Bandlimited Functions and Timelimited Functions on Adeles

Gorou Kaku

E-mail: sabosan@m01.fitcall.net

Abstruct: Let $(\mathcal{F}f)(\eta)$ be the Fourier transform of f(t). We will call the member of $\mathfrak{B} = \{ f(x) \mid (\mathcal{F}f)(\eta) = 0, \forall \eta, |\eta| > \Omega \}$

"bandlimited". On the other hand, let

$$Df(t) = \begin{cases} f(t) & \cdots & |t| \le T/2 \\ 0 & \cdots & T/2 < |t| \end{cases}$$

for f(t). We will call Df(t) "timelimited". We will think of bandlimited functions and timelimited functions on adeles.

0.

Let K/\mathbb{Q} be a number field of degree n. Denote the completion of K at the place \mathfrak{p} of K by $K_{\mathfrak{p}}$.

Let $x \in \mathbb{R}$. Then $-x = \{-x\} + n$ where $\{-x\} \in [0, 1)$ and $n \in \mathbb{Z}$. Put $\lambda(x) = \{-x\}, x \in \mathbb{R}$.

Let $x \in \mathbb{Q}_p$. Then $x = \{x\}_p + n$ where $n \in \mathbb{Z}_p$. Namely $\{x\}_p$ is the fractional part of a p-adic number x. Put

$$\lambda(x) = \{x\}_p, \quad x \in \mathbb{Q}_p.$$

Denote the trace of the element ξ of K by

$$S\xi = \xi + \xi^{(1)} + \dots + \xi^{(n-1)},$$

where ξ , $\xi^{(1)}$, \cdots , $\xi^{(n-1)}$ are conjugates of ξ . If $K = \mathbb{R}$ then $S\xi = \xi$, if $K = \mathbb{C}$ then $S\xi = S(x+iy) = 2x$ and if $K = K_{\mathfrak{p}}/\mathbb{Q}_p$ then $S\xi \in \mathbb{Q}_p$.

Definition 0.1. Let k be a local field, namely k is \mathbb{R} , \mathbb{C} or $K_{\mathfrak{p}}$. Put

$$\Lambda(\xi) =_{\text{def}} \lambda(S\xi)$$
 $\xi \in k$.

Proposition 0.1. k and \hat{k} are isomorphic by the map

$$\begin{array}{ccc} k & \longrightarrow & \hat{k} \\ \Downarrow & & \Downarrow \\ \eta & \longmapsto & e^{2\pi i \wedge (\eta \xi)} \end{array}$$

Proposition 0.2. Let $d\xi$ be a Haar measure on k. The Fourier transform of $f(\xi) \in L^1(k)$ is defined by

$$(\mathcal{F}f)(\eta) = \int_{k} f(\xi)e^{-2\pi i\Lambda(\eta\xi)}d\xi$$
.

The inverse Fourier transform is that

$$f(\xi) = \int_{k} (\mathcal{F}f)(\eta) e^{2\pi i \Lambda(\xi \eta)} d\eta$$
.

We will think of the function space $C_c^{\infty}(K_{\mathfrak{p}})$ of compactly supported, locally constant functions. The space $C_c^{\infty}(K_{\mathfrak{p}})$ is regarded as the \mathfrak{p} -adic Schwartz-Bruhat space $S(K_{\mathfrak{p}})$. We will regard $L^2(K_{\mathfrak{p}})$ as the completion of $S(K_{\mathfrak{p}})$ and we shall think of the Fourier transform of $f(x) \in L^2(K_{\mathfrak{p}})$. Any function in $C_c^{\infty}(K_{\mathfrak{p}})$ can be written as the sum of characteristic functions of balls. Set

$$B_{\leq N\mathfrak{p}^n}(a) = \{ x \in K_{\mathfrak{p}} \mid |x - a|_{\mathfrak{p}} \leq N\mathfrak{p}^n \}.$$

Denote $B_{\leq N\mathfrak{p}^n}(0)$ by $B_{\leq N\mathfrak{p}^n}$. Let $\operatorname{Supp}(f)\subseteq B_{\leq N\mathfrak{p}^f}$. Choose a suitable n such that $B_{\leq N\mathfrak{p}^n}\subseteq B_{\leq N\mathfrak{p}^f}$. Then we can choose a finite set of points $\{a_i\}\subseteq B_{\leq N\mathfrak{p}^f}$ and we obtain

$$\mathrm{B}_{\leq N\mathfrak{p}^f} = \coprod_{i=1}^k a_i + \mathrm{B}_{\leq N\mathfrak{p}^n} .$$

We can write f(x) as

$$f(x) = \sum_{i=1}^k c_i \vartheta_{\mathrm{B}_{\leq \mathrm{Np}^n}(a_i)}(x); \ c_i \in \mathbb{C}, \ a_i \in K_{\mathfrak{p}} \ \mathrm{and} \ n_i \in \mathbb{Z}$$

where $\vartheta_{\mathrm{B}_{\leq N\mathfrak{p}^n}(a_i)}(x)$ is the characteristic function of $\mathrm{B}_{\leq N\mathfrak{p}^n}(a_i)$. We can regard f(x) as the function of the form

$$f(x) = \sum_{i=1}^k c_i \, \xi_{N \mathfrak{p}^n}(x - a_i) \, .$$

where ξ_{Np^n} is the the characteristic function of $B_{\leq Np^n}$.

Let

$$\mathfrak{B} = \{ f(x) \in L^2(K_{\mathfrak{p}}) \mid (\mathcal{F}f)(\omega) = 0, \forall \omega, |\omega|_{\mathfrak{p}} > \Omega \}.$$

Proposition 1.1. Put $N\mathfrak{p}^{-n} \leq \Omega$. Then $f(x) \in \mathfrak{B}$ has the form

$$f(x) = \sum_{i=1}^k c_i \, \xi_{N\mathfrak{p}^n}(x - a_i) \, .$$

Proof. Let $f(x) = \sum_{i=1}^k c_i \xi_{N\mathfrak{p}^n}(x-a_i)$. Now, $(\mathcal{F}\xi_{N\mathfrak{p}^n})(\omega) = N\mathfrak{p}^n \xi_{N\mathfrak{p}^{-n}}(\omega)$ and $(\mathcal{F}\xi_{N\mathfrak{p}^n}(x-a))(\omega) = e^{-2\pi i \Lambda(a\omega)}(\mathcal{F}\xi_{N\mathfrak{p}^n})(\omega)$. We see that

$$(\mathcal{F}f)(\omega) = \sum_{i=1}^k c_i e^{-2\pi i \Lambda(a_i\omega)} N \mathfrak{p}^n \xi_{N\mathfrak{p}^{-n}}(\omega).$$

Then $(\mathcal{F}f)(\omega)$ vanishes for $|\omega|_{\mathfrak{p}} > N\mathfrak{p}^{-n}$.

Let $N\mathfrak{p}^d \le T \le N\mathfrak{p}^{d+1}$ and put

$$Df(x) = \begin{cases} f(x) & \cdots & |x|_{p} \le T \\ 0 & \cdots & |x|_{p} > T \end{cases}$$

for $f(x) \in L^2(K_{\mathfrak{p}})$. Let

$$\mathfrak{D} = \{ Df(x) | f(x) \in L^2(K_{\mathfrak{p}}) \}.$$

Proposition 1.2. Df(x) has the form $\sum_{i=1}^{l} c_i \xi_{Np^m}(x-a_i)$. Here

$$\mathrm{B}_{\leq N\mathfrak{p}^d} = \coprod_{i=1}^l a_i + \mathrm{B}_{\leq N\mathfrak{p}^m}$$
.

