
SPEED OF GRAVITY CAN BE DIFFERENT

FROM THE SPEED OF LIGHT.

Ruslan Sharipov

Abstract. In Einstein’s relativity each massless field should propagate with the
speed of light, including the gravitational field. The 3D-brane universe model is an

alternative theory of gravity. Unlike Einstein’s relativity, it is not so restrictive. In the
present paper we build the theory of electromagnetism in a curved 3D-brane universe

where the speed of gravity cgr can be different from the speed of electromagnetic
waves cel, which is the speed of light.

1. Introduction.

Within the paradigm of a 3D-brane universe the gravitational field is described
by a time-dependent 3D metric with the components

gij = gij(t, x
1, x2, x3), 1 6 i, j 6 3. (1.1)

Through t we denote the cosmological time. As it was shown in [1] (see also [2] and
[3]), the three-dimensional metric (1.1) obeys the following differential equations:

ḃij

cgr

−
3

∑

k=1

ḃkk
cgr

gij −
3

∑

k=1

(bki b
k
j + bkj b

k
i ) − gij

2

3
∑

k=1

3
∑

q=1

bkq b
q
k −

− gij

2

3
∑

k=1

3
∑

q=1

bkk b
q
q +

3
∑

k=1

bkk bij +Rij −
R

2
gij + Λ gij =

8π γ

c4gr

Tij,

(1.2)

Here γ is Newton’s gravitational constant (see [4]), Λ is the cosmological constant
(see [5]), Rij are the components of the three-dimensional Ricci tensor of the metric
(1.1), R is the three-dimensional scalar curvature, and bij are given by the formula

bij =
ġij

2 cgr

. (1.3)

Through cgr in (1.2) and (1.3) we denote some constant that replaces the speed of
light used in the standard relativity. It presents the speed of gravity that can be
different from the speed of light. The right hand side of (1.2) is determined by the
variational derivative of Lmat, where Lmat is the Lagrangian of matter.
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The equations (1.2) were derived in [1] through 3D reduction of the standard
Einstein’s equations (see [6]). Later on the equations (1.2) were rederived within
purely three-dimensional Lagrangian and Hamiltonian approaches (see [8], [9], and
[10]). Here we use the following Lagrangian for the gravitational field:

Lgr = −
c4gr

16π γ
(ρ + 2 Λ), (1.4)

where

ρ =

3
∑

k=1

3
∑

q=1

bkk b
q
q − R−

3
∑

k=1

3
∑

q=1

bkq b
q
k. (1.5)

The coefficient in (1.4) is slightly different from that used in [8], [9], and [11]. This
coefficient here is chosen in such a way that the value of Lgr is measured in the
units of the energy density. The coefficient in the right hand side of (1.2) is also
slightly different from that of [8] since cgr can be different from the speed of light.

In the standard four-dimensional relativistic electrodynamics the electromagnetic
field is described by the four-dimensional vector potential (see § 9 in Chapter III
of [12]). In this paper we return back to the three-dimensional vector potential A

along with the scalar potential ϕ. The electric field E and the magnetic field H

here again are two separate vector fields given by the classical formulas:

E = − gradϕ− 1

cel

∂A

∂t
, H = rotA. (1.6)

Note that cel in (1.6) is the speed of light. The equations (1.6) here are understood
in the covectorial form, i. e. the covariant components of A are used in them:

Ei = −∇iϕ− 1

cel

∂Ai

∂t
, Hi =

3
∑

j=1

3
∑

k=1

εijk

√
det g

∇jAk. (1.7)

The term εijk in the right hand side of the second formula (1.7) is the Levi-Civita
symbol (see [13] and § 43 of Chapter I in [14]). Choosing the scalar potential ϕ
and the components of the covector A for dynamic variables of the electromagnetic
field, we write the Lagrangian of the electromagnetic field as follows:

Lel =
|E|2 − |H|2

8π
. (1.8)

The electromagnetic field plays the role of matter in the present paper. Therefore

Lmat = Lel (1.9)

and the total Lagrangian of the theory below is

L = Lgr + Lel. (1.10)

The main goal of the present paper is to apply the general results of [8], [9] and
[11] to this particular case given by the Lagrangian (1.10).
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2. Legendre transformation and conjugate variables.

