
The Čerenkov Radiation from Dipole and the

Lorentz Contraction

Miroslav Pardy
Department of Physical Electronics
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Abstract

The power spectral formula of the Čerenkov radiation of the system of two opposite
charges is derived in the framework of the source theory. The distance between charges
is supposed to be relativistically contracted which manifests in the spectral formula. The
knowledge of the spectral formula then can be used to verification of the Lorentz contraction
of the relativistic length of dipole. A feasible experiment for the verification of the dipole
contraction is suggested.

PACS numbers: 03.30.+p, 41.60.Bq

1 Introduction

The Čerenkov radiation of magnetic and electric dipoles is of interest even though the dipole

radiation for individual particles (neutron, electron) is very weak. We present a method of

calculation which is somewhat different from that used in literature (Ginzburg et al., 1959).

A physical dipole consists of two equal and opposite point charges. Its field at large distances

(i.e., distances large in comparison to the separation of the poles) depends almost entirely on

the dipole moment. A point (electric) dipole is the limit obtained by letting the separation tend

to 0 while keeping the dipole moment fixed. The field of a point dipole has a particularly simple

form, and the order-1 term in the multipole expansion is precisely the point dipole field.

The power spectral formula of the Čerenkov radiation of the system of two opposite charges

(dipole) is here derived in the framework of the source theory. The distance between charges is

supposed to be relativistically contracted which manifests in the spectral formula. The knowl-

edge of the spectral formula then can be used to verification of the Lorentz contraction of the

relativistic length of dipole.

2 The Čerenkov effect

The fast moving charged particle in a medium when its speed is faster than the speed of light

in this medium produces electromagnetic radiation which is called the Čerenkov radiation.
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The prediction of Čerenkov radiation came long ago. Heaviside (1889) investigated the

possibility of a charged object moving in a medium faster than electromagnetic waves in the

same medium becomes a source of directed electromagnetic radiation. Kelvin (1901) presented

an idea that the emission of particles is possible at a speed greater than that of light. Somewhat

later, Sommerfeld (1904) proposed the hypothetical radiation with a sharp angular distribution.

However, in fact, from experimental point of view, the electromagnetic Čerenkov radiation was

first observed in the early 1900’s by experiments developed by Marie and Pierre Curie when

studying radioactivity emission. In essence they observed the emission of a bluish-white light

from transparent substances in the neighborhood of strong radioactive source. But the first

attempt to understand the origin of this was made by Mallet (1926; 1929a; 1929b), who observed

that the light emitted by a variety of transparent bodies placed close to a radioactive source

always had the same bluish-white quality, and that the spectrum was continuous, with no line or

band structure characteristic of fluorescence. Unfortunately, these investigations were forgotten

for many years. Čerenkov experiments (Čerenkov, 1934) was performed at the suggestion of

Vavilov who opened a door to the true physical nature of this effect (Bolotovskii, 2009).

This radiation was first theoretically interpreted by Tamm and Frank (1937) in the framework

of the classical electrodynamics. The source theoretical description of this effect was given by

Schwinger et al. (1976) at the zero temperature regime and the classical spectral formula was

generalized to the finite temperature situation in the framework of the source theory by author

(Pardy, 1989). The similar problems was solved and published by author in some articles (Pardy,

1983; 2000b; 2002a; 2004).

The question arises, what is the relation of the Čerenkov radiation to the relativistic length.

The relativistic length can be formed by the system of charges of the linear chain, or, only by

the two charges of the rest distance l. The problem of the radiation of the composed systems

of charges is not new and it was defined for the first time in the pioneering work of Ginzburg

(1940). Later by Frank (1942; 1946), it was given the solution of the problem of the Čerenkov

radiation of the electrical and magnetic dipoles oriented parallel and perpendicularly to the

direction of motion. While the parallel orientation gives no surprising result the situation with

the perpendicular orientation gives special anomaly which has been frequently discussed in the

physical journals. In year 1952 was published the article discussing the Čerenkov radiation of

the arbitrary electrical and magnetic multipoles (Frank, 1952). The review of the problems of

the Čerenkov radiation of the magnetic and electrical multipoles was given by Frank (1984). The

extensive work concerning the radiation by uniformly moving sources is elaborated (Ginzburg,

1986). However, the problem of testing the Lorentz contraction by Čerenkov effect is here

considered for the first time (Pardy, 1997a; Cavalleri, 2000).

