
 Bandlimited Functions and Timelimited Functions on Adeles 
Gorou Kaku 

E-mail : sabosan@m01.fitcall.net	!
Abstruct:    Let (Ff )(h) be the Fourier transform of f (t).  We will call the member of 

B = {  f (x)  | (F f )(h) = 0, 6h, uhu > X } 
“bandlimited”.  On the other hand, let 

Df (t) = �  

for f (t).  We will call Df (t) “timelimited”.  We will think of  bandlimited  functions  and  
timelimited functions on adeles.  !
!

0. !
    Let K/Q be a number field of degree n.  Denote the completion of K at  the  place 
p of K by Kp. !
    Let x!R.  Then - x = {- x} + n where {- x}![0, 1) and n!Z.  Put 

m(x) = {- x},   x!R. 

Let x!Qp.  Then x = {x}p + n where n!Zp.  Namely {x}p is the fractional part of a p- 
adic number x.  Put   

 m(x) = {x}p,     x!Qp. 

Denote the trace of the element p of K by 
Sp = p + p(1) + g + p(n-1), 

where p, p(1), g,  p(n-1) are conjugates of p.  If K = R then Sp = p, if K = C then Sp 
= S(x + iy) = 2x and if K = Kp/Qp then Sp!Qp. !!
Definition 0.1.       Let k be a local field, namely k is R, C or Kp.  Put 

K(p) =def m(Sp)        p!k. !!
Proposition 0.1.    k and � are isomorphic by the map 

                                                 k          $         !  
                                                h                      h 
                                                 h          8      e2riK(hp) . !!

f (t) ⋅ ⋅ ⋅  t ≤ T /2

   0  ⋅ ⋅ ⋅   T /2 < t

⎧
⎨
⎪

⎩⎪

k̂

k̂
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Proposition 0.2.     Let dp be a Haar measure on k.  The Fourier transform of f (p)!

L1(k) is defined by 

(Ff )(h) = . 

The inverse Fourier transform is that 

f (p) = ! . 

 f (ξ)e−2πiΛ(ηξ ) dξ
k∫

 (Ff )(η)e2πiΛ(ξη ) dη
k∫
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!
1. 

!
    We will think of the function space Cc

3(Kp) of compactly  supported,  locally  con-
stant functions.  The space Cc

3(Kp) is regarded as the p-adic Schwartz-Bruhat space 
S(Kp).  We will regard L2(Kp) as the completion of S(Kp)  and  we  shall  think  of  the 
Fourier transform of f (x)! L2(Kp).  Any function in  Cc

3(Kp)  can  be  written  as  the 
sum of characteristic functions of balls.  Set 

B#Npn (a) = { x ! Kp  
| ux-aup # Npn }. 

Denote B #Npn (0) by B #Npn.  Let Supp( f ) 3 B #Np f.  Choose a suitable n such that B #Npn 

3 B #Np f.  Then we can choose a finite set of points { ai
 } 3 B #Np f and we obtain 

B #Np f  = . 

We can write f (x) as 

                                 f (x) = ;  ci ! C, ai ! Kp and ni ! Z 

where jB# Npn (ai)(x) is the characteristic function of B#Npn (ai).  We can  regard  f (x)  as 
the function of the form 

f (x) = ! . 

where pNpn is the the characteristic function of B #Npn. 

    Let 

B = {  f (x)! L2(Kp)  | (F f )(~) = 0, 6~, u~up > X }. !
Proposition 1.1.     Put Np-n # X.  Then f (x)! B has the form 

f (x) = ! . !
Proof.                  Let  f (x) = .   Now,  (FpNpn)(~) = NpnpNp-n

 (~)  and 

(FpNpn
 (x-a))(~) = e-2riK(a~)(FpNpn )(~).  We see that 

 (F f )(~) = ! . 

Then (F f )(~) vanishes for u~up > Np-n. 
X !

    Let Npd # T < Npd+1 and put 

Df (x) = !  

for f (x)! L2(Kp).  Let 
D = { Df (x) | f (x)! L2(Kp)}. !

ai + B≤Npn
i  = 1

k

⨿

 ciϑB
≤Npn

(ai )
(x)

i  = 1

k∑

 ci  ξ
Npn

(x- ai)i  = 1

k∑

 ci  ξ
Npn

(x- ai)i  = 1

k∑
 ci  ξ

Npn
(x- ai)i  = 1

k∑

 ci  e−2πiΛ(aiω )Npnξ
Np− n

(ω )
i  = 1

k∑

f (x) ! x
p
≤ T

   0    ! x
p
> T

⎧
⎨
⎪

⎩⎪
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Proposition 1.2.      Df (x) has the form  .  Here 

B #Npd = . !
Proof.   We see that 

                   Df (x) = f (x)pNpd (x) = . 

Choose a suitable m such that B #Npm 3 B #Npd and choose a finite set of  points  { a’i }	
3 B #Npd.  It will be enable us to write down 

cg jB# Npn (ag)+B# Npd (x) = . 

