Bandlimited Functions and Timelimited Functions on Adeles

Gorou Kaku

E-mail : sabosan@m01 .fitcall .net

Abstruct: Let (Ff)(1) be the Fourier transform of £(z). We will call the member of
B={fx) | (FH)=0,v1,11>Q}
“bandlimited”. On the other hand, let

Df(t) = {

for f(¢). We will call Df(¢) “timelimited”. We will think of bandlimited functions and
timelimited functions on adeles.

f@ - |t|<T/12
0 - T/2<]|

Let K/Q be a number field of degree n. Denote the completion of K at the place
p of K by Kp.

Let x&R. Then —x = {—x}+n where {—x}<[0, 1) and n€Z. Put
Ax) ={-x}, x<R.
Let x€Q,. Then x = {x},+n where nEZ,. Namely {x}, is the fractional part of a p-

adic number x. Put
Alx) =x}p, x€Q),.
Denote the trace of the element £ of K by
Sé’ — 54_4:(1) + ... +§(n—l),
where &, £V, ..., £ are conjugates of £. If K = R then S¢é = ¢, if K = C then S&
= S(x+iy) = 2x and if K = K»/Q), then SE€Q),.

Definition 0.1. Let k be a local field, namely k is R, C or Kp. Put
A(&) =det A(SE) EEk.

Proposition 0.1. kand k are isomorphic by the map

A

k — k
W w
n . ezmz\(nf)



Proposition 0.2. Let dé be a Haar measure on k. The Fourier transform of f(&)&
L'(k) is defined by
(F) = | f&e ™ de.

The inverse Fourier transform is that

£&) = | FHme ™ an.



We will think of the function space C.*(Ky) of compactly supported, locally con-
stant functions. The space C.*(Kp) is regarded as the p-adic Schwartz-Bruhat space
S(Ky). We will regard L*(Ky) as the completion of S(Kp) and we shall think of the
Fourier transform Off(X)ELZ(Kp). Any function in C.,*(Ky) can be written as the
sum of characteristic functions of balls. Set

B_yw(a) = {xerI lx—alp < Np" }
Denote B <y (0) by B<yp. Let Supp(f) EB <. Choose a suitable n such that B <yy
C B<w. Then we can choose a finite set of points { a; } € B <y and we obtain
k
Baw = Hai+Bsz” .
We can write f(x) as -
Jx) = 2?21 % o,(®); ¢i€C, a;€Ky and ni€Z
where 9g_ , )(x) is the characteristic function of B.,,»(a;). We can regard f(x) as

the function of the form
k

f(.X) = z,’=1 C; prn (x—al.) .
where &y is the the characteristic function of B <.
Let

B ={ f()€ L(Ky) | (Ff)(@) =0, Vo, lw|p>Q }.

Proposition 1.1. Put Np7"<Q. Then f(x)< B has the form
f@) =" c& (x—a).
Proof. Let f(x) =Y &, (x—a). Now, (Fénw)(w)= Np"ény(w) and
(Fénr(x—a))(w) = e MY FEym )(w). We see that
(FH@) =Y €™ NyE (o).
Then (Ff)(w) vanishes for |w|p > Np~".

Let Np? <T < Np?*tland put
J@) o <T

PIO=0" o >t

for f(x)€ L*(Ky). Let
D = { D) | f(x)€ LX(Kp) }.



Proposition 1.2.  Df(x) has the form 2,1:1 ¢.&,(x—a). Here

l
B<npd = ]_Ilai +B_,.
iz

Proof. We see that

Df (x) = f(x)Epp? (x) = ZlecﬁBﬁW(a,-mBmd (x).