Proof. We see that

$$Df(x) = f(x)\xi_{N\mathfrak{p}^d}(x) = \sum_{i=1}^k c_i \vartheta_{\mathrm{B}_{\leq N\mathfrak{p}^n}(a_i) \cap \mathrm{B}_{\leq N\mathfrak{p}^d}}(x).$$

Choose a suitable m such that $B_{\leq N\mathfrak{p}^m}\subseteq B_{\leq N\mathfrak{p}^d}$ and choose a finite set of points $\{a'_i\}$ $\subseteq B_{\leq N\mathfrak{p}^d}$. It will be enable us to write down

$$c_g \vartheta_{\mathrm{B}_{\leq N\mathfrak{p}^n}(a_g)\cap \mathrm{B}_{\leq N\mathfrak{p}^d}}(x) = \sum_{i=j}^h c_i' \vartheta_{\mathrm{B}_{\leq N\mathfrak{p}^m}(a_i')}(x).$$

So we can write $\sum_{i=1}^k c_i \vartheta_{\mathbf{B}_{\leq N\mathfrak{p}^n}(a_i) \cap \mathbf{B}_{\leq N\mathfrak{p}^d}}(x)$ like $\sum_{i=1}^l c_i' \vartheta_{\mathbf{B}_{\leq N\mathfrak{p}^m}(a_i')}(x)$. We may say that Df(x) has a form

$$\sum_{i=1}^{l} c_{i} \vartheta_{\mathbf{B}_{\leq N \mathbf{p}^{m}}(a_{i})}(x) = \sum_{i=1}^{l} c_{i} \xi_{N \mathbf{p}^{m}}(x - a_{i}).$$

Here

$$\mathrm{B}_{\leq N\mathfrak{p}^d} = \prod_{i=1}^l a_i + \mathrm{B}_{\leq N\mathfrak{p}^m}$$
 .

Theorem 1.1. Suppose that Df(x) has the form $\sum_{i=1}^{l} c_i \xi_{Np^m}(x-a_i)$ and $-d \le -m \le d$. Then the Fourier transform $(\mathcal{F}Df)(\omega)$ vanishes for $|\omega|_{\mathfrak{p}} > T$.

Proof. The Fourier transform $(\mathcal{F}Df)(\omega)$ vanishes for $|\omega|_{\mathfrak{p}} > N\mathfrak{p}^{-m}$. Here $m \leq d$. So $-d \leq -m$. Moreover, let $-d \leq -m \leq d$. Then we see that $(\mathcal{F}Df)(\omega)$ vanishes for $|\omega|_{\mathfrak{p}} > T$. Namely, Df(x) is a member of \mathfrak{B} of $\Omega = T$.

Definition 2.1. Let L^2_A be the class of all complex valued functions f(t) defined for $-A \le t \le A$ and integrable in absolute square in the interval (-A, A).

Given any T > 0 and any $\Omega > 0$, we can find a countably infinite set of real functions $\psi_0(t)$, $\psi_1(t)$, $\psi_2(t)$, \cdots and a set of real positive numbers

$$\lambda_0 > \lambda_1 > \lambda_2 > \cdots$$

with the following properties:

i. The $\psi_i(t)$ are bandlimited, i.e. its Fourier transform $(\mathcal{F}\psi_i)(\omega)$ vanishes for $|\omega| > \Omega$; orthogonal on the real line and complete in $\mathfrak{B} = \{ f(t) \in L^2(\mathbb{R}) \mid (\mathcal{F}f)(\omega) = 0, \forall \omega, |\omega| > \Omega \}$:

$$\int_{-\infty}^{\infty} \psi_i(t) \psi_j(t) dt = \begin{cases} 0 & i \neq j \\ 1 & i = j \end{cases} \quad i, j = 0, 1, 2, \cdots.$$

ii. In the interval $-T/2 \le t \le T/2$, the ψ_i are orthogonal and complete in $L^2_{T/2}$:

$$\int_{-T/2}^{T/2} \psi_i(t) \psi_j(t) dt = \begin{cases} 0 & i \neq j \\ \lambda_i & i = j \end{cases} \quad i, j = 0, 1, 2, \cdots.$$

iii. For all values of t, real or complex,

$$\lambda_i \psi_i(t) = \int_{-T/2}^{T/2} \frac{\sin(\Omega(t-s))}{\pi(t-s)} \psi_i(s) ds \quad i = 0, 1, 2, \cdots.$$

Both the ψ 's and the λ 's are functions of $c=\Omega T/2$. In order to make this dependence explicit, we write

$$\lambda_i = \lambda_i(c), \ \psi_i(t) = \psi_i(c, t), \ i = 0, 1, 2, \cdots$$

Put

$$a_n = (f, \psi_n(c, t))_{L^2(\mathbb{R})} = \int_{-\infty}^{\infty} f(t) \psi_n(c, t) dt.$$

We shall call $\sum_{n=0}^{\infty} a_n \psi_n(c, t)$ the Fourier series expansion of f(t). Let $f(t) \in L^2(\mathbb{R})$ and let $\sum_{n=0}^{\infty} a_n \psi_n(c, t)$ be the Fourier series expansion of f(t):

$$f(t) \sim \sum_{n=0}^{\infty} a_n \psi_n(c, t) \ t \in \mathbb{R}.$$

Since $\sum_{n=0}^{\infty} a_n \psi_n(c, t)$ doesn't always converge and it doesn't always coincide with f(t), we shall use " \sim ". We can calculate as follows;

$$0 \leq \|f(t) - \sum_{n=0}^{N} a_n \psi_n(c, t) \|_{L^2(\mathbb{R})}^2$$

$$= \|f(t)\|_{L^2(\mathbb{R})}^2 - 2(f(t), \sum_{n=0}^{N} a_n \psi_n(c, t))_{L^2(\mathbb{R})} + (\sum_{n=0}^{N} a_n \psi_n(c, t), \sum_{n=0}^{N} a_n \psi_n(c, t))_{L^2(\mathbb{R})}$$

$$= \|f(t)\|_{L^{2}(\mathbb{R})}^{2} - 2\sum_{n=0}^{N} (f(t), a_{n}\psi_{n}(c, t))_{L^{2}(\mathbb{R})} + \sum_{m, n=0}^{N} (a_{m}\psi_{m}(c, t), a_{n}\psi_{n}(c, t))_{L^{2}(\mathbb{R})}$$

$$= \|f(t)\|_{L^{2}(\mathbb{R})}^{2} - 2\sum_{n=0}^{N} |a_{n}|^{2} + \sum_{n=0}^{N} |a_{n}|^{2}$$

$$= \|f(t)\|_{L^{2}(\mathbb{R})}^{2} - \sum_{n=0}^{N} |a_{n}|^{2}.$$

Thus

and

$$\|f(t)\|_{L^{2}(\mathbb{R})}^{2} \geq \sum_{n=0}^{N} |a_{n}|^{2}$$

$$\|f(t) - \sum_{n=0}^{N} a_{n} \psi_{n}(c, t)\|_{L^{2}(\mathbb{R})}^{2} = \|f(t)\|_{L^{2}(\mathbb{R})}^{2} - \sum_{n=0}^{N} |a_{n}|^{2}.$$

When $N \longrightarrow \infty$,

and

$$\|f(t)\|_{L^{2}(\mathbb{R})}^{2} \geq \sum_{n=0}^{\infty} |a_{n}|^{2}$$

$$\lim_{N \to \infty} \|f(t) - \sum_{n=0}^{N} a_{n} \psi_{n}(c, t)\|_{L^{2}(\mathbb{R})}^{2} = \|f(t)\|_{L^{2}(\mathbb{R})}^{2} - \sum_{n=0}^{\infty} |a_{n}|^{2}.$$

We can consider

$$\lim_{N\to\infty} \|f(t) - \sum_{n=0}^{N} a_n \psi_n(c, t) \|_{L^2(\mathbb{R})}^2 = \|f(t) - \sum_{n=0}^{\infty} a_n \psi_n(c, t) \|_{L^2(\mathbb{R})}^2.$$