So we can write !  like � .  We may say that Df (x) 
has a form 

!  = ! . 
Here 

B #Npd = . 
X !

Theorem 1.1.    Suppose that Df (x) has the form �  and -d # -m # 

d.  Then the Fourier transform (FDf )(~) vanishes for u~up > T. !
Proof.     The Fourier transform (FDf )(~) vanishes for u~up > Np-m.  Here  m # d.  So 
-d # -m.  Moreover, let -d # -m # d.  Then we  see  that  (FDf )(~) vanishes  for 
u~up > T.  Namely, Df (x) is a member of B of X = T. 

X 

 ci  ξ
Npm

(x-ai)i  = 1

l∑
ai + B≤Npm

i  = 1

l

⨿

ciϑB
≤Npn

(ai )  ∩  B
≤Npd

(x)
i  = 1

k∑

 c  'iϑB
≤Npm

(a'i )
(x)

i  = j

h∑
ciϑB

≤Npn
(ai )  ∩  B

≤Npd
(x)

i  = 1

k∑  c  'iϑB
≤Npm

(a  'i )
(x

i  = 1

l∑ )

 ciϑB
≤Npm

(ai )
(x)

i  = 1

l∑  ci  ξ
Npm

(x-ai)i  = 1

l∑

ai + B≤Npm
i  = 1

l

⨿

 ci  ξ
Npm

(x-ai)i  = 1

l∑
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! !!!
2. !

Definition 2.1.        Let L2
A be the class of all complex valued functions f (t) defined 

for -A # t # A and integrable in absolute square in the interval (-A, A). !
  ��Given any T > 0 and any X > 0, we can find a countably infinite set of real functions 
}0(t), }1(t), }2(t), g  and a set of real positive numbers 

m0 > m1 > m2 > g 
with the following properties: 

    i.    The }i (t) are bandlimited, i.e. its Fourier transform (F}i)(~) vanishes for u~u>  

      X; orthogonal on the real line and complete  in  B = {  f (t)! L2(R)  | (F f )(~) = 0,  

   6~, u~u> X }: 

                           =      i, j = 0, 1, 2, g . 

    ii.    In the interval -T/2 # t # T/2, the }i are orthogonal and complete in L2
T/2: 

                            =      i, j = 0, 1, 2, g . 

    iii.    For all values of t, real or complex, 

                            mi }i (t) =    i = 0, 1, 2, g . 

Both the }’s and the m’s are functions of c = X T/2.  In order to make this  depend-
ence explicit, we write !            mi = mi (c), }i (t) = }i (c, t),   i = 0, 1, 2, g. !
    Put 

an = ( f, }n (c, t))L2(R) = . 

We shall call  the Fourier series expansion of f (t).  Let  f (t)! L2(R) and 

let !  be the Fourier series expansion of f (t): 

f (t) + !  t! R. 

Since !  doesn’t always converge and it doesn’t  always  coincide  with 
f (t), we shall use “+”.  We can calculate as follows; 

                 0 # < f (t) -  <L2(R)
2
  

                = < f (t) <L2(R)
2 

- 2( f (t), )L2(R) + ( , )L2(R) 

ψ i(t)ψ j (t)dt−  ∞

∞

∫ 0    i ≠ j

1    i = j

⎧
⎨
⎪

⎩⎪

ψ i(t)ψ j (t)dt−  T/2

T/2

∫ 0      i ≠ j

λi    i = j

⎧
⎨
⎪

⎩⎪

 
sin(Ω(t − s))

π (t − s)
 ψ i(s)ds−T/2

T/2

∫

f (t)}n(c,  t)dt−  ∞

∞

∫
 ann  = 0

∞∑ }n(c,  t)
 ann  = 0

∞∑ }n(c,  t)
 ann  = 0

∞∑ }n(c,  t)
 ann  = 0

∞∑ }n(c,  t)

an}n(c,  t)
n  =  0

N

∑

an}n(c,  t)
n  =  0

N

∑ an}n(c,  t)
n  =  0

N

∑ an}n(c,  t)
n  =  0

N

∑
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                               = < f (t) <L2(R)
2 

- 2  +  

                   = < f (t) <L2(R)
2 

- 2  +  

                = < f (t) <L2(R)
2 

- . 

Thus 

< f (t) <L2(R)
2  
$   

         and 
  < f (t) -  <L2(R)

2
 = < f (t) <L2(R)

2 
- . 

When N $ 3, 

< f (t) <L2(R)
2  
$   

         and 
 < f (t) -  <L2(R)

2
 = < f (t) <L2(R)

2 
- . 

We can consider 

 < f (t) -  <L2(R)
2
 = < f (t) -  <L2(R)

2. 

It must be instructive that  we  can’t  show  < f (t) -  <L2(R)
2
 = < f (t) <L2(R)

2 

 
- directly.   Now, we see that finite  sums   fN (t) =   permit 
approximations to f (t) by bandlimited functions, i.e. fN (t).  Let f (t)!B !