Choose a suitable m such that B <yy» € B <y»? and choose a finite set of points {a’; }
C B<w?. It will be enable us to write down

h
Cg 6BSan (ag)ﬂBSdi(x) — 2 i=j ¢ iﬁBngm(a’i)(‘x)'

So we can write Zlec,.ﬁB s, () like 2§=1c’i19B (). We may say that Df (x)
has a form - -
l 1
zi:lciﬁBq\mm(‘l[)(‘X) - Zi:lci ng,,,(x_ai).
Here :

1
BSNDd — Ha,‘ +BSNpm .
=1 O

Theorem 1.1.  Suppose that Df(x) has the form ¥ ¢¢ . (x—a) and —d < —m <
d. Then the Fourier transform (FDf )(w) vanishes for ||, > T.

Proof. The Fourier transform (FDf )(w) vanishes for |@|, > Np~™. Here m <d. So
—d < —m. Moreover, let —d < —m <d. Thenwe see that (FDf)(w) vanishes for

lw|p > T. Namely, Df (x) is a member of B of 2 =T.
O



Definition 2.1. Let L24 be the class of all complex valued functions f(¢) defined
for —A <t < A and integrable in absolute square in the interval (—A, A).

Given any 7> 0 and any Q >0, we can find a countably infinite set of real functions
wo(t), wi(t), wa(t), --- and a set of real positive numbers
Q> A > > -
with the following properties:

i. The y;(?) are bandlimited, i.e. its Fourier transform (Fy;)(@) vanishes for |w|>
Q; orthogonal on the real line and complete in 8 = { f(H)e L R) | (Ff)(w) = 0,

Vo, lw]>Q }:
- IRENEY
J._wl//i(t)l//j(t)dt = { | iz ,j=0,1,2, - .

ii. Intheinterval —7/2 <t < T/2, the y, are orthogonal and complete in L*7,2:

2 o iwj
J.—T/ZWI(Z)WJ(t)dZ o { j«i l:J i’j = O’ 15 2’ .

iii. For all values of ¢, real or complex,
12 sin(Q2(f —s
Aivi () = J‘ Sin(Q( - 5))

-T2 7Z'(l‘ — S)

Both the v’s and the A’s are functions of ¢ = Q7/2. In order to make this depend-
ence explicit, we write

A,i:Ai(C), l//l(t): l//l'(c9 f), l:Os 1a23

v.(s)ds 1=0,1,2, -

Put
an = (f, yu(c, Do = | fOW,(c, .

We shall call ¥°_ a,v,(c, t) the Fourier series expansion of f(). Let f(f)e L*(R) and
let >"_, a,w,(c, 1) be the Fourier series expansion of f(7):

f@)~ X" a1 teR
Since Y"_ a,y,(c, t) doesn’t always converge and it doesn’t always coincide with

f(1), we shall use “~”. We can calculate as follows;
N
2
0<]| f(t) — Y ay,(ct) llz22)
n=0

= | () ||L2(R)2 — 2( f(2), Z a,y,(c, 1) )i + ( Z a,y,(c, 1), Z, a,y,(c, 1) )2
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= " f(t) ”LZ(R)z - 2 i (f(t) a l//n(c t) )LZ(]R) + i (aml//m(c’ t)’ anl//n(c’ t) )Lz(]R)
= f O’ —

= | f(®) ”LZ(R) %‘

=0
2

al‘l
Thus
N
| D lew” = e
and n=0
N 2 2 N B
| f(2) — 2 a,y,(c, V) lee” =0 |re” — Z a,
When N — oo,
| /Ol Z X,
and =

lim [£(0) = S aw,e.0 e’ = 1fO e’ = laf.