It must be instructive that we can't show $\|f(t) - \sum_{n=0}^{\infty} a_n \psi_n(c,t)\|_{L^2(\mathbb{R})}^2 = \|f(t)\|_{L^2(\mathbb{R})}^2 - \sum_{n=0}^{\infty} |a_n|^2$ directly. Now, we see that finite sums $f_N(t) = \sum_{n=0}^{N} a_n \psi_n(c,t)$ permit approximations to f(t) by bandlimited functions, i.e. $f_N(t)$. Let $f(t) \in \mathfrak{B}$

$$\lim_{N \to \infty} \| f(t) - \sum_{n=0}^{N} a_n \psi_n(c, t) \|_{L^2(\mathbb{R})}^2 = \| f(t) \|_{L^2(\mathbb{R})}^2 - \sum_{n=0}^{\infty} |a_n|^2 = 0$$

since the $\psi_n(c, t)$ are complete in \mathfrak{B} . So, $\{f_N(t)\}$ converges to f(t) in L^2 norm. Then f(t) can be integrable term by term, and

$$\int_{-T/2}^{T/2} f(t) \psi_n(c, t) dt = \int_{-T/2}^{T/2} \sum_{i=0}^{\infty} a_i \psi_i(c, t) \psi_n(c, t) dt = \sum_{i=0}^{\infty} \int_{-T/2}^{T/2} a_i \psi_i(c, t) \psi_n(c, t) dt = \lambda_n(c) a_n.$$

Proposition 2.1. Let $f(t) \in L^2(\mathbb{R})$ and suppose that f(t) is not a bandlimited function. Let $\sum_{n=0}^{\infty} a_n \psi_n(c, t)$ be the Fourier series expansion of f(t):

$$f(t) \sim \sum_{n=0}^{\infty} a_n \psi_n(c, t), \ a_n = \int_{-\infty}^{\infty} f(t) \psi_n(c, t) dt \ \text{and} \ t \in \mathbb{R}.$$

Then $\sum_{n=0}^{\infty} |a_n|^2 \le \infty$ and there exists a function $h(t) = \sum_{n=0}^{\infty} a_n \psi_n(c, t)$ of $\mathfrak B$ but $f(t) \ne h(t)$.

Proof. It holds that $\|f(t)\|_{L^2(\mathbb{R})}^2 \geq \sum_{n=0}^\infty |a_n|^2$. So $\sum_{n=0}^\infty |a_n|^2 < \infty$ because $\|f(t)\|_{L^2(\mathbb{R})}^2 < \infty$. Thus there exists a function $h(t) = \sum_{n=0}^\infty a_n \psi_n(c,t)$ of \mathfrak{B} . But $f(t) \neq h(t)$ since f(t) isn't bandlimited.

An interesting argument is given by D. Slepian and H.O. Pollak. Let $f(t) \in L^2_{T/2}$. Then

$$f(t) = \sum_{n=0}^{\infty} a_n \psi_n(c, t), \ a_n = 1/\lambda_n(c) \int_{-T/2}^{T/2} f(t) \psi_n(c, t) dt.$$

The ψ_i are orthogonal and complete in $L^2_{T/2}$,

$$||f(t)||_{L^{2}_{T/2}}^{2} = \sum_{n=0}^{\infty} \lambda_{n}(c)|a_{n}|^{2} < \infty.$$

Let

$$h(t) = \sum_{n=0}^{\infty} a_n \psi_n(c, t), t \in \mathbb{R}.$$

Namely f(t) is a piece of a function h(t). Suppose that $\sum_{n=0}^{\infty} a_n \psi_n(c,t)$ converges. It means $\sum_{n=0}^{\infty} |a_n|^2 < \infty$. We can consider that h(t) is integrable term by term, then $a_n = \int_{-\infty}^{\infty} h(t) \psi_n(c,t) dt$. The series $\sum_{n=0}^{\infty} a_n \psi_n(c,t)$ is the Fourier series expansion of h(t) and h(t) is bandlimited. On the other hand, if $\sum_{n=0}^{\infty} a_n \psi_n(c,t)$ doesn't converge then $\sum_{n=0}^{N} |a_n|^2$ grows without bound for increasing N. The function h(t) can not be bandlimited. We shall consider that $\sum_{n=0}^{\infty} a_n \psi_n(c,t)$ is also the Fourier series expansion of h(t). Namely, $\sum_{n=0}^{\infty} a_n \psi_n(c,t)$ is the "formal" Fourier series expansion of non-bandlimited function h(t). Here $\lambda_0(c) > \lambda_1(c) > \lambda_2(c) > \cdots$. The $\lambda_n(c)$ approach zero rapidly for sufficient large n. Thus it may be happen that $\sum_{n=0}^{N} |a_n|^2$ grows without bound for increasing N but $\sum_{n=0}^{\infty} \lambda_n(c) |a_n|^2$ converges.

For any function $f(t) \in L^2(\mathbb{R})$, put

$$Df(t) = \begin{cases} f(t) & \cdots & |t| \le T/2 \\ 0 & \cdots & T/2 < |t| \end{cases}.$$

Df(t) isn't bandlimited in general. We will think of approximations to Df(t) by bandlimited functions $f_N(t) = \sum_{n=0}^N a_n \psi_n(c, t)$. Here

$$\begin{split} & \| \, D f(t) - \sum_{n=0}^N a_n \psi_n(c,\,t) \, \|_{L^2(\mathbb{R})}^2 \\ = & \| \, D f(t) \, \|_{L^2(\mathbb{R})}^2 - 2 (\, D f(t), \, \sum_{n=0}^N a_n \psi_n(c,\,t) \,)_{L^2(\mathbb{R})} + (\, \sum_{n=0}^N a_n \psi_n(c,\,t) \, , \sum_{n=0}^N a_n \psi_n(c,\,t) \,)_{L^2(\mathbb{R})} \\ = & \| \, D f(t) \, \|_{L^2(\mathbb{R})}^2 - 2 \sum_{n=0}^N (\, D f(t), \, a_n \psi_n(c,\,t) \,)_{L^2(\mathbb{R})} + \sum_{m,n=0}^N (\, a_m \psi_m(c,\,t), \, a_n \psi_n(c,\,t) \,)_{L^2(\mathbb{R})} \\ = & \| \, D f(t) \, \|_{L^2(\mathbb{R})}^2 - 2 \sum_{n=0}^N \overline{a}_n (\, D f(t), \, \psi_n(c,\,t) \,)_{L^2(\mathbb{R})} + \sum_{n=0}^N \left| a_n \right|^2. \end{split}$$

Let $f(t) \in L^2_{T/2}$. Then

$$f(t) = \sum_{n=0}^{\infty} a_n \psi_n(c, t), \ a_n = 1/\lambda_n(c) \int_{-T/2}^{T/2} f(t) \psi_n(c, t) dt.$$

Now

$$\int_{-T/2}^{T/2} f(t) \psi_n(c, t) dt = \int_{-\infty}^{\infty} Df(t) \psi_n(c, t) dt.$$

Thus

$$\int_{-\infty}^{\infty} Df(t) \psi_n(c, t) dt = \lambda_n(c) a_n.$$

We can obtain the Fourier series expansion of Df(t):

$$Df(t) \sim \sum_{n=0}^{\infty} \lambda_n(c) a_n \cdot \psi_n(c, t)$$
.