Typically Lagrangians are functions of dynamic variables and their time deriva-
tives. In the case of the metric components gij in (1.1) their time derivatives are
presented by the quantities bij in (1.3). Therefore we write

Lgr = Lgr(g,b). (2.1)

The Lagrangian Lel in (1.8) does not depend on bij. But it depends on gij since

|E|2 =

3
∑

i=1

3
∑

j=1

gij EiEj, |H|2 =

3
∑

i=1

3
∑

j=1

gij H
iHj. (2.2)

Due to (1.6), (1.7), and (2.2), the Lagrangian Lel depends on Ȧ, but it does not
depend on ϕ̇. Therefore we can write the formulas similar to (2.1):

Lel = Lel(g, ϕ,A, Ȧ), L = L(g,b, ϕ,A, Ȧ). (2.3)

The Legendre transformation associated with the LagrangianL(g, ϕ,A, Ȧ) in (1.10)
is given by the following formulas:

βij =
( δL
δbij

)

g,ϕ,A,Ȧ
, αi =

( δL
δȦi

)

g,b,ϕ,A
, ψ =

(δL
δϕ̇

)

g,b,ϕ,A,Ȧ
. (2.4)

The quantities βij , αi, and ψ are generalized momenta conjugate to bij, Ȧ
i, and ϕ̇

respectively. The last variational derivative in (2.4) is zero since according to (2.3)
the Lagrangian L does not depend on ϕ̇. Therefore

ψ =
(δL
δϕ̇

)

g,b,ϕ,A,Ȧ
= 0. (2.5)

The other two variational derivatives in (2.4) are calculated explicitly:

βij =
( δL
δbij

)

g,ϕ,A,Ȧ
=

c4gr

8πγ

(

bij −
3

∑

k=1

bkk g
ij

)

, (2.6)

αi =
( δL
δȦi

)

g,b,ϕ,A
= − Ei

4π cel
. (2.7)

Due to (2.5) the Legendre transformation (2.4) is partly degenerate and hence is
not invertible as a whole.

3. Euler-Lagrange equations.

The Lagrangian (1.10) is used in order to write the following action integral:

S =

∫∫

L
√

det g d3x dt. (3.1)
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The stationary action principle (see [15]) applied to action integrals leads to Euler-
Lagrange equations. In the case of the action integral (3.1) in [9] two Euler-Lagrange
equations were derived. One of them describes gravity:

− 1

2 cgr

∂

∂t

( δL
δbij

)

g,ϕ,A,Ȧ
− 1

2

( δL
δbij

)

g,ϕ,A,Ȧ

3
∑

q=1

bqq +
( δL
δgij

)

b,ϕ,A,Ȧ
= 0. (3.2)

The sort of matter in [9] was not specified. Therefore the second Euler-Lagrange
equation in [9] was written with respect to some abstract dynamic variables of
matter Q1, . . . , Qn and W1, . . . , Wn (see (5.6) in [9]). In the present paper matter
is presented by the electromagnetic field (see (1.9)). Its dynamic variables here are
the scalar potential ϕ, the vector potential A, and their time derivatives. Therefore
the Euler-Lagrange equations of matter here are written as follows:

− ∂

∂t

(δL
δϕ̇

)

g,b,ϕ,A,Ȧ
−

(δL
δϕ̇

)

g,b,ϕ,A,Ȧ

3
∑

q=1

cgr b
q
q +

(δL
δϕ

)

g,b,A,Ȧ
= 0, (3.3)

− ∂

∂t

( δL
δȦi

)

g,b,ϕ,A
−

( δL
δȦi

)

g,b,ϕ,A

3
∑

q=1

cgr b
q
q +

( δL
δAi

)

g,b,ϕ,Ȧ
= 0. (3.4)

Due to (2.5) the Euler-Lagrange equation (3.3) reduces to

(δL
δϕ

)

g,b,A,Ȧ
= 0. (3.5)

The gravitational part Lgr of the Lagrangian (1.10) does not depend on ϕ. Therefore
the Euler-Lagrange equation (3.5) reduces to

(δLel

δϕ

)

g,b,A,Ȧ
= 0. (3.6)

Using (1.6) and (1.8), one can calculate the variational derivative in (3.6) explicitly:

(δLel

δϕ

)

g,b,A,Ȧ
=

1

4π
divE =

1

4π

3
∑

i=1

∇iE
i. (3.7)

Due to (3.7) the equation (3.6) yields the well-known Maxwell equation for the
electric field in the absence of charges (see § 1 in Chapter II of [12]):

divE = 0. (3.8)

The gravitational part Lgr of the Lagrangian (1.10) does not depend on the
vector potential A and on its time derivative. Therefore (3.4) reduces to:

− ∂

∂t

(δLel

δȦi

)

g,b,ϕ,A
−

(δLel

δȦi

)

g,b,ϕ,A

3
∑

q=1

cgr b
q
q +

(δLel

δAi

)

g,b,ϕ,Ȧ
= 0. (3.9)
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Using (1.7) and (1.8), one can calculate the variational derivatives in (3.6) explicitly:

(δLel

δȦi

)

g,b,ϕ,A
= − Ei

4π cel
,

(δLel

δAi

)

g,b,ϕ,Ȧ
= − 1

4π

3
∑

j=1

3
∑

k=1

εijk

√
det g

∇jHk.