We can consider
lim If(r) — 2 ay,c, ) e = | f(1) — 2 a,v,(c, 1) e’

n=0

It must be instructive that we can’t show | f(H) — Y _ av,(c 1) lew” = | ) |ee”

— ¥ la,|" directly. Now, we see that finite sums fyv(t) = X" . a,w,(c, t) permit
approximations to f(¢) by bandlimited functions, i.e. fv(f). Let f(r)=3B
N o
lim | £(1) = 3 a,p,(c, O o’ = [fD) o’ — Xlaf =0
= n=0 n=0

since the v, (c, t) are complete in B. So, {fv(?)} converges to f(?) in L* norm. Then
f(#) can be integrable term by term, and

J_T/szzf(’)‘/’n(c’ Hdt = J 2, (e, )y, (c, t)dt
= Zi:o_[_ T,2a,-l//,~(6, Z)W,,(C, Hdt = ﬂ,n(c)an_

Proposition 2.1. Let f(r)€ L*(R) and suppose that () is not a bandlimited
function. Let .”_ a,y,(c, t) be the Fourier series expansion of f(1):

f@)~ X" ay(ct), ay= j fOw, (c, t)dt and t< R.
Then ¥7_, |a,| < o and there exists a function () = ¥°_ a,w,(c, 1) of B but f(¢) #
h(1).

Proof. It holds that || f(¢)|ze° = 37

n=0

. S0 Y |a,|’ < oo because | (1) e <
a, v, (c,t) of B. But f(¢) # h(¢) since f(¥)

O

I‘l

oo. Thus there exists a function h(f) = Y°
isn’t bandlimited.

n=0 "n

An interesting argument is given by D. Slepian and H.O. Pollak. Let f(f)€L*r2. Then
fO =37 ayic.n, =1 fow,c .
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The y; are orthogonal and complete in Lzm,

2
”f(t) ||L2'/72 = n=0 ""n

Q.

Let

o) =%,_, ay,(c 1),
Namely f(¢) is a plece of a function h(t) Suppose that Zn , a,¥,(c, t) converges. It
means ) ~_ |a
= _[m h(t)y, (c, t)dt . The series 3.”_, a,y,(c, 1) is the Fourier series expansion of h(?)

and h(f) | is bandlimited. On the other hand, if },"_, a,v,(c, t) doesn’t converge then
> la|” grows without bound for increasing N. The function h(¢) can not be band-
Ilmlted We shall consider that Y.”_ a,y,(c, t) is also the Fourier series expansion of
h(t). Namely, >."_, a,y,(c, t) is the “formal” Fourier series expansion of non-band-
limited function A(f). Here Ao(c) > Ai(c) > A2(c) > ---. The A,(c) approach zero rap-
idly for sufficient large n. Thus it may be happen that 3"

for increasing N but Y.~

|a,|” grows without bound

n=20

n=0 ""n

For any function f(¥)€ L*(R), put

F@) - |]<TI2

Df(t):{ 0 - Ti2<|f -

Df(¢) isn’t bandlimited in general. We will think of approximations to Df(¢) by band-
limited functions fy (1) = Y"_ a,w,(c, ). Here
| Df (1) — 2,, ,a,v,(c, 1) ”LZ(R)
= | DF(t) |2 — 2( DF(D), Y aw,(e, ))ew+ (X aw,(c, ), X _ ay,lct) i
= | DF(t) | — 2% (Df@), a,p,(c, 1) e, T P 0(aml//m(c, D, a,y, (¢, 1))z
= | DF(O) |’ — 220, @,( DF @), y,(c. D))y + 20,

Letf(t)EL 772. Then
fO=3X"_,aw,ct, a= 1//1n(c)ff/2 FOw.(c, tdr .

Now
T2 oo
[, Oy, ndt = [~ Do, ndr.
Thus
[ Drayw, . ndr = Ac)an.
We can obtain the Fourier series expansion of Df(?):
Df(t) ~ X7, 2,(0a, -y, (c. ).

We shall adopt },”_ 4,(c)a,-w,(c, t). Then

| DF (1) — X, 2,(0a,- w,(c, D’ = | DFO) e’ —
When N — oo,

| DF(t) — X7, A, ©a, -, (e, ) e = | DF@®) | — e

n=0 n

n

Here,



2 o0 [ T2 —_— 2

IDFD) e’ = | DroDf@dr = fOFOdt = | £(2) ||Lzm .