We shall adopt $\sum_{n=0}^{\infty} \lambda_n(c) a_n \cdot \psi_n(c, t)$. Then

$$\| Df(t) - \sum_{n=0}^{N} \lambda_n(c) a_n \cdot \psi_n(c, t) \|_{L^2(\mathbb{R})}^2 = \| Df(t) \|_{L^2(\mathbb{R})}^2 - \sum_{n=0}^{N} \lambda_n(c)^2 |a_n|^2.$$

When $N \longrightarrow \infty$,

$$\| Df(t) - \sum_{n=0}^{\infty} \lambda_n(c) a_n \cdot \psi_n(c, t) \|_{L^2(\mathbb{R})}^2 = \| Df(t) \|_{L^2(\mathbb{R})}^2 - \sum_{n=0}^{\infty} \lambda_n(c)^2 |a_n|^2.$$

Here,

$$||Df(t)||_{L^2(\mathbb{R})}^2 = \int_{-\infty}^{\infty} Df(t) \overline{Df(t)} dt = \int_{-T/2}^{T/2} f(t) \overline{f(t)} dt = ||f(t)||_{L^2_{T/2}}^2.$$

The ψ_i are orthogonal and complete in $L^2_{T/2}$, so $\|f(t)\|_{L^2_{T/2}}^2 = \sum_{n=0}^{\infty} \lambda_n(c) |a_n|^2 < \infty$. Thus $\|Df(t)\|_{L^2(\mathbb{R})}^2 = \sum_{n=0}^{\infty} \lambda_n(c) |a_n|^2$.

We can say that

$$\|Df(t) - \sum_{n=0}^{\infty} \lambda_n(c) a_n \cdot \psi_n(c, t)\|_{L^2(\mathbb{R})}^2 = \sum_{n=0}^{\infty} \lambda_n(c) |a_n|^2 - \sum_{n=0}^{\infty} \lambda_n(c)^2 |a_n|^2$$
,

from the proposition 2.1, $\sum_{n=0}^{\infty} \lambda_n(c)^2 |a_n|^2 < \infty$, so

$$= \sum_{n=0}^{\infty} \lambda_n(c) (1 - \lambda_n(c)) |a_n|^2.$$

Consider the proposition 2.1, we see that $\sum_{n=0}^{\infty} \lambda_n(c) a_n \cdot \psi_n(c, t)$ is bandlimited but $Df(t) \neq \sum_{n=0}^{\infty} \lambda_n(c) a_n \cdot \psi_n(c, t)$.

On the other hand, there exists another function

$$h(t) = \sum_{n=0}^{\infty} a_n \psi_n(c, t)$$
 $t \in \mathbb{R}$.

We will adopt it. Then

$$\|Df(t) - \sum_{n=0}^{N} a_n \psi_n(c, t)\|_{L^2(\mathbb{R})}^2 = \|Df(t)\|_{L^2(\mathbb{R})}^2 - 2\sum_{n=0}^{N} \lambda_n(c)|a_n|^2 + \sum_{n=0}^{N} |a_n|^2.$$

Therefore,

$$\| Df(t) - \sum_{n=0}^{\infty} a_n \psi_n(c, t) \|_{L^2(\mathbb{R})}^2 = \| Df(t) \|_{L^2(\mathbb{R})}^2 - 2 \sum_{n=0}^{\infty} \lambda_n(c) |a_n|^2 + \sum_{n=0}^{\infty} |a_n|^2 = \sum_{n=0}^{\infty} |a_n|^2 - \sum_{n=0}^{\infty} \lambda_n(c) |a_n|^2.$$

(i) If $\sum_{n=0}^{\infty} a_n \psi_n(c, t)$ converges then

$$||Df(t) - \sum_{n=0}^{\infty} a_n \psi_n(c, t)||_{L^2(\mathbb{R})}^2 = \sum_{n=0}^{\infty} (1 - \lambda_n(c)) |a_n|^2$$
.

Here $\sum_{n=0}^{\infty} a_n \psi_n(c, t)$ is bandlimited but $Df(t) \neq \sum_{n=0}^{\infty} a_n \psi_n(c, t)$.

(ii) If $\sum_{n=0}^{\infty} a_n \psi_n(c, t)$ doesn't converge then $\sum_{n=0}^{N} \left|a_n\right|^2$ grows without bound for increasing N and

$$||Df(t) - \sum_{n=0}^{\infty} a_n \psi_n(c, t)||_{L^2(\mathbb{R})}^2$$
 diverges.

So $Df(t) \neq \sum_{n=0}^{\infty} a_n \psi_n(c, t)$.

Theorem 2.1. Df(t) can't have the form $\sum_{n=0}^{\infty} a_n \psi_n(c, t)$. Namely Df(t) can't be bandlimited even in a sense "formally".

Proof. Suppose that Df(t) has the form $\sum_{n=0}^{\infty} a_n \psi_n(c, t)$. Then

$$f(t) = \sum_{n=0}^{\infty} a_n \psi_n(c, t), \ a_n = 1/\lambda_n(c) \int_{-T/2}^{T/2} f(t) \psi_n(c, t) dt.$$

for $f(t) \in L^2_{T/2}$ since the restricted Df(t) to the interval [-T/2, T/2] is f(t). However it is impossible for Df(t) to have such a form according to the above argument.

Let $f(z) \in L^2(\mathbb{C})$. We will think of the Fourier transform

$$(\mathcal{F}f)(\omega) = \int_{\mathbb{C}} f(z)e^{-2\pi i\Lambda(\omega z)} dz$$
.

Set z = x + iy and dz = 2dxdy. Then

$$(\mathcal{F}f)(\omega) = 2\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x+iy)e^{-2\pi i\Lambda(\omega(x+iy))}dxdy.$$

Let $\omega = \mu + i\nu$. $\Lambda(\omega(x+iy)) = -2(\mu x - \nu y) \mod 1$. Now $\Lambda(\omega x) = -2\mu x \mod 1$ and $\Lambda(\omega iy) = 2\nu y \mod 1$. It holds that $e^{-2\pi i\Lambda(\omega(x+iy))} = e^{-2\pi i\Lambda(\omega x)}e^{-2\pi i\Lambda(\omega iy)}$. We can compute as follows;

$$(\mathcal{F}f)(\omega) = 2 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x+iy) e^{-2\pi i \Lambda(\omega x)} e^{-2\pi i \Lambda(\omega iy)} dx dy$$
$$= 2 \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} f(x+iy) e^{-2\pi i \Lambda(i\omega y)} dy \right) e^{-2\pi i \Lambda(\omega x)} dx.$$

Denote $\int_{-\infty}^{\infty} f(x+iy)e^{-2\pi i\Lambda(i\omega y)}dy$ by $(\mathcal{F}_y f)(i\omega)$. We denote $(\mathcal{F}f)(\omega)$ as follows;

$$(\mathcal{F}f)(\omega) = 2 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x+iy) e^{-2\pi i \Lambda(\omega x)} e^{-2\pi i \Lambda(\omega iy)} dx dy$$

= $2 \int_{-\infty}^{\infty} (\mathcal{F}_y f)(i\omega) e^{-2\pi i \Lambda(\omega x)} dx = 2(\mathcal{F}_x (\mathcal{F}_y f)(i\omega))(\omega).$

Definition 3.1.

$$\mathfrak{B} = \{ f(x+iy) \in L^2(\mathbb{C}) | (\mathcal{F}_x(\mathcal{F}_y f)(i\omega))(\omega) = 0, \forall \omega, |\omega| > \Omega \}.$$

We shall call the member of $\mathfrak B$ "bandlimited".

Lemma 3.1. Fix a positive real number Ω . Let $c = T/2 \cdot 2\Omega$. The Fourier transform $\int_{-\infty}^{\infty} \psi_n(c,t) e^{-2\pi i \Lambda(\omega t)} dt \text{ of } \psi_n(c,t) \text{ vanishes for } |\omega| > \Omega.$

Proof. Let $\omega = \mu + i\nu$. Then

$$\int_{-\infty}^{\infty} \psi_n(c,t) e^{-2\pi i \Lambda(\omega t)} dt = \int_{-\infty}^{\infty} \psi_n(c,t) e^{-2\pi i \Lambda((\mu+i\nu)t)} dt = \int_{-\infty}^{\infty} \psi_n(c,t) e^{-2\pi i (-2\mu)t} dt.$$

Thus $\int_{-\infty}^{\infty} \psi_n(c,t) e^{-2\pi i \Lambda(\omega t)} dt$ vanishes for $|2\mathrm{Re}\omega| > 2\Omega$. If $|\omega| \leq \Omega$ then $|\mathrm{Re}\omega| \leq \Omega$. Thus if $|\mathrm{Re}\omega| > \Omega$ then $|\omega| > \Omega$. Since $\int_{-\infty}^{\infty} \psi_n(c,t) e^{-2\pi i \Lambda(\omega t)} dt$ vanishes for $|\mathrm{Re}\omega| > \Omega$, it vanishes for $|\omega| > \Omega$.