(3.10)

The first formula (3.10) coincides with (2.7). The term εijk in the right hand side of
the second formula (3.10) is the same Levi-Civita symbol as in (1.7). Substituting
(3.10) into (3.9) we derive the following equation:

3
∑

j=1

3
∑

k=1

εijk

√
det g

∇jHk =
1

cel

∂Ei

∂t
+
cgr

cel

3
∑

q=1

Ei bqq. (3.11)

The equation (3.11) can be written in a vectorial form:

rotH =
1

cel

∂E

∂t
+
cgr

cel

3
∑

q=1

E bqq . (3.12)

The equation (3.10) is very similar to one of the Maxwell equations in the absence
of charges and currents (see § 1 of Chapter II in [12]). Unlike the first equation
(1.7), the equation (3.12) is written with respect to the contravariant components
of E. This is clear from (3.11).

The second term from the right hand side of the equation (3.11) is absent in
the standard Maxwell equation. This term in (3.12) is called the Hubble term.
Assuming the expansion of the universe to be uniform and isotropic (which is true
at large scales), we can relate this term with the Hubble parameter (see [16]):

cgr

3
∑

q=1

bqq ≈ 3H. (3.13)

The value of the Hubble parameter H in (3.13) at the current cosmological time is
known as the Hubble constant H0 = H(t0). Wikipedia in [16] provides somewhat
conflicting experimental data for the value of H0 obtained using several different
experimental techniques. Roughly averaging these conflicting data, we can write

H0 ≈ 70
km

s · Mpc
.

Now we can proceed to the equation (3.2). Substituting (1.10) into (3.2), we get:

− 1

2 cgr

∂

∂t

(δLgr

δbij

)

g,ϕ,A,Ȧ
− 1

2

(δLgr

δbij

)

g,ϕ,A,Ȧ

3
∑

q=1

bqq +
(δLgr

δgij

)

b,ϕ,A,Ȧ
=

=
1

2 cgr

∂

∂t

(δLel

δbij

)

g,ϕ,A,Ȧ
+

1

2

(δLel

δbij

)

g,ϕ,A,Ȧ

3
∑

q=1

bqq −
(δLel

δgij

)

b,ϕ,A,Ȧ
.

(3.14)
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The variational derivative in the first two terms of (3.14) is already calculated.
Indeed, since the Lagrangian Lel in (1.8) does not depend on bij, due to (1.10) this
variational derivative is actually given by the formula (2.6):

(δLgr

δbij

)

g,ϕ,A,Ȧ
=

c4gr

8πγ

(

bij −
3

∑

k=1

bkk g
ij

)

. (3.15)

In order to calculate the variational derivative in the third term of the equation
(3.14) we can use the results of [9]. Slightly modifying the formula (6.13) from
therein, we can write the following formula:

(δLgr

δgij

)

b,ϕ,A,Ȧ
=

c4gr

16π γ

( 3
∑

k=1

3
∑

q=1

1

2
bkq b

q
k g

ij −
3

∑

k=1

3
∑

q=1

2 bik b
k
q g

qj +

+

3
∑

k=1

2 bkk b
ij −

3
∑

k=1

3
∑

q=1

1

2
bkk b

q
q g

ij − Rij +
R

2
gij − Λ gij

)

.

(3.16)

As we noted in (2.3), the Lagrangian of the electromagnetic field (1.8) does not
depend on the components of the tensor field b. Therefore

(δLel

δbij

)

g,ϕ,A,Ȧ
= 0. (3.17)

The Lagrangian (1.8) depends on the components of the metric (1.1) due to (2.2). In
order to calculate the last variational derivative in (3.14) we use the second formula
(1.7). The covariant derivative ∇jAk in this formula is calculated as follows:

∇jAk =
∂Ak

∂xj
−

3
∑

q=1

Γq
jkAq, (3.18)

see (5.12) in § 5 of Chapter III in [17]). The components of the metric connection
Γq

jk in (3.18) are symmetric with respect to the indices j and k, while the Levi-Civita

symbol εijk in (1.7) is skew-symmetric with respect to these indices. Therefore the
first and the second formulas (1.7) reduce to the following ones:

Ei = − ∂ϕ

∂xi
− 1

cel

∂Ai

∂t
, Hi =

3
∑

j=1

3
∑

k=1

εijk

√
det g

∂Ak

∂xj
. (3.19)

The formulas (3.19) mean that the components Ei of the electric field do not depend
on the metric at all, while the components Hi of the magnetic field depend on
the metric only through the square root

√
det g in the denominator of the second

formula (3.19). Using this fact, from (1.8), (2.2), and (3.1) we derive

(δLel

δgij

)

b,ϕ,A,Ȧ
= −E

iEj +HiHj

8π
+

|E|2 + |H|2
16π

gij. (3.20)

We can compare (3.20) with the previously obtained results. Taking into account
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(1.9) with (3.17) and applying the formulas (3.20) and (3.21) from [9], we get

δLmat

δgij
=
EiEj +HiHj

8π
− |E|2 + |H|2

16π
gij. (3.21)

In the standard four-dimensional formalism the energy-momentum tensor of the
electromagnetic field is given by the formula (4.4) from § 4 of Chapter V in [12].
This formula is written as follows:

Tqj = − 1

4π

3
∑

p=0

3
∑

i=0

(

Fpq G
pi Fij −

1

4
Fpi F

piGqj

)

. (3.22)

Let’s choose an orthonormal frame where the metric (1.1) is given by the identity
matrix and the four-dimensional Minkowski metric is diagonal

gij = gij

∥

∥

∥

∥

∥

∥

1 0 0
0 1 0
0 0 1

∥

∥

∥

∥

∥

∥

, Gij = Gij =

∥

∥

∥

∥

∥

∥

∥

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

∥

∥

∥

∥

∥

∥

∥

. (3.23)

In such a frame the four-dimensional tensor of the electromagnetic field is presented
by the following two skew-symmetric matrices:

F pq =

∥

∥

∥

∥

∥

∥

∥

∥

∥

0 −E1 −E2 −E3

E1 0 −H3 H2

E2 H3 0 −H1

E3 −H2 H1 0

∥

∥

∥

∥

∥

∥

∥

∥

∥

, Fpq =

∥

∥

∥

∥

∥

∥

∥

∥

∥

0 E1 E2 E3

−E1 0 −H3 H2

−E2 H3 0 −H1

−E3 −H2 H1 0

∥

∥

∥

∥

∥

∥

∥

∥

∥

. (3.24)

Applying (3.23) and (3.24) to (3.22) and (3.21), we derive

Tij = −2
δLmat

δgij
for 1 6 i, j 6 3. (3.25)

The formula (3.25) is consistent with the previously derived formulas (4.40) in [8],
(1.13) in [9], and (1.11) in [11] since here we have slightly changed the formula for
Lgr in (1.4) magnifying its coefficient by the factor c = cgr as compared to the
previous papers. Hence the Lagrangian Lmat turned magnified accordingly.

Let’s return back to the Euler-Lagrange equation (3.14). Substituting (3.15),
(3.16), and (3.17) into (3.14), and keeping in mind (3.20), we derive

− 1

cgr

3
∑

k=1

3
∑

q=1

ḃkq g
ik gjq +

3
∑

q=1

(biq b
qj + bjq b

qi) +

+
1

cgr

3
∑

q=1

ḃqq g
ij −

3
∑

q=1

bqq b
ij +

gij

2

3
∑

k=1

3
∑

q=1

bkk b
q
q +

gij

2

3
∑

k=1

3
∑

q=1

bkq b
q
k −

−Rij +
R

2
gij − Λ gij = −16π γ

c4gr

(δLel

δgij

)

b,ϕ,A,Ȧ
.

(3.26)
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Lowering indices i and j in (3.26) and taking into account (3.20), (3.21), and
(3.25), we find that (3.26) is equivalent to the previously derived equation (1.2).
The variational derivative in the right hand side of the equation (1.2) in our present
case is given by the explicit formula (3.21).

4. The energy conservation law.

The energy conservation law in the 3D-brane universe model was already derived
in [11]. Here we specify this energy conservation law for the case where matter is
presented by the electromagnetic field. The energy density in [11] is given by the
formula (4.2) therein. For our present case this formula is written as

H =

3
∑

i=1

3
∑

j=1

βij bij +

3
∑

i=1

αi Ȧi + ψ ϕ̇− L. (4.1)

The quantities βij , αi, and ψ in (4.1) are given by (2.5), (2.6) and (2.7). Applying
these formulas along with (1.9), (1.10), (1.4), (1.5), and (1.8), we derive

H =
c4gr

16π γ

( 3
∑

k=1

3
∑

q=1

bkq b
q
k −

3
∑

k=1

3
∑

q=1

bkk b
q
q − R+ 2 Λ

)

−

− 1

4π cel

3
∑

i=1

Ei Ȧi −
|E|2 − |H|2

8π
.

(4.2)

We apply the first formula (1.7) in order to transform the formula (4.2). This yields

H =
c4gr

16π γ

( 3
∑

k=1

3
∑

q=1

bkq b
q
k −

3
∑

k=1

3
∑

q=1

bkk b
q
q − R+ 2 Λ

)

+

+
|E|2 + |H|2

8π
+

1

4π

3
∑

i=1

Ei ∇iϕ.

(4.3)

Let Ω be a closed three-dimensional domain with the smooth boundary ∂Ω in
a 3D-brane universe. The energy density (4.3) is used in order to determine the
amount of total energy enclosed in the domain Ω:

E =

∫

Ω

H
√

det g d3x (4.4)

The last term in (4.3) contributes to (4.4) through the integral

E7 =
1

4π

∫

Ω

3
∑

i=1

Ei ∇iϕ
√

det g d3x. (4.5)

Applying (3.8) to (4.5), we can transform this integral as follows:

E7 =
1

4π

∫

Ω

3
∑

i=1

∇i(E
i ϕ)