The y; are orthogonal and complete in Lzm, so || f ()| mz =
| Df (@) e’ = 27, 4,

n=0 n

We can say that
” Df(t) — n=0 n(c)a l//”(C [) "LZ(R) - zn 0 n

n=0""n

n=0""n

n=0""n

A,(c)a, - t//n(c, ) is bandlimited but

n=0""n

Consider the proposition 2.1, we see that >~
Df(t) # X7 _ A (0a, -y, (c 1).
On the other hand, there exists another function

h(t) = Z:ZO anl//n(c’ Z) ZE R'
We will adopt it. Then

| DF(t) — 3, a4, (e Dlew’ = | DFO e’ — 23,4, T+ o)
Therefore,
| DF(t) — X7, a,w, (¢, Dew = DFO lee” — 235, A, Y e
=Y lal — X, 4,0,

(i) If Y _, aw,/c t) converges then
| DF (D) — 25—, a,p, (e Dlew” = X7, (12,
Here X.”_, a,y,(c, t) is bandlimited but Df (¢) # .. _, a,v,(c, t).

(iy If X7, a,y,(c t) doesn’t converge then ¥"_ |a| grows without bound for
increasing N and

| DF() — 37_, a,w,(c, D’ diverges.
SO Df(t) 75 2::0 anll/n(c’ t)'

Theorem 2.1.  Df(¢) can’t have the form Y~
bandlimited even in a sense “formally”.

aw, (c,t). Namely Df(¢) can’t be

n=0 n

Proof. Suppose that Df(¢) has the form Y, _, a,y,(c, ). Then

fO=Y"_ awct), a= 1//1n(c)f_T/T2/2f(t)q/n(c, 1)dt .

for f(r) e L*7 since the restricted Df(¢) to the interval [—T7/2, T/2]is f(f). However
it is impossible for Df(¢) to have such a form according to the above argument.



Let f(z)€ L*(C). We will think of the Fourier transform
(F@) = [ f@e* ™ dz.
Set z = x + iy and dz = 2dxdy. Then
(Ff ) w) = 2[;[1 fx+iy)e? M dxdy
Letw = u+iv. AMlw(x+iy)) = —2(ux — vy) mod 1. Now A(wx) = —2ux mod 1 and

A(wiy) = 2vy mod 1. It holds that e 27iM @l + ) = g=27iNwx) g=271iNeiy)) - We can com-
pute as follows;

(FH(w) = 2J’_°;J'_°°mf(x +iy)@ 2 INED g2 TNO) gy

— 2_[00 (I T flxiy)e N gy | g2 m@n gy

Denote fmf(x+iy)e‘2”"’“"“’” dy by (F,f)(iw). We denote (Ff)(w) as follows;

(]—'f)(a)) — ZJ‘E‘;J‘iof(x +l-y)e—zm/\(wx)e—zm‘/\(wiy)dxdy
= 2| (F o)™ dx = 2AF(FfNio)) ().

Definition 3.1.

B = { fx+iy)e L(CO) | (F (FfHiw)(w) = 0, Vo, |o|>Q}.
We shall call the member of B “bandlimited”.

Lemma 3.1. Fix a positive real number Q. Let ¢ = 7/2-2Q2. The Fourier transform
J_:l//n(c, He @ gt of y, (c, t) vanishes for || > Q.

Proof. Letw = u+iv. Then
J’j’ l//”(c, t)e—zmA(wr)dt — J'i Wn(c’ t)e—27riA((u+iv)t)dt — J'j’ v (c, t)e—zm(fzy)z dt .
Thus J'_m v, (c, e dr vanishes for [2Rew|>2Q. If |w| < Q then |Rew| < Q. Thus

if [Rew| > Q then |w| > Q. Since | w,(c.He™™ dr vanishes for [Rew|>®, it van-

ishes for |w| > Q.
O

Lemma 3.2. If (F.f)(w) vanishes for |@| > Q then f(z) = f(x + iy) has the Fourier
series expansion Y, _, a,y,(c, x). If f(z) =f(x + iy) has the Fourier series expan-
sion Y, _, a,y,(c, x) then (F.f)(w) vanishes for |w| > Q.