Lemma 3.2. If $(\mathcal{F}_x f)(\omega)$ vanishes for $|\omega| > \Omega$ then f(z) = f(x+iy) has the Fourier series expansion $\sum_{n=0}^{\infty} a_n \psi_n(c,x)$. If f(z) = f(x+iy) has the Fourier series expansion $\sum_{n=0}^{\infty} a_n \psi_n(c,x)$ then $(\mathcal{F}_x f)(\omega)$ vanishes for $|\omega| > \Omega$.

Proof. Since $f(z) \in L^2(\mathbb{C})$; the function f(x+iy), as a function of x, is considered to be integrable in absolute square. Suppose that $(\mathcal{F}_x f)(\omega)$ vanishes for $|\omega| > \Omega$, namely f(x+iy) is "bandlimited". From the lemma, $\psi_n(c,x)$ is also "bandlimited". Therefore f(x+iy) has the Fourier series expansion:

$$\sum_{n=0}^{\infty} a_n \psi_n(c, x), \quad a_n = \int_{-\infty}^{\infty} f(x+iy) \psi_n(c, x) dx.$$

Suppose that f(z)=f(x+iy) has the Fourier series expansion $\sum_{n=0}^{\infty}a_n\psi_n(c,x)$. Then $(\mathcal{F}_xf)(\omega)$ vanishes for $|\omega|>\Omega$ since $\int_{-\infty}^{\infty}\psi_n(c,x)e^{-2\pi i\Lambda(\omega x)}\,dx$ of $\psi_n(c,x)$ vanishes for $|\omega|>\Omega$.

Since $f(z) \in L^2(\mathbb{C})$; the function $(\mathcal{F}_y f)(i\omega)$, as a function of x, is considered to be integrable in absolute square. According to the above arguments, we can say as follows;

Proposition 3.1. Let $f(z) \in L^2(\mathbb{C})$.

f(z) $\in \mathfrak{B}$ if and only if $(\mathcal{F}_y f)(i\omega)$ has its Fourier series expansion $\sum_{n=0}^{\infty} a_n \psi_n(c,x)$.

For any function $f(z) \in L^2(\mathbb{C})$, put

$$Df(z) = \begin{cases} f(z) \cdots |z| \le T/2 \\ 0 \cdots T/2 < |z| \end{cases}$$

Set z = x + iy and think of Df(x + iy). Consider it as a function of x. If $T/2 \le |x|$ then $T/2 \le |z|$. Thus Df(x + iy) vanishes for |x| > T/2. Here

$$(\mathcal{F}_y Df)(i\omega) = \int_{-\infty}^{\infty} Df(x+iy)e^{-2\pi i\Lambda(i\omega y)} dy$$
.

It also vanishes for |x| > T/2. We can apply the case of \mathbb{R} to this case.

Theorem 3.1. Df(z) can't be bandlimited even in a sense "formally".

The ring of adeles is defined as

$$\mathbb{A}_K = \prod_{\mathfrak{p}<\infty}' K_{\mathfrak{p}} \times \prod_{\mathfrak{p}\mid\infty} K_{\mathfrak{p}}$$

Denote the ring of integers of $K_{\mathfrak{p}}$ by $\mathcal{O}_{\mathfrak{p}}$.

$$\prod_{\mathfrak{p}\prec\infty}^{\prime}K_{\mathfrak{p}}=\big\{(r_{\mathfrak{p}})\in\prod_{\mathfrak{p}\prec\infty}K_{\mathfrak{p}}\mid r_{\mathfrak{p}}\in\mathcal{O}_{\mathfrak{p}}\ \textit{for almost all}\ \mathfrak{p}\big\}.$$

The number field K has d_1 real conjugate fields and $2d_2$ imaginary conjugate fields. Here $n=d_1+2d_2$. The field K has d_1+d_2 infinite places. Set

 $K_{\mathfrak{p}} = \mathbb{R}$ for d_1 infinite places and $K_{\mathfrak{p}} = \mathbb{C}$ for d_2 infinite places.

Therefore

$$\prod_{n \mid m} K_n = \mathbb{R}^{d_1} \times \mathbb{C}^{d_2} \cong \mathbb{R}^n.$$

Denote the set of infinite places by $S_{\infty}=\,\{\mathfrak{p}_{\infty_1},\,...,\,\mathfrak{p}_{\infty_{d_1}};\,\mathfrak{p}_{\infty_{d_1+1}},\,...,\,\mathfrak{p}_{\infty_d}\}.$

For each of places \mathfrak{p} , let $dr_{\mathfrak{p}}$ be a Haar measure on $K_{\mathfrak{p}}$ such that

$$\int_{\mathcal{O}_{\mathfrak{p}}} dr_{\mathfrak{p}} = 1 \text{ for almost all } \mathfrak{p}.$$

Then we can write a Haar measure dr on \mathbb{A}_K like $dr = \Pi_{\mathfrak{p}} dr_{\mathfrak{p}}$. Let f(r) be a complex valued function on \mathbb{A}_K . For each of places \mathfrak{p} , if $f_{\mathfrak{p}}(\mathcal{O}_{\mathfrak{p}}) = \{1\}$ for almost all \mathfrak{p} , then we can write f(r) like $f(r) = \Pi_{\mathfrak{p}} f_{\mathfrak{p}}(r_{\mathfrak{p}})$ similarly.

Definition 4.1.

$$L^{1}(\mathbb{A}_{K}) = \{ f(r) = \prod_{\mathfrak{p}} f_{\mathfrak{p}}(r_{\mathfrak{p}}) | f_{\mathfrak{p}}(r_{\mathfrak{p}}) \in L^{1}(K_{\mathfrak{p}}) \text{ and } f_{\mathfrak{p}}(\mathcal{O}_{\mathfrak{p}}) = \{ 1 \} \text{ for almost all } \mathfrak{p} \}.$$

Proposition 4.1. \mathbb{A}_K and \mathbb{A}_K are isomorphic by the map

$$\begin{array}{ccc} \mathbb{A}_{K} & \longrightarrow & \hat{\mathbb{A}}_{K} \\ \mathbb{U} & \mathbb{U} & \mathbb{U} \\ \eta & \longmapsto & e^{2\pi i \Lambda(\eta r)} \,. \end{array}$$

Since
$$\Lambda_{\mathfrak{p}}(\mathcal{O}_{\mathfrak{p}}) = \{0\}$$
,
$$e^{2\pi i \Lambda(\eta r)} = \exp(2\pi i \sum_{\mathfrak{p}} \Lambda_{\mathfrak{p}}(\eta_{\mathfrak{p}} r_{\mathfrak{p}})) = \prod_{\mathfrak{p}} e^{2\pi i \Lambda_{\mathfrak{p}}(\eta_{\mathfrak{p}} r_{\mathfrak{p}})}.$$

Proposition 4.2. The Fourier transform of $f(r) \in L^1(\mathbb{A}_K)$ is defined by

$$(\mathcal{F}f)(\eta) = \int_{\mathbb{A}_K} f(r)e^{-2\pi i\Lambda(\eta r)} dr$$
.