√

det g d3x =
1

4π

∫

∂Ω

(ϕE,n) dS. (4.6)
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Here n is the unit normal vector on the boundary ∂Ω and dS is the infinitesimal
area element of this boundary. The last integral in (4.6) means that the energy E7

is attributed not to the bulk of the domain Ω, but to its boundary. For this reason
we can omit the last term in (4.3) and write this formula as

H =
c4gr

16π γ

( 3
∑

k=1

3
∑

q=1

bkq b
q
k −

3
∑

k=1

3
∑

q=1

bkk b
q
q −R+ 2 Λ

)

+
|E|2 + |H|2

8π
. (4.7)

In order to derive the energy conservation law we should calculate the time
derivative of the integral (4.4) with the function (4.7) in it:

Ė =

∫

Ω

∂H
∂t

√

det g d3x+

∫

Ω

H ∂(
√

det g )

∂t
d3x. (4.8)

The partial derivative in the second integral in (4.8) is easily calculated using (1.3)
and Jacobi’s formula for differentiating determinants (see [18]):

∂(
√

det g )

∂t
= cgr

√

det g

3
∑

q=1

bqq. (4.9)

Due to (4.9) the formula (4.8) is rewritten as

Ė =

∫

Ω

∂H
∂t

√

det g d3x+

∫

Ω

3
∑

q=1

cgr H bqq
√

det g d3x. (4.10)

In order to calculate the first integral in (4.10) we subdivide the energy density H
given by the formula (4.7) into six terms

H = H1 + H2 + H3 + H4 + H5 + H6, (4.11)

where

H1 =
c4gr

16π γ

3
∑

k=1

3
∑

q=1

bkq b
q
k, H4 =

c4gr

16π γ
2 Λ, (4.12)

H2 = −
c4gr

16π γ

3
∑

k=1

3
∑

q=1

bkk b
q
q, H5 =

1

8π
|E|2, (4.13)

H3 = −
c4gr

16π γ
R H6 =

1

8π
|H|2, (4.14)

The term H4 in (4.11) is the most simple, it is constant. Therefore

∂H4

∂t
= 0. (4.15)

For the term H1, using (4.12) and (1.3), we derive

∂H1

∂t
=

c4gr

16π γ

3
∑

k=1

3
∑

q=1

(

2 ḃkq b
kq − 4 cgr

3
∑

r=1

bkq b
q
r b

r
k

)

. (4.16)
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Similar approach can be applied to H2 in (4.11). Using (4.13) and (1.3), we get

∂H2

∂t
=

c4gr

16π γ

3
∑

k=1

3
∑

q=1

3
∑

r=1

(

4 cgrb
k
r b

r
k b

q
q − 2 ḃkr g

kr bqq

)

. (4.17)

Time derivatives ḃkq and ḃkr in (4.16) and (4.17) can be calculated using the equa-
tion (1.2). As a result the formulas (4.16) and (4.17) are written as

∂H1

∂t
=

c4gr

16π γ

3
∑

k=1

3
∑

q=1

(

2 ḃkk b
q
q − cgr

3
∑

r=1

bkr b
r
k b

q
q + cgr

3
∑

r=1

bkk b
r
r b

q
q −

− 2 cgrRkq b
kq

)

+
c4gr

16π γ

3
∑

q=1

cgr (R− 2 Λ) bqq −
3

∑

k=1

3
∑

q=1

2 cgr

δLmat

δgkq
bkq.

(4.18)

∂H2

∂t
=

c4gr

16π γ

3
∑

k=1

3
∑

q=1

(

− 6 ḃkk b
q
q − 3 cgr

3
∑

r=1

bkr b
r
k b

q
q − cgr

3
∑

r=1

bkk b
r
r b

q
q

)

−

−
c4gr

16π γ

3
∑

q=1

cgr (R− 6 Λ) bqq +

3
∑

k=1

3
∑

q=1

3
∑

r=1

2 cgr

δLmat

δgkr
gkr bqq.

(4.19)

Both formulas (4.18) and (4.19) comprises terms with time derivatives ḃqq. In order

to remove these terms we multiply (1.2) by gij and sum up with respect to indices
i and j. As a result we get the following relationship:

−
3

∑

k=1

2 ḃkk =
3

2

3
∑

k=1

3
∑

r=1

cgr b
k
r b

r
k +

1

2

3
∑

k=1

3
∑

r=1

cgr b
k
k b

r
r +

+ cgr

R

2
− cgr 3 Λ − 16π γ

c3gr

3
∑

k=1

3
∑

r=1

δLmat

δgkr
gkr.

(4.20)

Applying the relationship (4.20) to (4.18) and (4.19), we derive

∂H1

∂t
+
∂H2

∂t
=

c4gr

16π γ

3
∑

k=1

3
∑

q=1

(

− cgr

3
∑

r=1

bkr b
r
k b

q
q +

+ cgr

3
∑

r=1

bkk b
r
r b

q
q − 2Rkq b

kq

)

+
c4gr

16π γ

3
∑

q=1

cgrRb
q
q −

−
c4gr

16π γ

3
∑

q=1

cgr 2 Λ bqq −
3

∑

k=1

3
∑

q=1

2 cgr

δLmat

δgkq
bkq.