Proof. Since f(z)€ L*(C); the function f(x + iy), as a function of x, is considered
to be integrable in absolute square. Suppose that (Fif)(w) vanishes for |w|> Q,
namely f(x + iy) is “bandlimited”. From the lemma, v, (c, x) is also “bandlimited”.
Therefore f(x + iy) has the Fourier series expansion:
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Yo, 4w, (e, x), an= | flx+ipy,(c x)dx.
Suppose that f(z) =f(x + iy) has the Fourier series expansion Y.”_, a,y,(c, x).

Then (F.f)(w) vanishes for |@w| > Q2 since fm‘/’n(c’ x)e" N gy of wy(c, x) vanishes

> 0.
for |w| > Q -

Since f(z) €L*(C); the function (Ff)iw), as a function of x, is considered to be
integrable in absolute square. According to the above arguments, we can say as
follows;

Proposition 3.1. Let f(z) EL*C).
f(z)E®B if and only if (F,f)(iw) has its Fourier series expansion Y, _, a,y,(c, x).

For any function f(z)€ L*(C), put

f@) - |4<T/2

b = 0 - T/2<|d -

Set z = x + iy and think of Df(x + iy). Considerit as a function of x. If 7/2 <|x|
then 772 <|z|. Thus Df(x + iy) vanishes for |x|>T/2. Here

(fy Df)(la)) = Jj;Df(x+l'y)e—2mA(iwy) dy .
It also vanishes for |x|>7/2. We can apply the case of R to this case.

Theorem 3.1. Df(z) can’t be bandlimited even in a sense “formally”.
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The ring of adeles is defined as
Ak =TI, K,x I1,..K,
Denote the ring of integers of Ky by O.
[1..K, = {(m<]l,..K, | €Oy for almost all p}.
The number field K has d; real conjugate fields and 2d, imaginary conjugate fields.
Here n = d, +2d,. The field K has d, +d» infinite places. Set
Ky = R for d infinite places and Ky = C for d, infinite places.

Therefore
Hp\pr _ Rdl Cdz ~ Rn

Denote the set of infinite places by S.c = {Pwi, ***, Poo, 3 Poossts s Poca -
For each of places p, let drp be a Haar measure on K» such that

jo dr,=1 for almost all p.

Then we can write a Haar measure dr on Ak like dr = I1,dry. Let f(r) be a complex

valued function on Ax. For each of places p, if f,(Op) = {1} for almost all p, then
we can write f(r) like f(r) = 11, f, (rp) similarly.

Definition 4.1.
L'(Ag)
= {f(r) =11, fo (rp)| folro) ELY(Kv) and fio( Op) = {1} for almost all p}.

Proposition 4.1. Ak and AK are isomorphic by the map

Ag . A,
W W
n . e2m‘A(77r)

Since Ap(Op) = {0},
e = exp(aiTplp(nyry)) = LT, @7,

Proposition 4.2.  The Fourier transform of f(r)EL'(Ax) is defined by
(Fm = [, fOe " dr,

The inverse Fourier transform is that
f) = [, Fmemdn.

It holds that
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o7 =27, (M)
fAKf(r)e RO gy = HpJKpfp(rp)e W

Denote the Schwartz-Bruhat space on Ak by S(Ak). We define a function of the
space as linear combinations of the product [, f£,(r,) where fo_€S(R"), f, €S(K5)
and f, is the characteristic function &nye of Oy for all but finitely many p. We will re-
gard L*(Ax) as the completion of S(Ak). Let S be some finite set {p;, ---, P} USx.
Set

As = HpesKw X szSOp .
Let AS = T, {1} XI1,.sO, . ASis a compact subgroup of As. We shall identify Ky
(p < o0) with Ky X[],._.{1}. Then we can decompose As as follows;
Ag = H K X AS.

peS TP

p'ep
We see that

AK — Us AS .
For any function f(r)€ L*(Ax), we will consider it as a function on As.