The inverse Fourier transform is that

$$f(r) = \int_{\mathbb{A}_K} (\mathcal{F}f)(\eta) e^{2\pi i \Lambda(r\eta)} d\eta.$$

It holds that

$$\int_{\mathbb{A}_K} f(r) e^{-2\pi i \Lambda(\eta r)} dr = \prod_{\mathfrak{p}} \int_{K_{\mathfrak{p}}} f_{\mathfrak{p}}(r_{\mathfrak{p}}) e^{-2\pi i \Lambda_{\mathfrak{p}}(\eta_{\mathfrak{p}} r_{\mathfrak{p}})} dr_{\mathfrak{p}}.$$

Denote the Schwartz-Bruhat space on \mathbb{A}_K by $\mathcal{S}(\mathbb{A}_K)$. We define a function of the space as linear combinations of the product $\prod_{\mathfrak{p}} f_{\mathfrak{p}}(r_{\mathfrak{p}})$ where $f_{\mathfrak{p}_{\infty_i}} \in \mathcal{S}(\mathbb{R}^m)$, $f_{\mathfrak{p}} \in \mathcal{S}(K_{\mathfrak{p}})$ and $f_{\mathfrak{p}}$ is the characteristic function $\xi_{N\mathfrak{p}^0}$ of $\mathcal{O}_{\mathfrak{p}}$ for all but finitely many \mathfrak{p} . We will regard $L^2(\mathbb{A}_K)$ as the completion of $\mathcal{S}(\mathbb{A}_K)$. Let S be some finite set $\{\mathfrak{p}_1, \dots, \mathfrak{p}_k\} \cup S_{\infty}$. Set

$$\mathbb{A}_{S} = \prod_{\mathfrak{p} \in S} K_{\mathfrak{p}} \times \prod_{\mathfrak{p} \notin S} \mathcal{O}_{\mathfrak{p}}$$
.

Let $\mathbb{A}^S = \prod_{\mathfrak{p} \in S} \{1\} \times \prod_{\mathfrak{p} \notin S} \mathcal{O}_{\mathfrak{p}}$. \mathbb{A}^S is a compact subgroup of \mathbb{A}_S . We shall identify $K_{\mathfrak{p}} \in \mathbb{A}_S$ with $K_{\mathfrak{p}} \times \prod_{\mathfrak{p}' \in \mathfrak{p}} \{1\}$. Then we can decompose \mathbb{A}_S as follows;

$$\mathbb{A}_{S} = \prod_{p \in S} K_{p} \times \mathbb{A}^{S}$$
.

We see that

$$\mathbb{A}_K = \bigcup_{\mathbb{S}} \mathbb{A}_{\mathbb{S}}$$
.

For any function $f(r) \in L^2(\mathbb{A}_K)$, we will consider it as a function on \mathbb{A}_S .

Let $f(r) \in L^2(\mathbb{A}_K)$, as a function on \mathbb{A}_S ,

$$f(r) = \prod_{p \in S} f_p(r_p) \times \prod_{p \notin S} \xi_{Np^0}(r_p)$$
.

The Fourier transform of f(r) will be

$$(\mathcal{F}f)(\eta) = \prod_{\mathbf{p} \in S} (\mathcal{F}f_{\mathbf{p}})(\eta_{\mathbf{p}}) \times \prod_{\mathbf{p} \notin S} (\mathcal{F}\xi_{N\mathbf{p}^0})(\eta_{\mathbf{p}})$$
.

Let $r \in \mathbb{A}_K$. We will think of $r = (r_{\mathfrak{p}})_{\mathfrak{p} \leq \infty} \in \mathbb{A}_S$ where $S = {\mathfrak{p}_1, \dots, \mathfrak{p}_k} \cup S_{\infty}$. Its absolute value will be

$$|r| = |r_{\mathfrak{p}_1}|_{\mathfrak{p}_1} \cdots |r_{\mathfrak{p}_k}|_{\mathfrak{p}_k} \cdot \prod_{\mathfrak{p} \notin \mathbb{S}} |r_{\mathfrak{p}}|_{\mathfrak{p}} \cdot \prod_{\mathfrak{p} \notin \mathbb{S}_{\infty}} |r_{\mathfrak{p}_{\infty}}|_{\mathfrak{p}_{\infty}}$$

$$= N \mathfrak{p}_1^{n_1} N \mathfrak{p}_2^{n_2} \cdots N \mathfrak{p}_k^{n_k} \cdot \prod_{\mathfrak{p} \notin \mathbb{S}} N \mathfrak{p}^{n_{\mathfrak{p}}} \cdot \prod_{\mathfrak{p}_{\infty} \in \mathbb{S}_{\infty}} t_{\mathfrak{p}_{\infty}}$$

where $n_i \in \mathbb{Z}$, $n_{\mathfrak{p}} \leq 0$ for $\mathfrak{p} \notin S$ and $t_{\mathfrak{p}_{\infty}} \in \mathbb{R}$. If $|r| \neq 0$ then we will see that $n_{\mathfrak{p}} = 0$ for almost places $\mathfrak{p} \notin S$. Let

$$\mathfrak{B} = \{ f(r) \in L^2(\mathbb{A}_K) | (\mathcal{F}f)(\eta) = 0, |\eta| > \Omega \}.$$

 $\begin{array}{ll} \textbf{Definition 4.2.} & \text{For a given } \varOmega \geq 0 \text{, let } \varOmega = N \mathfrak{p}_1^{\ n_1} \cdots N \mathfrak{p}_k^{\ n_k} \cdot \prod_{\mathfrak{p} \notin \mathbb{S}} N \mathfrak{p}^{n_\mathfrak{p}} \cdot \prod_{\mathfrak{p}_\infty \in \mathbb{S}_\omega} t_{\mathfrak{p}_\omega} \text{.} \\ \text{If } & (\mathcal{F} f_{\mathfrak{p}_i})(\eta_{\mathfrak{p}_i}) = 0 \text{ for } \eta_{\mathfrak{p}_i} \ |\eta_{\mathfrak{p}_i}|_{\mathfrak{p}_i} > N \mathfrak{p}_i^{n_i} \text{, } & (\mathcal{F} f_{\mathfrak{p}})(\eta_{\mathfrak{p}}) = 0 \text{ for } \eta_{\mathfrak{p}} \ |\eta_{\mathfrak{p}}|_{\mathfrak{p}} > N \mathfrak{p}^{n_\mathfrak{p}} \ \mathfrak{p} \notin \mathbb{S} \text{ and } \\ & (\mathcal{F} f_{\mathfrak{p}_\infty})(\eta_{\mathfrak{p}_\infty}) = 0 \text{ for } \eta_{\mathfrak{p}_\infty} \ |\eta_{\mathfrak{p}_\infty}|_{\mathfrak{p}_\infty} > t_{\mathfrak{p}_\infty} \text{ then } f(r) \in \mathfrak{B}. \end{array}$

Let

$$\mathfrak{D} = \{ f(r) \in L^2(\mathbb{A}_K) \mid f(r) = 0, \ |r| > T \}.$$

Definition 4.3. For a given T > 0, let $T = N\mathfrak{p}_1^{h_1} \cdots N\mathfrak{p}_k^{h_k} \cdot \prod_{\mathfrak{p} \notin S} N\mathfrak{p}^{h_{\mathfrak{p}}} \cdot \prod_{\mathfrak{p} \notin S_{\mathfrak{p}}} s_{\mathfrak{p}_{\mathfrak{p}}}$.

$$Df_{\mathfrak{p}_{i}}(r_{\mathfrak{p}_{i}}) = \begin{cases} f_{\mathfrak{p}_{i}}(r_{\mathfrak{p}_{i}}) \cdots |r_{\mathfrak{p}_{i}}|_{\mathfrak{p}_{i}} \leq N\mathfrak{p}_{i}^{h_{i}} \\ 0 \cdots |r_{\mathfrak{p}_{i}}|_{\mathfrak{p}_{i}} > N\mathfrak{p}_{i}^{h_{i}} \end{cases}, \quad Df_{\mathfrak{p}}(r_{\mathfrak{p}}) = \begin{cases} f_{\mathfrak{p}}(r_{\mathfrak{p}}) \cdots |r_{\mathfrak{p}}|_{\mathfrak{p}} \leq N\mathfrak{p}^{h_{\mathfrak{p}}} \\ 0 \cdots |r_{\mathfrak{p}}|_{\mathfrak{p}} > N\mathfrak{p}^{h_{\mathfrak{p}}} \end{cases}$$

and

$$Df_{\mathfrak{p}_{\infty}}(r_{\mathfrak{p}_{\infty}}) = \begin{cases} f_{\mathfrak{p}_{\infty}}(r_{\mathfrak{p}_{\infty}}) \cdots |r_{\mathfrak{p}_{\infty}}|_{\mathfrak{p}_{\infty}} \leq s_{\mathfrak{p}_{\infty}} \\ 0 \cdots |r_{\mathfrak{p}_{\infty}}|_{\mathfrak{p}_{\infty}} > s_{\mathfrak{p}_{\infty}} \end{cases}.$$

Then $\prod_{\mathfrak{p}} Df_{\mathfrak{p}}(r_{\mathfrak{p}}) \in \mathfrak{D}$.