(4.21)

In the next step we consider the time derivative of the fifth term E5 in the sum
(4.11) given by the second formula (4.13):

∂H5

∂t
=

1

4π

3
∑

i=1

∂Ei

∂t
Ei +

1

4π

3
∑

i=1

3
∑

j=1

cgr bij E
iEj . (4.22)
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We transform the first term in (4.22) using (3.11). This yields

∂H5

∂t
=
cel

4π

3
∑

i=1

3
∑

j=1

3
∑

k=1

εijk

√
det g

Ei ∇jHk +

+
cgr

4π

( 3
∑

i=1

3
∑

j=1

bij E
iEj −

3
∑

q=1

bqq |E|2
)

.

(4.23)

The time derivative of the sixth term E6 in the sum (4.11) given by the second
formula (4.14) is handled similarly. In this case we have

∂H6

∂t
=

1

4π

3
∑

i=1

∂Hi

∂t
Hi +

1

4π

3
∑

i=1

3
∑

j=1

cgr bij H
iHj . (4.24)

In order to calculate the time derivative of H i we apply the second formula (1.7):

∂Hi

∂t
=

3
∑

j=1

3
∑

k=1

∂

∂t

(

εijk ∇jAk√
det g

)

=

3
∑

j=1

3
∑

k=1

εijk

√
det g

∂∇jAk

∂t
−

3
∑

q=1

cgr ·

· bqqHi =

3
∑

j=1

3
∑

k=1

εijk

√
det g

∂

∂t

(

∂Ak

∂xj
−

3
∑

q=1

Γq
jkAq

)

−
3

∑

q=1

cgr b
q
q H

i =

=

3
∑

j=1

3
∑

k=1

εijk

√
det g

(

∂Ȧk

∂xj
−

3
∑

q=1

Γq
jk Ȧq −

3
∑

q=1

Γ̇q
jkȦq

)

−
3

∑

q=1

cgr b
q
q H

i.

(4.25)

The time derivatives of the components of metric connection Γ̇q
jk in (4.25) are

symmetric with respect to the indices j and k, while the Levi-Civita symbol εijk

in (4.25) is skew-symmetric with respect to these indices. Therefore the term with

Γ̇q
jk in (4.25) does vanish and we can write this formula as

∂Hi

∂t
=

3
∑

j=1

3
∑

k=1

εijk

√
det g

∇jȦk −
3

∑

q=1

cgr b
q
q H

i. (4.26)

Note that the first formula (1.7) can be written as a formula for Ȧk. Indeed, we

have Ȧk = −cel Ek − cel ∇kϕ. Applying this formula to (4.26), we derive

∂Hi

∂t
= −

3
∑

j=1

3
∑

k=1

cel
εijk

√
det g

(

∇jEk + ∇j∇kϕ
)

−
3

∑

q=1

cgr b
q
q H

i. (4.27)

The double covariant derivatives ∇j∇kϕ are symmetric with respect to to the indices

j and k, while the Levi-Civita symbol εijk in (4.27) is skew-symmetric with respect
to these indices. Therefore the term with ∇j∇kϕ in (4.27) does vanish:

∂Hi

∂t
= −

3
∑

j=1

3
∑

k=1

cel
εijk

√
det g

∇jEk −
3

∑

q=1

cgr b
q
q H

i. (4.28)
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Now we substitute (4.28) into (4.24). As a result we derive the formula

∂H6

∂t
= − cel

4π

3
∑

i=1

3
∑

j=1

3
∑

k=1

εijk

√
det g

Hi∇jEk +

+
cgr

4π

( 3
∑

i=1

3
∑

j=1

bij H
iHj −

3
∑

q=1

bqq |H|2
)

.

(4.29)

Adding (4.23) and (4.29), we obtain the following equality:

∂H5

∂t
+
∂H6

∂t
= − cel

4π

3
∑

i=1

3
∑

j=1

3
∑

k=1

εijk

√
det g

∇i(Ej Hk) +

+ cgr

( 3
∑

i=1

3
∑

j=1

bij
EiEj +HiHj

4π
−

3
∑

q=1

bqq
|E|2 + |E|2

4π

)

.

(4.30)

It is known that the Levi-Civita symbol is associated with the volume tensor ω:

ωijk =
√

det g εijk, ω ijk =
εijk

√
det g

, (4.31)

see § 6 of Chapter II in [17]. It is also known that covariant derivatives of the
volume tensor ω are zero, see § 7 of Chapter IV in [17]:

∇sωijk = 0, ∇sω
ijk. (4.32)

Applying (4.31) and (4.32) to the first term in the right hand side of (4.30), we get

∂H5

∂t
+
∂H6

∂t
= −

3
∑

i=1

∇i

(

cel

4π

3
∑

j=1

3
∑

k=1

εijk

√
det g

Ej Hk

)

+

+ cgr

( 3
∑

i=1

3
∑

j=1

bij
EiEj +HiHj

4π
−

3
∑

q=1

bqq
|E|2 + |E|2

4π

)

.