While the original articles on the Čerenkov radiation involve only determination of the

spectral formula, it is possible interest the question on the relationship between the spectral

formula and the Lorentz contraction of the length of some linear object. The specific situation

forms the system of two equal or opposite charges of the rest distance l. Then, we can expect that

the spectral formula of the Čerenkov radiation involves the Lorentz contraction which follows

immediately from the Lorentz transformation for coordinates between systems S′ and S:

x′ = γ(x− vt); γ =
1√

1− v2/c2
, (1)

where x are coordinates in the system S and x′ are corresponding coordinates in the system

S′ which is moving with velocity v relative to the system S. If the left and right points of the
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moving rod are x1, x2 in the system S and x′1 and x′2 in the system S′, then from equation (1)

we have:

x′2 − x′1 = γ(x2 − x1), (2)

which can be transcribed in the form

a = l
√

1− v2/c2, (3)

where l is the rest length of the rod and a is the length of the moving rod.

The formula (3) is well known and there was general belief since the formulation of the

special theory of relativity by Einstein that the so called Lorentz contraction (3) should be

visible to the eye. Also Lorentz stated in 1922 that the contraction could be photographed.

Similar statements appear in other references concerning the special theory of relativity.

However, the special theory of relativity predicts that the contraction can be observed by a

suitable experiment with the nuance that there is distinction between observing and seeing. The

situation was analyzed for instance by Terrell (1959) and Weisskopf (1960) and others (Dreissler,

2005), who proved that the photograph obtained by an observer depends only on the place and

time of taking the picture and is independent of the relative motion of observer and object

photographed.

It would be incorrect to state that we see the length contraction, or, that the length ”appears”

to be contracted by the factor
√

1− v2/c2. As first pointed out by Lampa (1924) and later by

Penrose (1959), Terrell (1959) and Weisskopf (1960) what one sees and how an object appears

are very different from what is given by the Lorentz contraction. The reason is that various

parts of the object are different distances from the observer, and in order for the light rays from

the various parts to arrive at the observer at the same time, they must have left the object at

different times. It follows from the special theory of relativity that the length contraction is the

result of the measurement procedure and the time dilation is also the measurement procedure

as was shown by Fok (1961) and author (Pardy, 1969).

If the Fok interpretation of the relativistic measurement is correct, then it involves the

Lorentz contaction as the measurement procedure. Such statements are not involved in the

Einstein publications (Einstein, 1916, 1919).

In other words, an observation of the shape of a fast moving object involves simultaneous

measurement of the position of a number of points on the object. If done by means of light, all

the quanta should leave the surface simultaneously, as determined in the observer position at

different times. In such observation the data received must be corrected for the finite velocity of

light, using measured distances to various points of the moving object. In seeing the object, on

the other hand, or photographing it, all the light quanta arrive simultaneously at the eye having

departed from the object at various earlier times. In such a way this should make a difference

between contracted shape which is in principle observable and the actual visual appearance of

a fast-moving object. The photograph of a relativistically moving object with a camera using,

instead of photons, particles moving much faster than the velocity of light, eliminates the non-

desired optical effects and the film would show the object shortened by a factor of
√

1− v2/c2.
in the direction of motion. However, such a camera is not physically possible, and we can ask

how to correct for the optical effects so that only the relativistic effects will be observed on a

photograph taken by an ordinary camera.
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Obviously, the Čerenkov radiation of the charged two-particle system involves the Lorentz

contraction of their rest distance. We will consider the system of two equal charges e which

have the mutual rest distance l. The Lorentz contraction will be involved in the power spectral

formula for this linear system.

In this article we evaluate in source theory the power spectral formula of the Čerenkov

radiation of the dipole moving with velocity v in the dielectric medium. Radiative corrections

to this dipole Čerenkov radiation are not considered. In conclusion, a feasible experiment is

suggested for the verification of the Lorentz contraction.