Let $T=N\mathfrak{p}_1^{h_1}\cdots N\mathfrak{p}_k^{h_k}\cdot\prod_{\mathfrak{p}\notin\mathbb{S}}N\mathfrak{p}^{h_\mathfrak{p}}\cdot\prod_{\mathfrak{p}_\infty\in\mathbb{S}_\omega}s_{\mathfrak{p}_\omega}$ and let $Df(r)\in\mathfrak{D}$ for the given T.

(1) For the places of $\{\mathfrak{p}_1, \dots, \mathfrak{p}_k\} \subseteq S$,

$$Df_{\mathfrak{p}_i}(r_{\mathfrak{p}_i}) = \sum_{g=1}^{l_i} c_g \xi_{N\mathfrak{p}_i^{m_i}}(r_{\mathfrak{p}_i} - a_g)$$

and

$$(\mathcal{F}Df_{\mathfrak{p}_i})(\eta_{\mathfrak{p}_i}) = \sum_{g=1}^{l_i} c_g e^{-2\pi i \Lambda(a_g \eta_{\mathfrak{p}_i})} N \mathfrak{p}^{m_i} \xi_{N \mathfrak{p}_i^{-m_i}}(\eta_{\mathfrak{p}_i}).$$

 $(\mathcal{F}\!D\!f_{\mathfrak{p}_i})(\eta_{\mathfrak{p}_i})$ vanishes for $|\eta_{\mathfrak{p}_i}|\!>\!N\mathfrak{p}_i^{-m_i}$.

(2) For the places $\mathfrak{p} \notin S$,

$$Df_{\mathfrak{p}}(r_{\mathfrak{p}}) = \begin{cases} \xi_{N_{\mathfrak{p}}^{h_{\mathfrak{p}}}}(r_{\mathfrak{p}}) \cdots h_{\mathfrak{p}} \leq 0 \\ \xi_{N_{\mathfrak{p}}^{0}}(r_{\mathfrak{p}}) \cdots h_{\mathfrak{p}} > 0 \end{cases}.$$

Put $\{h_{\mathfrak{p}}\}=h_{\mathfrak{p}}$ if $h_{\mathfrak{p}}\leq 0$ and $\{h_{\mathfrak{p}}\}=0$ if $h_{\mathfrak{p}}\geq 0$. Then $(\mathcal{F}Df_{\mathfrak{p}})(\eta_{\mathfrak{p}})=N\mathfrak{p}^{\{h_{\mathfrak{p}}\}}\xi_{N\mathfrak{p}^{-\{h_{\mathfrak{p}}\}}}(\eta_{\mathfrak{p}})$ and it vanishes for $|\eta_{\mathfrak{p}}|>N\mathfrak{p}^{-\{h_{\mathfrak{p}}\}}$.

(3) For the places $\mathfrak{p}_{\infty} \in S_{\infty}$,

 $Df_{\mathfrak{p}_{\infty}}(r_{\mathfrak{p}_{\infty}})$ can't be bandlimited. Only $0(r_{\mathfrak{p}_{\infty}})$ can be bandlimited.

Then

 $(\mathcal{F}0)(\eta_{\mathfrak{p}_{\infty}})$ vanishes for $|\eta_{\mathfrak{p}_{\infty}}| > t_{\mathfrak{p}_{\infty}}$ where $t_{\mathfrak{p}_{\infty}}$ is an arbitrary positive real number.

Let

$$Df(t) = Df_{\mathfrak{p}_1}(r_{\mathfrak{p}_1}) \cdots Df_{\mathfrak{p}_k}(r_{\mathfrak{p}_k}) \cdot \prod_{\mathfrak{p} \in S} Df_{\mathfrak{p}}(r_{\mathfrak{p}}) \cdot \prod_{\mathfrak{p} \in S} O(r_{\mathfrak{p}_1}).$$

The Fourier transform of $D\!f(r)$ vanishes for $|\eta| > \Omega$ where $\Omega = N\mathfrak{p}_1^{-m_1} \cdots N\mathfrak{p}_k^{-m_k} \cdot \prod_{\mathfrak{p}_\omega \in \mathbb{S}_\omega} t_{\mathfrak{p}_\omega}$.

Appendix

Here we define the Fourier transform of f(t) as

$$(\mathcal{F}f)(\omega) = F(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t} dt$$
.

The Fourier inverse transform is

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} (\mathcal{F}f)(\omega) e^{i\omega t} d\omega$$
.

cf. Define $(\mathcal{F}f)(\omega) = F(2\pi\omega)$. Then

$$(\mathcal{F}f)(\omega) = F(2\pi\omega) = \int_{-\infty}^{\infty} f(t)e^{-2\pi i\omega t} dt$$
.

and

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{i\omega t} d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(2\pi\omega) e^{i2\pi\omega t} d2\pi\omega = \int_{-\infty}^{\infty} (\mathcal{F}f)(\omega) e^{2\pi i\omega t} d\omega.$$

The functions $S_{0n}(c, t)$ are called "angular prolate spheroidal functions". They are real for real t, are continuous functions of c for $0 \le c$ and can be extended to be entire functions of the complex variable t. They are orthogonal in (-1, 1) and are complete in $L^2(-1, 1)$. The functions $R_{0n}^{(1)}(c, t)$ are called "radial prolate spheroidal functions". They differ from angular prolate spheroidal functions only by a real scale factor,

$$R_{0n}^{(1)}(c, t) = k_n(c)S_{0n}(c, t).$$

We have the following equations;

$$\frac{2c}{\pi} R_{0n}^{(1)}(c, 1)^2 S_{0n}(c, t) = \int_{-1}^1 \frac{\sin c(t-s)}{\pi(t-s)} S_{0n}(c, s) ds, \qquad (1)$$

$$2i^{n} R_{0n}^{(1)}(c, 1) S_{0n}(c, t) = \int_{-1}^{1} e^{icts} S_{0n}(c, s) ds \qquad n = 0, 1, 2, \cdots .$$
 (2)

Set $\lambda_n(c) = \frac{2c}{\pi} (\mathsf{R}_{0n}^{(1)}(c, 1))^2$ and set $u_n(c)^2 = \int_{-1}^1 \mathsf{S}_{0n}(c, t)^2 dt$. We define

$$\psi_n(c, t) = \frac{\sqrt{\lambda_n(c)}}{u_n(c)} S_{0n}(c, \frac{2t}{T}).$$

Properties ii. follow from definitions and the orthogonality and completeness of $S_{0n}(c, t)$ in (-1, 1).

