status (case 2). Similarly if we now apply algo. keeping the connection C;
black then C; will become white and C, will become black with C, and C; of odd status (case 3) (see appendix for
description of algo.).

Let us take for example case 1 (figure 15).

For the pair C, and C, we can invoke the double status theorem demonstrated previously and claim that C, and C, can
also have one of the following three statuses:

C,and C, “even”; C;and C, “separated e-e”; C; and C, “separated 0-0”

The two statuses “even” and “separated e-e” bring us back to the previous cases and the recovery will be HEL
whatever the color of C;

What about the case where C, and C, have separate o-o status ?
In this new Hamiltonian in odd loops solution C; can be either W or B.

If C3= W the recovery will be (figure 19):

/

odd path —
1 2

N

odd path -

Figure 19 — Recovery if C; is white.

We see that the two odd paths are now connected and the recovery is therefore HEL.
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If C; =B the recovery will be (figure 20):

odd path —~

o

odd path —

Figure 20 — Recovery if C; is black.

We see that this recovery is HEL.

It is possible to show that we are indeed in the conditions of application of the double status theorem for the
connections C;and C,.

CONCLUSION

We have clearly demonstrated using the double status theorem that the inevitable configuration of W. HAKEN and K.
APPEL consisting of two neighboring countries each having five neighboring countries is in fact reducible, which
completes the demonstration of the four colors theorem.
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ANNEXES

Appendix 1: Description of algoe
Let there be a planar map and an HEL solution for this map.

Figure A1-1- A planar map and a HEL solution for this map.
Let's apply algo. to this HEL solution

The first step is to choose a black connection, here called C.

I

Figure A1-2 — Choice of a connection C = B.

The second step is to keep black all connections that have even status with C.

NV

Figure A1-3 — lllustration of the second step of algo..

The third step is to make black all the connections that were white in the original HEL solution.
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Figure A1-4 — Result of algo..

It is easy to show that this algorithm always converges to a Hamiltonian in even loops solution.

Case of multiple even loops: The first step is to choose one of the loops and choose a black connection on this loop.
Connection called here C.

Nil

Figure A1-5— A planar map and a HEL solution in two even loops.

The second step is to apply the procedure previously described but only to the chosen loop.

N

Figure A1-6 — Selection of a connection C = B in the first loop.
We see that the algorithm stops near the second loop.

The third stepis to choose a black connection on the second loop of the original HEL solution (here C') and apply the
algorithm to this second loop.
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Figure A1-7 — Result of algo..

We can always choose the same connection as long as the Hamiltonian solution is in several even loops.

|

" VAN

Figure A1-8 — Sequence of steps of algo. applied to the connection C.

Note : one can similarly define an algo, that can eventually converge to odd loops. Many very interesting conjectures
can be made from these two algorithms in relation to the original Hamiltonian path problem.
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Appendix 2: An example of applying the double status theorem to a particular planar P3 graph

dt‘)
>
C/

\

Figure A2-1— A planar map and a HEL solution passing through C; and C,.
In this planar (normal) map with a HEL solution we see that C; and C, have an odd status.

Let us apply the transformation described in the double status theorem (see Figure 8).

b=
O-
j

v
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\

Figure A2-2— Application of the transformation to C;and C,
We see that C'; and C', have a “separate 0-0” status as expected.

This transformed graph is always planar and always of rank lower than n, it is therefore HEL.
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Figure A2-3 — A HEL solution of the transformed graph.

Given an HEL solution for this graph, we see that C'; and C', now have a “separate e-e” status.

Now let's restore C, and C,.

e

Figure A2-4— Recovery of C;and C,.

We see that C; and C, now have an even status.
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Appendix 3: example of application of the reduction
Let the planar graph be assumed to be minimal pentachromatic (non-HEL of rank ng).

Figure A3-1— A planar map that we assume minimal pentachromatic.

Let us apply our reduction to the loop ABCDEFGH. We obtain the following figure.

<

e

Figure A3-2— Apply the reduction to the ABCDEFGH configuration.

We find our three connections C,, C,, C; and a planar graph of rank ny— 4 which is therefore HEL.
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Let the following HEL solution be given.

S

~—

[

Figure A3-3 — A HEL solution of the reduced graph.
We are in the unfavorable case where C,; =B, C,=B and C;= W and C; and C, have an “odd” status.

If we reestablish the original graph for this solution we would obtain:

Figure A3-4 — Recovery of the original graph.

And we find that indeed this recovery is not HEL.
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By virtue of the double status theorem we invoke another status for C; and C, in the reduced loop.

For example the following HEL solution.

)

Figure A3-5— A new HEL solution for the reduced graph.

We see that in this solution the pair C,, C, now has an “even” status.
We can restore the original graph:

Figure A3-6 — Getting a new HEL solution for the original graph.

This recovery is indeed HEL which contradicts the initial hypothesis.
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Thanks

| would like to thank my wife and daughter, both accomplished computer scientists, who helped me put this
demonstration together.
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