(4.33)

In (4.33) we see the following quantities:

Si =
cel

4π

3
∑

j=1

3
∑

k=1

εijk

√
det g

Ej Hk. (4.34)

The quantities (4.34) are the components of the vector field S, where

S =
cel

4π
[E,H]. (4.35)

The vector field S given by the in the formula (4.35) is known as the Umov-Pointing
vector (see § 4 of Chapter II in [12]). In classical electrodynamics this vector field
is interpreted as the density vector of the electromagnetic energy flow.
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Let’s apply the formulas (4.35) and (4.34) to the relationship (4.33). As a result
this relationship is rewritten in terms of the divergence of the vector field S:

∂H5

∂t
+
∂H6

∂t
= − divS+

+ cgr

( 3
∑

i=1

3
∑

j=1

bij
EiEj +HiHj

4π
−

3
∑

q=1

bqq
|E|2 + |E|2

4π

)

.

(4.36)

The third term H3 in (4.11) is the most complicated. It is given by the first
formula (4.14), where R is the three-dimensional scalar curvature associated with
the metric (1.1). It is calculated through the Ricci tensor:

R =

3
∑

i=1

3
∑

j=1

Rij g
ij, (4.37)

see § 8 of Chapter IV in [17]. Applying (4.37) to (4.14) and then differentiating the
result with respect to time variable t, we get

∂H3

∂t
= −

c4gr

16π γ
Ṙ = −

c4gr

16π γ

3
∑

i=1

3
∑

j=1

(

Ṙij g
ij − 2 cgrRij b

ij
)

. (4.38)

The Ricci tensor is produced from the curvature tensor:

Rij =

3
∑

k=1

Rk
ikj. (4.39)

see § 8 of Chapter IV in [17]. Applying (4.39) to (4.38), we derive

∂H3

∂t
=

c4gr

16π γ

3
∑

i=1

3
∑

j=1

(

2 cgrRij b
ij −

3
∑

k=1

Ṙk
ikj g

ij

)

. (4.40)

The components of the curvature tensor are given by the formula

R
q
ikj =

∂Γq
ji

∂xk
− ∂Γq

ki

∂xj
+

3
∑

s=1

Γq
ksΓ

s
ji −

3
∑

s=1

Γq
jsΓ

s
ki, (4.41)

see § 8 of Chapter IV in [17]. Differentiating (4.41) with respect to t, we get

Ṙ
q
ikj =

∂Γ̇q
ji

∂xk
− ∂Γ̇q

ki

∂xj
+

3
∑

s=1

Γ̇q
ksΓ

s
ji −

3
∑

s=1

Γ̇q
jsΓ

s
ki +

+

3
∑

s=1

Γq
ksΓ̇

s
ji −

3
∑

s=1

Γq
jsΓ̇

s
ki = ∇kΓ̇q

ji −∇jΓ̇
q
ki.

(4.42)

The time derivatives of the connection components in (4.42) are components of a
tensor field. Therefore applying covariant derivatives to them is consistent. More-
over, we can calculate these time derivatives explicitly. For this purpose we need
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to differentiate the Levi-Civita formula determining the components of the metric
connection (see § 7 of Chapter III in [17]):

Γk
ij =

1

2

3
∑

r=1

gkr

(

∂grj

∂xi
+
∂gir

∂xj
− ∂gij

∂xr

)

. (4.43)

Differentiating (4.43) with respect to t and taking into account (1.3), we derive

Γ̇k
ij = − cgr

3
∑

s=1

2 bks Γs
ij + cgr

3
∑

r=1

gkr

(

∂brj

∂xi
+
∂bir

∂xj
−

− ∂bij

∂xr

)

= cgr

3
∑

r=1

gkr
(

∇ibrj + ∇jbri −∇rbij
)

.

(4.44)

Now we can apply (4.44) to (4.42). As a result we get Ṙq
ikj for applying to (4.40):

Ṙ
q
ikj = cgr

3
∑

r=1

gqr (∇k∇j −∇j∇k) bri +

+ cgr

3
∑

r=1

gqr
(

∇k∇ibrj −∇k∇rbji + ∇j∇rbki −∇j∇ibrk

)

.

(4.45)

Using (4.45) and (4.39), we calculate the time derivative of the Ricci tensor:

Ṙij = cgr

3
∑

k=1

(

∇k∇j b
k
i + ∇k∇ib

k
j −∇j∇ib

k
k

)

− cgr

3
∑

k=1

3
∑

r=1

gkr ∇k∇rbij. (4.46)

The formula (4.46) is ready for applying it to (4.38). This yields

∂H3

∂t
=

c4gr

16π γ

3
∑

i=1

3
∑

j=1

2 cgrRij b
ij −

−
3

∑

k=1

∇k

(

c5gr

8π γ

( 3
∑

i=1

∇ib
ik −

3
∑

i=1

3
∑

q=1

gik ∇i b
q
q

))

.