3 The field formulation of the problem

Source theory (Schwinger, et al. 1976; Schwinger, 1970; Dittrich, 1978) is the theoretical

construction which uses quantum-mechanical particle language. Initially it was constructed for

description of the particle physics situations occurring in the high-energy physics experiments.

However, it was found that the original formulation simplifies the calculations in the electrody-

namics and gravity where the interactions are mediated by photon or graviton respectively.

The basic formula in the source theory is the vacuum to vacuum amplitude (Schwinger, et

al. 1976):

< 0+|0− >= e
i
h̄
W (S), (4)

where the minus and plus tags on the vacuum symbol are causal labels, referring to any time

before and after space-time region where sources are manipulated. The exponential form is

introduced with regard to the existence of the physically independent experimental arrange-

ments which has a simple consequence that the associated probability amplitudes multiply and

corresponding W expressions add (Schwinger, 1970; Dittrich, 1978).

The electromagnetic field is described by the amplitude (4) with the action

W (J) =
1

2c2

∫
(dx)(dx′)Jµ(x)D+µν(x− x′)Jν(x′), (5)

where the dimensionality of W (J) is the same as the dimensionality of the Planck constant h̄.

Jµ is the charge and current densities. The symbol D+µν(x− x′), is the photon propagator and

its explicit form will be determined later.

It may be easy to show that the probability of the persistence of vacuum is given by the

following formula (Schwinger, et al. 1976):

| < 0+|0− > |2 = exp{−2

h̄
ImW} d

= exp{−
∫
dtdω

P (ω, t)

h̄ω
}, (6)

where we have introduced the so called power spectral function (Schwinger, et al. 1976) P (ω, t).

In order to extract this spectral function from ImW , it is necessary to know the explicit form

of the photon propagator D+µν(x− x′).
The electromagnetic field is described by the four-potentials Aµ(φ,A) and it is generated by

the four-current Jµ(c%,J) according to the differential equation (Schwinger, et al. 1976):

(∆− µε

c2
∂2

∂t2
)Aµ =

µ

c
(gµν +

n2 − 1

n2
ηµην)Jν (7)

with the corresponding Green function D+µν :
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Dµν
+ =

µ

c
(gµν +

n2 − 1

n2
ηµην)D+(x− x′), (8)

where ηµ ≡ (1,0), µ is the magnetic permeability of the dielectric medium with the dielectric

constant ε, c is the velocity of light in vacuum, n is the index of refraction of this medium, and

D+(x− x′) was derived by Schwinger et al. (1976) in the following form:

D+(x− x′) =
i

4π2c

∫ ∞
0

dω
sin nω

c |x− x′|
|x− x′|

e−iω|t−t
′|. (9)

Using formulas (5), (6), (8) and (9), we get for the power spectral formula the following

expression (Schwinger et al., 1976):

P (ω, t) = − ω

4π2
µ

n2

∫
dxdx′dt′

sin nω
c |x− x′|
|x− x′|

cos[ω(t− t′)]×

×
{
%(x, t)%(x′, t′)− n2

c2
J(x, t) · J(x′, t′)

}
. (10)

Now, we are prepared to apply the last formula to the situations of the two equal charges

moving in the dielectric medium.

4 The Čerenkov radiation of the dipole

It is usually supposed that the Čerenkov radiation in electrodynamics is produced by uniformly

moving charge with the constant velocity. Here we consider the system of two particles with the

oposite charges e with the constant mutual distance a = |a| moving with velocity v in dielectric

medium. We follow the author articles (Pardy, 1997a; 2007).

In this situation the charge and the current densities for this system are given by the by the

following equations:

% = −eδ(x− vt) + δ(x− a− vt) (11)

J = −evδ(x− vt) + evδ(x− a− vt). (12)

where a is the vector going from the left charge to right charge with the length of a = |a| in the

system S.