Let f(r)€L*(Ak), as a function on As,
f(r) — Hpesfp(rD)XHpES Np“(rv) -

The Fourier transform of f(r) will be
(F)() = T, (FHD0,) X [1,es(FE,0)(®,) -

Let r&€ Ax. We will think of ¥ = (7p )<= Aswhere S = {p;, ---, P} US.. Its abso-
lute value will be

"‘”|nm

= Np,""Np," --- Np" - T] o No™ - T1, . 1.

where n,€7, ny<0 for p&S and ., ER. If |r| # 0 then we will see that ny=0 for al-
most places p&S. Let

B ={ f(NEL (A I(Ff)n) =0, |n|>2}.

|7’| = |7’p1|p1 |rpk|pk‘ HpeS‘rDL) . vaesmr

Definition 4.2. Foragiven 2 >0, let Q = Np," --- Np,* - [T, Np™ -1, o ¢

P.€S,. P, "

It (Ffp)(np,) = 0 for v, [n7p;10,>Nv/", (Ffp)(np) = 0 for np [nplp > Np'™ p&S and
(Ffr)(p.) = 0 for np,, [Mpslp. >tr. then f(r)E B.

Let
D= {f(NELl* (A | f(r) =0, [r|>T}.

Definition 4.3.  Foragiven7>0, let 7= Np," -« Np/* - T] . Nv" T, & s, -
Put

fo(r) -+ Irl < Np™

pp =

[, ) oA, 1 < Np/t
Dfyi(ro) =4 """ . . Dfp(ry) = \
0 lrl, >Np* > 0 - lrl >Np»
and
12



Then [1,Df,(r,) € D.

Let 7= Np,™ --- Np/* - T1,<Nv" - TI, s, and let Df (r)eD for the given T.

P.ES. " P
(1) Forthe places of {p,, ---, Px} €S,
Dfpi(rpi) = 22:1 ngNp’_m,- (rpi _ag)
(FDfvi )170;) = ZZ:] Cgeizm(agnu')Npmf]vp;m, (1,,)-
(FDfv;)(mw;) vanishes for |17y, >Np, ™.

and

(2) For the places p&ES,
£ () h <0

D — Np P
o (p) &) By >0

Put {1y} =hy if hpy <0 and {hy) =0 if hy >0. Then
(FDfp)(np) = Np"Eyp-ti (ny) and it vanishes for |7p|>Np~ ),
(3) For the places p.<€ Sx,

Dfp.(rv..) can’t be bandlimited. Only 0(ryp..) can be bandlimited.
Then

(F0)(ny..) vanishes for |nv.|>tp. where fy_, is an arbitrary positive real number.

Let

Df () = Dfp,(rpy) =+ Dfpi(rpy) - HpgSDf;J(rp).preSm O(rpm) .
The Fourier transform of Df(r) vanishes for [7|>Q where Q = Np,”™ .. Np -
HpESNp—{hp} . ]‘—[pmesm tpw ]
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Appendix

Here we define the Fourier transform of f(¢) as

(Ff w) = Fw) = [ _foe™a.

The Fourier inverse transform is
f) = 2= (Fee” do.

cf. Define (Ff)(w) = F(2zw). Then

(FF) @) = FQrw) = [ fne™™ dt .
and

[ = % jowF(a))ei‘”’ do = %J:F(%cw)eﬂm’ d2rw = Jjw(ﬁ)(w)€2”iwr do.

The functions So,(c, 1) are called “angular prolate spheroidal functions”. They are
real for real ¢, are continuous functions of ¢ for 0 < ¢ and can be extended to be en-
tire functions of the complex variable . They are orthogonal in (—1, 1) and are com-
pletein L*(—1, 1). The functions Ro."(c, ) are called “radial prolate spheroidal
functions”. They differ from angular prolate spheroidal functions only by a real scale
factor,

ROn(l)(C, 1) = kn(c)Son(c, ).