< f (t) -  <L2(R)
2
 = < f (t) <L2(R)

2
 -  = 0 

since the }n (c, t) are complete in B.  So, { fN (t)} converges to f (t) in L2 norm.  Then 
f (t) can be integrable term by term, and 

�  = !   

                                         =  = mn(c)an . !
Proposition 2.1.           Let f (t)! L2(R) and suppose that f (t) is not a bandlimited 
function.  Let !  be the Fourier series expansion of f (t): 

                       f (t) + ,  an =  and t! R. 

Then ! < 3 and there exists a function h(t) = !  of B but f (t) ! 
h(t).  !
Proof.    It holds that  < f (t) <L2(R)

2  
$ .  So < 3 because < f (t) <L2(R)

2 
< 

3.  Thus there exists a function h(t) = !  of B.  But f (t) ! h(t) since f (t) 
isn’t bandlimited. 

X !
An interesting argument is given by D. Slepian and H.O. Pollak.  Let f (t)!L2

T/2.  Then 

                     f (t) = ,  an = 1/mn(c) . 

( f (t),  an}n(c,  t) )
L2 (!)

n  =  0

N

∑ ( am}m(c,  t),  an}n(c,  t) )
L2 (!)

m, n  =  0

N

∑

an

2

n  =  0

N

∑ an

2

n  =  0

N

∑

an

2

n  =  0

N

∑

an

2

n  =  0

N

∑

an}n(c,  t)
n  =  0

N

∑ an

2

n  =  0

N

∑

an

2

n  =  0

∞

∑

lim
N→ ∞

an}n(c,  t)
n  =  0

N

∑ an

2

n  =  0

∞

∑

lim
N→  ∞

an}n(c,  t)
n  =  0

N

∑ an}n(c,  t)
n  =  0

∞

∑

 ann  = 0

∞∑ }n(c,  t)
 an

2
n  = 0

∞∑  ann  = 0

N∑ }n(c,  t)

lim
N→  ∞

an}n(c,  t)
n  =  0

N

∑ an

2

n  =  0

∞

∑

f (t)}n(c,  t)dt−  T /2

T /2

∫ ai}i (c,  t)i  =  0
∞∑

−  T /2

T /2

∫  }n(c,  t)dt

ai}i (c,  t)}n(c,  t)dt−  T /2

T /2

∫i  =  0
∞∑

 ann  = 0

∞∑ }n(c,  t)
 ann  = 0

∞∑ }n(c,  t) f (t)}n(c,  t)dt−  ∞

∞

∫
 an

2
n  = 0

∞∑  ann  = 0

∞∑ }n(c,  t)

 an

2
n  = 0

∞∑  an

2
n  = 0

∞∑
 ann  = 0

∞∑ }n(c,  t)

 ann  = 0

∞∑ }n(c,  t) f (t)}n(c,  t)dt−  T/2

T/2

∫
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The }i are orthogonal and complete in L2
T/2, 

<  f (t) <L2
T/2

2
 =  < 3. 

Let  

h(t) = ! ,  t!R. 

Namely f (t) is a piece of a function h(t).  Suppose that !  converges.  It 

means < 3.  We can consider that h(t) is integrable term by term,  then  an 

= ! .  The series !  is the Fourier series expansion  of  h(t)  
and h(t) is bandlimited.  On the other hand, if !  doesn’t converge then 
� grows without bound for increasing N.  The function h(t) can not be  band-
limited.  We shall consider that !  is also the Fourier series expansion of 

h(t).  Namely, !  is the “formal” Fourier series  expansion  of  non-band-
limited function h(t).  Here m0(c) > m1(c) > m2(c) > g.  The mn(c) approach  zero  rap-

idly for sufficient large n.  Thus it may be happen that � grows without bound 

for increasing N but ! converges. !
    For any function f (t)! L2(R), put 

Df (t) = 
.
 

Df (t) isn’t bandlimited in general.  We will think of approximations to Df (t) by band- 
limited functions fN (t) = .  Here 

        < Df (t) -  <L2(R)
2
  

   = < Df (t) <L2(R)
2 

- 2( Df (t), )L2(R) + ( ,  )L2(R) 

      = < Df (t) <L2(R)
2 

- 2  +  
    = < Df (t) <L2(R)

2 
- 2  + . 

    Let f (t)! L2
T/2.  Then      

f (t) = ,  an = 1/mn(c) . 

Now 
!  = ! . 

Thus 
 = mn(c)an . 

We can obtain the Fourier series expansion of Df (t): 

  Df (t) + ! .  

We shall adopt ! .  Then 

                  < Df (t) - <L2(R)
2
 = < Df (t) <L2(R)

2 
- . 

When N $ 3, 

< Df (t) -  <L2(R)
2
 = < Df (t) <L2(R)

2 
- . 