Let us suppose that v ‖ a ‖ x. Then, after insertion of eq. (11) and (12) into eq. (10),

putting τ = t′ − t, and β = v/c, where v = |v|, we get instead of the formula (10) the following

relation:

P (ω, t) = 2P1(ω, t)− P2(ω, t)− P3(ω, t), (13)

where

P1(ω, t) =
1

4π2
e2µω

c2
v

[
1− 1

n2β2

] ∫ ∞
−∞

dτ
sinnωβτ

τ
cosωτ (14)

P2(ω, t) =
1

4π2
e2µω

c2
v

[
1− 1

n2β2

] ∫ ∞
−∞

dτ
sinnωβ|av + τ |
|av + τ |

cosωτ (15)
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P3(ω, t) =
1

4π2
e2µω

c2
v

[
1− 1

n2β2

] ∫ ∞
−∞

dτ
sinnωβ|av − τ |
|av − τ |

cosωτ. (16)

The formula (14) contains the known integral:

J1 =

∫ ∞
−∞

dτ
sinnωβτ

τ
cosωτ =

{
π; nβ > 1
0; nβ < 1

. (17)

Formulas (15) and (16) contain the following integrals:

J2 =

∫ ∞
−∞

dτ
sinnωβ|av + τ |
|av + τ |

cosωτ (18)

and

J3 =

∫ ∞
−∞

dτ
sinnωβ|av − τ |
|av − τ |

cosωτ. (19)

Using the integral (17) we finally get the power spectral formula P1 of the produced photons:

P1(ω, t) =
e2

4π

µω

c2
v

[
1− 1

n2β2

]
; nβ > 1 (20)

and

P1(ω, t) = 0; nβ < 1. (21)

Using transformations

a

v
+ τ = T,

a

v
− τ = T, (22)

we get after evaluations of the corresponding integrals J2, J3 the corresponding spectral formulas

P2, P3:

P2(ω, t) =
e2

4π

µω

c2
cos

(
ωa

v

)
v

[
1− 1

n2β2

]
= P3; nβ > 1 (23)

and

P2(ω, t) = P3(ω, t) = 0; nβ < 1. (24)

The sum of the partial spectral formula form the total radiation emitted by the Čerenkov

mechanism of the two-charge system:

P (ω, t) = 2(P1 − P2) = sin2
(
aω

2v

)
e2

4π

µω

c2
v

[
1− 1

n2β2

]
;nβ > 1 (25)

and

P (ω, t) = 0; nβ < 1. (26)

The zero point of function P (ω, t) are as follows:

ω0 = 0;
ωna

2v
= nπ; n = 1, 2, 3, . . . . (27)
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From the last equation follows

a =
2v

ω
= l

√
1− v2

c2
, (28)

or,

l =
2πv√
1− v2

c2

1

ω
. (29)

If we know the n-th and m-th zero points with the corresponding ω-s and velocity of the

charges we can exactly determine their rest distance. Then, the rest distance determined by

the formula (29) can be compared with the rest distance of the charges obtained by direct

measurement and in such a way we can verify the Lorentz contraction.

5 A feasible experiment for dipole

While the simultaneous acceleration of the system of the two equal charges can be performed

immediately in every laboratory with the circle accelerator, the simultaneous acceleration of the

system of two opposite charges can be performed only with the laser accelerator (Pardy, 1997b,

2000b, 2001, 2002b, 2003a). In this equipment the opposite charges are accelerated at the same

acceleration as a result of the Compton effect. It is not excluded that the successful acceleration

can by performed by the magnetronic laser (Pardy, 2003b), or by the lasers with two beams

(Pardy, 2005, 2006).

6 Discussion

We have demonstrated in the past (Pardy, 1997a) that in case of the system of two equal

charges - double pole, the Lorentz contraction can be determined from the spectral formula of

the Čerenkov radiation. Obviously this effect can be involved into the group of the classical

relativistic effects. In case of the system of opposite charges, or, in other words, of the dipole

we have instead of cos(ωa/2v) function sin(ωa/2v) in the final formula. To our knowledge the

determination of the Lorentz contraction using the Čerenkov effect was not considered in theory

and in experiment. After performing the experiment with the Čerenkov radiation of the system

of the two charges it will be definitely confirmed the Lorentz contraction.
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