From the equation (1),

$$\frac{2c}{\pi} R_{0n}^{(1)}(c, 1)^2 S_{0n}(c, \frac{2t}{T}) = \int_{-1}^{1} \frac{\sin c(\frac{2t}{T} - s)}{\pi(\frac{2t}{T} - s)} S_{0n}(c, s) ds.$$

We have

$$\int_{-1}^{1} \frac{\sin c(\frac{2t}{T}-s)}{\pi(\frac{2t}{T}-s)} S_{0n}(c, s) ds = \int_{-1}^{1} \frac{\sin c \cdot \frac{2}{T}(t-\frac{T}{2}\cdot s)}{\pi^{\frac{2}{T}}(t-\frac{T}{2}\cdot s)} S_{0n}(c, s) ds.$$

Put $\frac{T}{2} \cdot s = \sigma$. Then $ds = \frac{2}{T} d\sigma$. $-T/2 \le \sigma \le T/2$ since $-1 \le s \le 1$. So

$$\int_{-1}^{1} \frac{\sin c \cdot \frac{2}{T} (t - \frac{T}{2} \cdot s)}{\pi^{\frac{2}{T}} (t - \frac{T}{2} \cdot s)} S_{0n}(c, s) ds = \int_{-T/2}^{T/2} \frac{\sin c \cdot \frac{2}{T} (t - \sigma)}{\pi \cdot \frac{2}{T} (t - \sigma)} S_{0n}(c, \frac{2\sigma}{T}) \frac{2}{T} d\sigma$$

$$= \int_{-T/2}^{T/2} \frac{\sin \Omega(t - \sigma)}{\pi (t - \sigma)} S_{0n}(c, \frac{2\sigma}{T}) d\sigma \qquad c = \Omega \frac{T}{2}.$$

We obtain

$$\frac{2c}{\pi} R_{0n}^{(1)}(c,1)^2 S_{0n}(c,\frac{2t}{T}) = \int_{-T/2}^{T/2} \frac{\sin \Omega(t-\sigma)}{\pi(t-\sigma)} S_{0n}(c,\frac{2\sigma}{T}) d\sigma.$$

Multiplying both the sides by $\frac{\sqrt{\lambda_n(c)}}{u_n(c)}$,

$$\lambda_n(c)\psi_n(c,t) = \int_{-T/2}^{T/2} \frac{\sin\Omega(t-\sigma)}{\pi(t-\sigma)} \psi_n(c,\sigma) d\sigma.$$

The assertion of iii. is established.

From the equation (2),

$$2i^{n} R_{0n}^{(1)}(c, 1) S_{0n}(c, \frac{2t}{T}) = \int_{-1}^{1} e^{ic \cdot \frac{2t}{T} \cdot s} S_{0n}(c, s) ds$$
$$= \int_{-1}^{1} e^{i\Omega t s} S_{0n}(c, s) ds \quad c = \Omega \frac{T}{2}.$$

Put $s=\frac{\omega}{\Omega}$. Then $ds=\frac{1}{\Omega}d\omega$. $-\Omega \leq \omega \leq \Omega$ since $-1\leq \frac{\omega}{\Omega}\leq 1$. So

$$\int_{-1}^{1} e^{i\Omega ts} S_{0n}(c, s) ds = \int_{-\Omega}^{\Omega} e^{i\Omega t \cdot \frac{\omega}{\Omega}} S_{0n}(c, \frac{\omega}{\Omega}) \frac{1}{\Omega} d\omega = \frac{1}{\Omega} \int_{-\Omega}^{\Omega} e^{i\omega t} S_{0n}(c, \frac{\omega}{\Omega}) d\omega.$$

Here

$$S_{0n}(c, \frac{\omega}{\Omega}) = S_{0n}(c, \frac{2 \cdot \frac{\omega T}{2\Omega}}{T}).$$

We have

$$2i^{n} R_{0n}^{(1)}(c, 1) S_{0n}(c, \frac{2t}{T}) = \frac{1}{\Omega} \int_{-c}^{\Omega} e^{i\omega t} S_{0n}(c, \frac{2 \cdot \frac{\omega T}{2\Omega}}{T}) d\omega$$
.

Thus

$$2i^{n}\Omega R_{0n}^{(1)}(c, 1) S_{0n}(c, \frac{2t}{T}) = \int_{-\alpha}^{\alpha} e^{i\omega t} S_{0n}(c, \frac{2 \cdot \frac{\omega T}{2\Omega}}{T}) d\omega.$$

Multiplying both the sides by $\frac{1}{2\pi} \frac{\sqrt{\lambda_n(c)}}{u_n(c)}$,

$$\frac{i^n \Omega R_{0n}^{(1)}(c, 1)}{\pi} \psi_n(c, t) = \frac{1}{2\pi} \int_{-\Omega}^{\Omega} e^{i\omega t} \psi_n(c, \frac{\omega T}{2\Omega}) d\omega.$$

Since ${
m R}_{0n}{}^{(1)}(c,\,1)=\sqrt{rac{\lambda_n(c)\pi}{2c}}$,

$$\frac{i^n \Omega R_{0n}^{(1)}(c, 1)}{\pi} = i^n \sqrt{\frac{\Omega^2 \cdot \lambda_n(c)\pi}{\pi^2 \cdot 2c}} = i^n \sqrt{\frac{\Omega \lambda_n(c)}{\pi T}} \qquad c = \Omega \frac{T}{2}.$$

Thus it turns out that

$$i^n \sqrt{\frac{\Omega}{\pi T}} \sqrt{\lambda_n(c)} \psi_n(c,t) = \frac{1}{2\pi} \int_{-\Omega}^{\Omega} e^{i\omega t} \psi_n(c,\frac{\omega T}{2\Omega}) d\omega.$$

We have

$$\psi_n(c, t) = \frac{1}{2\pi} \int_{-\Omega}^{\Omega} e^{i\omega t} \left(i^{-n} \frac{1}{\sqrt{\lambda_n(c)}} \sqrt{\frac{\pi T}{\Omega}} \psi_n(c, \frac{\omega T}{2\Omega}) \right) d\omega.$$

It means that

$$\mathcal{F}(\psi_n(c,t))(\omega) = \begin{cases} i^{-n} \frac{1}{\sqrt{\lambda_n(c)}} \sqrt{\frac{\pi T}{\Omega}} \psi_n(c, \frac{\omega T}{2\Omega}) & \cdots & |\omega| \leq \Omega \\ 0 & \cdots & |\omega| > \Omega \end{cases}$$

Namely $\psi_n(c,t)$ are bandlimited. The orthogonality and completeness of $S_{0n}(c,t)$ in (-1,1) leads the orthogonality and completeness of $S_{0n}(c,\frac{\omega}{\Omega})$ in $(-\Omega,\Omega)$. Therefore $\psi_n(c,\frac{\omega T}{2\Omega})$ are orthogonal and complete in $(-\Omega,\Omega)$. Since $i^{-n}\frac{1}{\sqrt{\lambda_n(c)}}\sqrt{\frac{\pi T}{\Omega}}\psi_n(c,\frac{\omega T}{2\Omega})$ is the Fourier transform of $\psi_n(c,t)$, we can show the orthogonality and the completeness of $\psi_n(c,t)$ in $\mathfrak B$ by Parseval's theorem. The statement of i. is established.

References

- [1] D. Slepian and H.O. Pollak, Prolate Spherodial Wave Functions, Fourier Analysis and Uncertainty I, https://mast.queensu.ca/~driegert/papers/pswf_1.pdf .
- [2] H. J. Landau and H.O. Pollak, Prolate Spherodial Wave Functions, Fourier Analysis and Uncertainty II, https://mast.queensu.ca/~driegert/papers/pswf_2.pdf .
- [3] J. T. Tate, Fourier Analysis in Number Fields and Hecke's Zeta-Functions, *Trans. Lecture Notes Tohoku Univ.* 2004.
- [4] Mårten Nilsson, The Vladimirov Heat Kernel in the Program of Jorgeson-Lang, https://www.diva-portal.org/smash/get/diva2:1230266/FULLTEXT01.pdf.