Here, 

 λn (c)n  =  0
∞∑ an

2

 ann  = 0

∞∑ }n(c,  t)

 ann  = 0

∞∑ }n(c,  t)
 an

2
n  = 0

∞∑
h(t)}n(c,  t)dt−  ∞

∞

∫  ann  = 0

∞∑ }n(c,  t)
 ann  = 0

∞∑ }n(c,  t)
 an

2
n  = 0

N∑
 ann  = 0

∞∑ }n(c,  t)
 ann  = 0

∞∑ }n(c,  t)

 an

2
n  = 0

N∑
 λn (c)n  =  0

∞∑ an

2

f (t) ⋅ ⋅ ⋅  t ≤ T /2

   0  ⋅ ⋅ ⋅   T /2 < t

⎧
⎨
⎪

⎩⎪

 ann  = 0

N∑ }n(c,  t)

 an}n(c,  t)n  =  0
N∑

 an}n(c,  t)n  =  0
N∑  an}n(c,  t)n  =  0

N∑  an}n(c,  t)n  =  0
N∑

 n  =  0
N∑ ( Df (t),  an}n(c,  t) )L2 (! )  m, n  =  0

N∑ ( am}m (c,  t),  an}n(c,  t) )L2 (! )

 n  =  0
N∑ an( Df (t),  }n(c,  t) )L2 (! )  n  =  0

N∑ an

2

 ann  = 0

∞∑ }n(c,  t) f (t)}n(c,  t)dt−  T/2

T/2

∫

f (t)}n(c,  t)dt−  T/2

T/2

∫ Df (t)}n(c,  t)dt−  ∞

∞

∫

Df (t)}n(c,  t)dt−  ∞

∞

∫

λn(c)an in  =  0
∞∑  }n(c,  t)

λn(c)an in  =  0
∞∑  }n(c,  t)

λn(c)an ⋅  }n(c,  t)n  =  0
N∑ λn(c)

2 an

2
n  =  0
N∑

λn(c)an in  =  0
∞∑  }n(c,  t) λn(c)

2 an

2
n  =  0
∞∑
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< Df (t) <L2(R)
2 =  =  = <  f (t) <L2

T/2

2. 

The }i are orthogonal and complete in L2
T/2, so <  f (t) <L2

T/2

2
 = < 3.  Thus   

< Df (t) <L2(R)
2 = . 

We can say that 

< Df (t) -  <L2(R)
2
 =  - , 

from the proposition 2.1, ! < 3, so 

                                    = ! . 

Consider the proposition 2.1, we  see  that  !   is  bandlimited  but 

Df (t) ! ! . 

    On the other hand, there exists another function 

h(t) = !    t! R. 
We will adopt it.  Then 

                  < Df (t) - <L2(R)
2
 = < Df (t) <L2(R)

2
 - 2  + . 

Therefore, 

             < Df (t) - <L2(R)
2
 = < Df (t) <L2(R)

2
 - 2  +  

                                                          = ! - ! . 

(i)    If !  converges then 

< Df (t) - <L2(R)
2  

= . 

Here �  is bandlimited but Df (t) ! ! . 

(ii)    If  !  doesn’t converge then � grows  without  bound  for 
increasing N and 

< Df (t) - <L2(R)
2 diverges. 

So Df (t) ! ! .  !
Theorem 2.1.     Df (t) can’t have the form ! .  Namely Df (t) can’t be 

bandlimited even in a sense “formally”.  !
Proof.    Suppose that Df (t) has the form ! .  Then      

f (t) = ,  an = 1/mn(c) . 

for f (t)! L2
T/2 since the restricted Df (t) to the interval [-T/2, T/2] is  f (t).  However 

it is impossible for Df (t) to have such a form according to the above argument. 
X !

 Df (t)Df (t)dt
−  ∞

∞

∫  f (t) f (t)dt
−T /2

T /2

∫
 λn (c)n  =  0

∞∑ an

2

 λn (c)n  =  0
∞∑ an

2

λn(c)an in  =  0
∞∑  }n(c,  t)  λn (c)n  =  0

∞∑ an

2 λn(c)
2 an

2
n  =  0
∞∑

λn(c)
2 an

2
n  =  0
∞∑

λn(c)(1− λn(c)) an

2
n  =  0
∞∑

λn(c)an in  =  0
∞∑  }n(c,  t)

λn(c)an in  =  0
∞∑  }n(c,  t)

 ann  = 0

∞∑ }n(c,  t)

 an}n(c,  t)n  =  0
N∑ λn(c) an

2
n  =  0
N∑ an

2
n  =  0
N∑

 ann  = 0

∞∑ }n(c,  t)  λn (c)n  =  0
∞∑ an

2
 an

2
n  = 0

∞∑
 an

2
n  = 0

∞∑  λn (c)n  =  0
∞∑ an

2

 ann  = 0

∞∑ }n(c,  t)

 ann  = 0

∞∑ }n(c,  t) (1-λn(c)) an

2
n  =  0
∞∑

 ann  = 0

∞∑ }n(c,  t)  ann  = 0

∞∑ }n(c,  t)

 ann  = 0

∞∑ }n(c,  t)  an

2
n  = 0

N∑

 ann  = 0

∞∑ }n(c,  t)
 ann  = 0

∞∑ }n(c,  t)

 ann  = 0

∞∑ }n(c,  t)

 ann  = 0

∞∑ }n(c,  t)

 ann  = 0

∞∑ }n(c,  t) f (t)}n(c,  t)dt−  T/2

T/2

∫
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3. !