We have the following equations;

20~ (1) 2 _ (tsinc(t—s)

2 Roi"(c, 1 Sale, 1) = L—m_s) Syuc, $)ds, (1)
1 .

2i"Ron (¢, 1) Son(c, 1) = _[_16”” So(c, $)ds  n=0,1,2, . (2)

2¢ oo 2 > ! 2 :
Set A, (¢c) = ;(RO,’(C, 1))’ and set u,(c)” = J_ISOH(C, 1) dt. We define

Ak) Son(c, 24).
un(c)

Properties ii. follow from definitions and the orthogonality and completeness of

Son(c, 1) in(—1, 1).
From the equation (1),

Wn (c, 1) =

1 sin c(% -5)

2 Rae, 1 Sule, 3) = [ Sunlc, 5)ds.

U (3 —-s)
We have
1 sinc-%(t—f

'5) Son(c, $)ds .
s)

. 2t
Jl sinc(y =) Son(c, s)ds =

T
2
L oaF - S omFa-%-

(Sl



Put %-s:o. Then ds = %da. —T/2<0<T/2since —1<s<1. So

. 204
J.llsmcz(T([T . Son(c, s)ds = IT;/Z—SIHC Z([ p SOn(C,Z—G);dd
— T t_i' T t
[ sin Q(f — 20
j . =0 g (,29) dg

We obtain

712 sin Q(t — 0)
%R(m(“(c, 1)2 Sox(c, %) — j S S(m(c,z_d) do .

-T2 71'([ — 0-)

Multiplying both the sides by ¥4(<) |

Mn(C)
T2 sin Q(t —

M (Qynlc, 1) = f !//n(c 0) do.

T2 (f —
The assertion of iii. is established.

From the equation (2),

Lo
2i"Ron (e, 1) Son(c, 2L) = J._le‘C‘T Son(c, s)ds

1 .
= J‘_lem Son(c, s)ds ¢ = Q%_

q
I

Puts = §. Thends = éda). —Q<w<Qsince—1<F <1 So
b i (2 s o 1 I U o
[ e Sute, s)ds = [" e Sute, B) Ldo = 5[ e Sute, L)do.
Here
® 2-%%
SOn(C, E T
We have
) o 2. 9L

20" Ron (e, 1) Sunle, ) = F ] e Sute, = do.

Thus

wT

2-
) dw
T

2i"QRo, (¢, 1) Sonlc, 2L) = j € Salc,

Multiplying both the sides by # Mz(j) ,
un(C

i"QR(c, 1) L
TWﬂ (C5 l) - EJ—Qe l//n(c’ 2Q)da)-

Since Ro,l(l)(c, 1) = ’1";6)” ’
C

”QR“)(C n _ p (@ 20w /ln(c)ir p /mn(c c
7’ 2c
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Thus it turns out that

I
Q
N_H

S



. | €2 2 o
z”\/”:T\Mn(c) valc, t) = ﬁjﬁge v, (c, %)a’w.

We have

Wn (c’ l‘) — %J‘z)eiwt(i—nﬁ ”_51//”(0, w—g))da) .

[\

It means that

L JZL ol ...
Fly,(c, ))(w) = LT Gw.c, 25 - loj<e

Namely v, (c, t) are bandlimited. The orthogonality and completeness of So.(c, ) in
(—1, 1) leads the orthogonality and completeness of Sy,(c, %) in (—Q, Q). Therefore

wa(c, %) are orthogonal and complete in (2, Q). Since i‘"ﬁ %Twn(c, %) is

the Fourier transform of v, (c, f), we can show the orthogonality and the complete-
ness of v, (c, t) in B by Parseval’s theorem. The statement of 1. is established.
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