    Let f (z)! L2(C).  We will think of the Fourier transform 

(Ff )(~) = ! . 

Set z = x + iy and dz = 2dxdy.  Then 

(Ff )(~) = � . 

Let ~ = n + io.  K(~(x + iy)) = -2(nx - oy) mod 1.  Now K(~x) = -2nx mod 1 and 
K(~iy) = 2oy mod 1.  It holds that e-2riK(~(x + iy)) = e-2riK(~x)

 e-2riK(~iy)).  We can com-
pute as follows; 

(Ff )(~) = !  

               = 2! . 

Denote  by (Fy f )(i~).  We denote (Ff )(~) as follows; 

(Ff )(~) = !  

                            = 2  = 2(Fx (Fy f )(i~))(~). 
!
Definition 3.1. 

B = {  f (x + iy)! L2(C) | (Fx (Fy f )(i~))(~) = 0, 6~, u~u> X}. 
We shall call the member of B “bandlimited”. !
Lemma 3.1.    Fix a positive real number X.  Let c = T/2$2X.  The Fourier transform 

 of }n (c, t) vanishes for u~u > X. !
Proof.   Let ~ = n + io.  Then 

!  = !  = ! . 

Thus !  vanishes for u2Re~u> 2X.  If u~u # X then uRe~u # X.  Thus 

if uRe~u > X then u~u > X.  Since !  vanishes for uRe~u> X,  it  van-
ishes for u~u > X.  

X !
Lemma 3.2.   If (Fx f )(~) vanishes for u~u > X then f (z) = f (x + iy) has the  Fourier 

series expansion � .  If  f (z) = f (x + iy) has the  Fourier  series  expan-

sion  then (Fx f )(~) vanishes for u~u > X. !
Proof.        Since f (z)! L2(C); the function f (x + iy), as a function of x, is considered 
to be integrable in absolute square.  Suppose  that  (Fx f )(~)  vanishes  for  u~u > X, 
namely f (x + iy) is “bandlimited”.  From the  lemma, }n (c, x)  is  also  “bandlimited”. 
Therefore  f (x + iy) has the Fourier series expansion: 

 f (z)e−2πiΛ(ωz ) dz
C∫

2 f (x+ iy)e−2πiΛ(ω (x+iy))

−  ∞

∞

∫−  ∞

∞

∫ dxdy

2 f (x+ iy)e−2πiΛ(ω x )e−2πiΛ(ωiy)

−  ∞

∞

∫−  ∞

∞

∫ dxdy

f (x+ iy)e−2πiΛ(iω y) dy
−  ∞

∞

∫( )e−2πiΛ(ω x ) dx
−  ∞

∞

∫
f (x+ iy)e−2πiΛ(iω y) dy

−  ∞

∞

∫
2 f (x+ iy)e−2πiΛ(ω x )e−2πiΛ(ωiy)

−  ∞

∞

∫−  ∞

∞

∫ dxdy

(Fy f )(iω )e−2πiΛ(ω x ) dx
−  ∞

∞

∫

}n(c,  t)e−2πiΛ(ωt ) dt
−  ∞

∞

∫

}n(c,  t)e−2πiΛ(ωt ) dt
−  ∞

∞

∫ }n(c,  t)e−2πiΛ((µ+iν )t ) dt
−  ∞

∞

∫ }n(c,  t)e−2πi(−2µ )t dt
−  ∞

∞

∫
}n(c,  t)e−2πiΛ(ωt ) dt

−  ∞

∞

∫
}n(c,  t)e−2πiΛ(ωt ) dt

−  ∞

∞

∫

 an}n(c,  x)n  = 0

∞∑
 an}n(c,  x)n  = 0

∞∑
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                 ,   an = . 

Suppose  that  f (z) = f (x + iy)  has  the  Fourier  series  expansion  � .  

Then (Fx f )(~) vanishes for u~u > X since  of  }n (c, x)  vanishes 
for u~u > X. 

X !
Since f (z)!L2(C); the function (Fy f )(i~), as a  function  of  x,  is  considered  to  be 
integrable in absolute square.  According to the  above  arguments,  we  can  say  as 
follows; !
Proposition 3.1.    Let f (z)!L2(C). 

f (z)!B if and only if (Fy f )(i~) has its Fourier series expansion . !
    For any function f (z)! L2(C), put 

Df (z) = 
.
 

!
Set z = x + iy and think of Df (x + iy).  Consider it as  a  function  of  x.   If  T/2 <uxu 

then T/2 <uzu.  Thus Df (x + iy) vanishes for uxu> T/2.  Here 

(Fy Df )(i~) = . 
It also vanishes for uxu> T/2.  We can apply the case of R to this case. !
Theorem 3.1.     Df (z) can’t be bandlimited even in a sense “formally”. !

 an}n(c,  x)n  = 0

∞∑ f (x+ iy)}n(c,  x)dx−  ∞

∞

∫
 an}n(c,  x)n  = 0

∞∑
}n(c,  x)e

−2πiΛ(ω x ) dx
−  ∞

∞

∫

 an}n(c,  x)n  = 0

∞∑

f (z) ! z ≤ T /2

  0    !  T /2< z

⎧
⎨
⎪

⎩⎪

Df (x+ iy)e−2πiΛ(iω y) dy
−  ∞

∞

∫
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4. !
    The ring of adeles is defined as 

AK = #  

Denote the ring of integers of Kp by Op. 

 = {(rp)!  
| rp!Op for almost all p}. 

The number field K has d1 real conjugate fields and 2d2  imaginary  conjugate  fields. 
Here n = d1 + 2d2.  The field K has d1 + d2 infinite places.  Set 

  Kp = R for d1 infinite places and Kp = C for d2 infinite places. 

Therefore 
 = Rd1# C

d2 , Rn. 

Denote the set of infinite places by S3 = {p31, g, p3d1 ; p3d1+1, g, p3d}. 
    For each of places p, let drp be a Haar measure on Kp such that 

� = 1  for almost all p. 

Then we can write a Haar measure dr on AK like dr = Pp drp.  Let f (r)  be  a  complex 
valued function on AK.   For each of places p, if fp(Op) = {1} for  almost  all  p,  then 
we can write f (r) like f (r) = Pp fp (rp) similarly. !
Definition 4.1.  
        L1(AK) 

 = { f (r) = Pp fp (rp) 
|  fp(rp)!L1(Kp) and fp(Op) = {1} for almost all p}. !

Proposition 4.1.        AK and are isomorphic by the map 

                                                AK         $           
                                                h                        h 
                                                 h           8       e2riK(hr) . !
Since Kp(Op) = {0},  

e2riK(hr) = exp(2riRpKp(hprp)) = Pp e2riKp(hprp). !
Proposition 4.2.      The Fourier transform of f (r)!L1(AK) is defined by 

(Ff )(h) = . 

The inverse Fourier transform is that 

f (r) = ! . !
It holds that 

Kpp<∞
'∏ Kpp  | ∞∏

Kpp<∞
'∏ Kpp<∞∏

Kpp  | ∞∏

drp
Op
∫

ÂK

ÂK

f (r)e−2πiΛ(ηr ) dr
AK
∫

(Ff )(η)e2πiΛ(rη ) dη
AK
∫

�11



 = Pp . 

    Denote the Schwartz-Bruhat space on AK by S(AK).  We define a function  of  the 
space as linear combinations of the product   where  fp3i

!S(Rm),  fp !S(Kp) 
and fp is the characteristic function pNp0 of Op for all but finitely many p.  We will  re-
gard L2(AK) as the completion of S(AK).  Let S be some finite set {p1, g, pk} , S3.  
Set 

AS = # . 

Let AS = # .  AS is a compact subgroup of AS .   We  shall  identify  Kp 

(p < 3) with Kp # .  Then we can decompose AS as follows; 
AS = # AS. 

We see that 
AK = ,S AS . 

For any function f (r)! L2(AK), we will consider it as a function on AS. 

    Let f (r)!L2(AK), as a function on AS, !  f (r) = ! #! . 

The Fourier transform of f (r) will be 

(Ff )(h) = ! # ! . 
Let r!AK.  We will think of r = ( rp )p # 3!AS where S = {p1, g, pk} , S3.   Its  abso-
lute value will be 

uru = urp1up1
 g urpkupk

 $  $  

                                   = Np1
n1 Np2

n2 g Npk
nk  $  $  

where ni!Z, np # 0 for pgS and tp3!R.  If uru ! 0 then we will see that np = 0 for  al-
most places pgS.  Let 

B = {  f (r)!L2(AK) | (F f )(h) = 0, uhu> X}. !
Definition 4.2.         For a given X > 0, let X = Np1

n1 g Npk
nk  $  $ .  

If   (F f pi)(hpi) = 0 for hpi  uhpiupi > Npi
ni ,   (F f p)(hp) = 0 for hp uhpup > Npnp   pgS   and  

(F f p3)(hp3) = 0 for hp3 uhp3up3 > tp3   then   f (r)! B. !
Let 

D = {  f (r)! L2(AK) |  f (r) = 0, uru> T}. !
Definition 4.3.       For a given T > 0, let T = Np1

h1 g Npk
hk  $  $ . 

Put 

Dfpi (rpi) = 
,    

Dfp(rp) =  

and 

f (r)e−2πiΛ(ηr ) dr
AK
∫ fp(rp)e

−2πiΛp (ηprp ) drp
Kp
∫

 fp(rp)p∏

Kpp∈S∏ Opp∉S∏
1{ }p∈S∏ Opp∉S∏

1{ }p'∈p∏
Kpp∈S∏

fp(rp)p∈S∏ ξ
Np0

(rp)p∉S∏

(Ffp)(ηp)p∈S∏ (Fξ
Np0

)(ηp)p∉S∏

rp pp∉S∏ rp∞ p∞p∞∈S∞
∏
Npnpp∉S∏ tp∞p∞∈S∞

∏

Npnpp∉S∏ tp∞p∞∈S∞
∏

Nphpp∉S∏ sp∞p∞∈S∞
∏

fp i (rp i ) ! | rp i |p i ≤ Np i
hi

   0      ! | rp i |p i > Np i
hi

⎧
⎨
⎪

⎩⎪

fp(rp) ! | rp |p ≤ Nphp

   0      ! | rp |p > Nphp

⎧
⎨
⎪

⎩⎪
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Dfp3(rp3) = 
.
 

Then � ! D. !
    Let T = Np1

h1 g Npk
hk  $  $ and let Df (r)!D for the given T. 

(1)    For the places of {p1, g, pk} 3 S, 
Dfpi (rpi) =  

and 
          (FDfpi )(hpi) = . 

(FDfpi )(hpi) vanishes for uhpiu> Npi
-mi . 

(2)    For the places pgS,  

Dfp (rp) = 
.
 

!
Put {hp} = hp if hp # 0 and {hp} = 0 if hp > 0.  Then  

     (FDfp)(hp) = Np{hp}pNp-{hp}
 (hp) and it vanishes for uhpu> Np-{hp} . 

(3)  For the places p3! S3, 

              Dfp3(rp3) can’t be bandlimited.  Only 0(rp3) can be bandlimited. 
Then 

(F 0)(hp3) vanishes for uhp3u> tp3 where tp3 is an arbitrary positive real number. !
Let  

Df (t) = Dfp1 (rp1) g Dfpk (rpk) $ $ . 

The Fourier transform of Df (r) vanishes for uhu> X  where  X = Np1
-m1  g Npk

-mk $ 

!  $ ! .     !!

fp∞ (rp∞ ) ! | rp∞ |p∞ ≤ sp∞

     0      ! | rp∞ |p∞ > sp∞

⎧
⎨
⎪

⎩⎪

Dfp(rp)p∏

Nphpp∉S∏ sp∞p∞∈S∞
∏

 cgξNp imi (rp i -ag)g  =  1
li∑

 cge
−2πiΛ(agηpi )

Npmiξ
Np i

−mi (ηp i )g  =  1
li∑

ξ
Nphp

(rp) ! hp ≤ 0

ξ
Np0

(rp)  ! hp > 0

⎧
⎨
⎪

⎩⎪

Dfp(rp)p∉S∏ 0(rp∞ )p∞∈S∞
∏

Np−{hp}p∉S∏ tp∞p∞∈S∞
∏
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Appendix 

    Here we define the Fourier transform of f (t) as 

(Ff )(~) = F(~) = ! . 
The Fourier inverse transform is 

f (t) = ! . 

cf.  Define (Ff )(~) = F(2r~).  Then 
(Ff )(~) = F(2r~) = ! . 

and 
f (t) = !  = !  = ! . !

    The functions S0n(c, t) are called “angular prolate spheroidal functions”.  They  are 
real for real t, are continuous functions of c for 0 # c and can be extended to be  en-
tire functions of the complex variable t.  They are orthogonal in (-1, 1) and are com-
plete in  L2(-1, 1).   The  functions  R0n

(1)(c, t)  are  called  “radial  prolate  spheroidal 
functions”. They differ from angular prolate spheroidal functions only by a real scale 
factor, !

R0n
(1)(c, t) = kn(c)S0n(c, t). 

!
We have the following equations; !

       R0n
(1)

(c, 1)
2 S0n(c, t) = ,                            (1)  

                   2in
 R0n

(1)
(c, 1) S0n(c, t) =       n = 0, 1, 2, g .        (2) 

!
Set mn (c) =  and set un(c)2 = .  We define 

!
}n (c, t) = S0n(c, ). 

    Properties ii. follow from definitions and the  orthogonality  and  completeness  of 

S0n(c, t) in (-1, 1). 
    From the equation (1), 

    R0n
(1)

(c, 1)
2 S0n(c, ) = . 

We have 

 �  = ! . 

f (t)e− iωt dt
−  ∞

∞

∫
1
2π (Ff )(ω )eiωt dω

−  ∞

∞

∫

f (t)e−2πiωt dt
−  ∞

∞

∫
1
2π F(ω )eiωt dω

−  ∞

∞

∫ 1
2π F(2πω )ei2πωt  d2πω

−  ∞

∞

∫ (Ff )(ω )e2πiωt dω
−  ∞

∞

∫

2c

π
sinc(t − s)

π (t − s)−1

1

∫  S
0n(c,  s) ds

eicts
 S

0n(c,  s)ds−1

1

∫
2c

π
(R

0n

(1) (c,  1))2 S
0n(c,  t)

2 dt
−1

1

∫
λn(c)

un(c)
2t
T

2c

π
2t
T

sin c(2t
T − s)

π (2t
T − s)

 S0n(c,  s)ds
−1

1

∫

sin c(2t
T − s)

π (2t
T − s)

 S0n(c,  s)ds
−1

1

∫ sin c ⋅ 2
T (t − T

2 ⋅ s)
π 2

T (t − T
2 ⋅ s)

 S0n(c,  s)ds
−1

1

∫
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Put ! $ s = v.  Then ds = ! dv.  -T/2 # v # T/2 since -1 # s # 1.  So 

  !  = !  

!                                          = !                       c = X! . 

We obtain 

R0n
(1)

(c, 1)
2 S0n(c, ) = . 

Multiplying both the sides by ! , 

mn (c)}n (c, t) = . 

The assertion of iii. is established. 

    From the equation (2), 

2in
 R0n

(1)
(c, 1) S0n(c, ) =  

                                                 = !    c = X ! . 

Put s = .  Then ds = d~.  -X # ~ # X since -1 #  # 1.  So 

 !  = !  = � . 

Here 

S0n(c, ) =  S0n(c, ). 

We have 

2in
 R0n

(1)
(c, 1) S0n(c, ) = . 

Thus 

2inXR0n
(1)

(c, 1) S0n(c, ) = . 

!
Multiplying both the sides by � ! , 

}n (c, t) = . 

Since R0n
(1)

(c, 1) = , 

                           = in  =  in       c = X . 

Thus it turns out that 

T
2

2
T

sin c ⋅ 2
T (t − T

2 ⋅ s)
π 2

T (t − T
2 ⋅ s)

 S0n(c,  s)ds
−1

1

∫ sin c ⋅ 2
T (t − v)

π ⋅ 2
T (t − v)

 

−T/2

T/2

∫ S0n(c,2v
T

) 2
T
dv

sin X(t − v)

π (t − v)
 

−T/2

T/2

∫ S0n(c,2v
T

) dv T
2

2c

π
2t
T

sin X(t − v)

π (t − v)
 

−T/2

T/2

∫ S0n(c,2v
T

) dv

λn(c)

un(c)

sin X(t − v)

π (t − v)
 

−T/2

T/2

∫ }n(c,  v) dv

2t
T

eic⋅2 tT ⋅sS0n(c,  s)ds
−1

1

∫
eiXts

 S0n(c,  s)ds
−1

1

∫ T
2

ω
X

1
X

ω
X

eiXts
 S0n(c,  s)ds

−1

1

∫ eiΩt⋅ωΩ
 S0n(c,  ωΩ−Ω

Ω

∫ ) 

1
Ω dω 1

Ω eiωt
 S0n(c,  ωΩ−Ω

Ω

∫ ) dω

ω
X

2 ⋅ ωT
2Ω

T

2t
T

1
Ω eiωt

 S0n(c,  
2 ⋅ ωT

2Ω

T−Ω

Ω

∫ ) dω

2t
T

eiωt
 S0n(c,  

2 ⋅ ωT
2Ω

T−Ω

Ω

∫ ) dω

1
2π

λn(c)

un(c)

inXR
0n

(1)(c,  1)

π
1

2π eiωt}n(c,  
ωT
2Ω−Ω

Ω

∫ ) dω

λn(c)π
2c

inXR
0n

(1)(c,  1)

π
Ω 2 ⋅λn(c)π
π 2 ⋅2c

Ωλn(c)

πT
T
2
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!
in  }n (c, t) = . 

!
We have 

}n (c, t) = . 

!
It means that 

F(}n (c, t))(~)  =  
.
 

Namely }n (c, t) are bandlimited.  The orthogonality and completeness of S0n(c, t) in 

(-1, 1) leads the orthogonality and completeness of S0n(c, ) in (-X, X).  Therefore 

}n (c, ) are orthogonal and complete in (-X, X).   Since   is 

the Fourier transform of }n (c, t), we can show the orthogonality and the  complete-

ness of }n (c, t) in B by Parseval’s theorem.  The statement of i. is established.   

!!!!!!
!

Ω
πT λn(c) 1

2π eiωt}n(c,  
ωT
2Ω−Ω

Ω

∫ ) dω

1
2π eiωt i−n 1

λn(c)
πT
Ω }n(c,  

ωT
2Ω )⎛

⎝
⎞
⎠−Ω

Ω

∫  dω

i−n 1
λn(c)

πT
Ω }n(c,  

ωT
2Ω ) ⋅ ⋅ ⋅  ω ≤ Ω

                       0             ⋅ ⋅ ⋅       ω > Ω

⎧

⎨
⎪

⎩
⎪

ω
X

ωT
2Ω i−n 1

λn(c)
πT
Ω }n(c,  

ωT
2Ω )
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