(4.47)

Note that the second term in the right hand side of the formula (4.47) is similar
to the first term in the right hand side of the formula (4.33). Using this similarity,
we introduce the vector field J with the components

Jk =
c5gr

8π γ

( 3
∑

i=1

∇ib
ik −

3
∑

i=1

3
∑

q=1

gik ∇i b
q
q

)

. (4.48)

The vector J with the components (4.48) should be interpreted as the density of
the gravitational energy flow.

Let’s apply the formula (4.48) to the relationship (4.47). As a result this rela-
tionship is rewritten in terms of the divergence of the vector field J:

∂H3

∂t
= − divJ +

c4gr

16π γ

3
∑

i=1

3
∑

j=1

2 cgrRij b
ij. (4.49)
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Now we can put the formulas (4.21), (4.15), (4.49), (4.36) together and then, relying
upon the formula (4.11), we can write the following formula for H:

∂H
∂t

= −
(

c4gr

16π γ

( 3
∑

k=1

3
∑

r=1

bkr b
r
k −

3
∑

k=1

3
∑

r=1

bkk b
r
r − R+ 2 Λ

)

+

+
|E|2 + |E|2

4π

) 3
∑

q=1

cgr b
q
q −

3
∑

i=1

3
∑

j=1

2 cgr

δLmat

δgij
bij +

+

3
∑

i=1

3
∑

j=1

cgr bij
EiEj +HiHj

4π
− divJ− divS.

(4.50)

In the present case matter is presented by the electromagnetic field. Therefore we
can apply the formulas (1.9) and (3.21) to (4.50). This yields

∂H
∂t

= −
(

c4gr

16π γ

( 3
∑

k=1

3
∑

r=1

bkr b
r
k −

3
∑

k=1

3
∑

r=1

bkk b
r
r − R+ 2 Λ

)

+

+
|E|2 + |E|2

8π

) 3
∑

q=1

cgr b
q
q − divJ− divS.

(4.51)

Comparing (4.51) with the formula (4.7) for H, we can reduce (4.51) to

∂H
∂t

+

3
∑

q=1

cgr b
q
q H + div(J + S) = 0. (4.52)

Since J and S in (4.52) are interpreted as the densities of the gravitational energy
flow and the electromagnetic energy flow respectively, their sum

J = J + S (4.53)

should be interpreted as the density of the total energy flow. The components of J

in [11] are denoted through J 1, J 2, J 3. Applying (4.53) to (4.52), we derive

∂H
∂t

+

3
∑

q=1

cgr b
q
q H + div J = 0. (4.54)

The relationship (4.54) is the differential presentation of the energy conservation
law in the 3D-brane universe model for the case where matter is presented by the
electromagnetic field in the absence of charges and currents. In general case the
energy conservation law within the three-dimensional paradigm was derived in [11].

There is an integral presentation of the energy conservation law (4.54). It is
written using the energy integral (4.4) with the energy density (4.7):

∂

∂t

∫

Ω

H
√

det g d3x+

∫

∂Ω

(J,n) dS = 0. (4.55)
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The relationship (4.55) is derived using (4.10). Verbally the relationship (4.55) is
expressed as the following theorem.

Theorem 4.1. The increment of the total energy of the gravitational and elec-

tromagnetic fields per unit time in a closed 3D-domain Ω is equal to the energy

supplied to the domain per unit time through its boundary ∂Ω.

Like the density of the energy flow in (4.53), the energy density in (4.7) is
obviously subdivided into two parts:

H = Hgr + Hel, (4.56)

where

Hel =
|E|2 + |H|2

8π
, (4.57)

Hgr =
c4gr

16π γ

( 3
∑

k=1

3
∑

q=1

bkq b
q
k −

3
∑

k=1

3
∑

q=1

bkk b
q
q −R + 2 Λ

)

. (4.58)

Despite the subdivision of H in (4.56) and J in (4.53) into two separate parts,
the gravitational and electromagnetic fields do interact with each other. Therefore
there are no separate energy conservation laws for these two fields.

5. Concluding remarks.

The main result of the present paper is the theory of electromagnetism embedded
into the 3D-brane universe paradigm with two speed constants cgr and cel, where
cgr is the speed of gravity, while cel is the regular speed of light. The equality

cgr = cel (5.1)

is mandatory in Einstein’s theory of gravity. The 3D-brane universe paradigm is
different. In this paradigm the inequality

cgr 6= cel (5.2)

is admissible. Admitting the inequality (5.2), we introduce the three-dimensional
vector potential A and the scalar potential ϕ as two separate fields. The electric
field E and the magnetic field H are again two separate fields like in classical physics.
They are introduced through the formulas (1.6) and (1.7). Then the Lagrangian of
the electromagnetic field is introduced by means of the classical formula (1.8) and
the Maxwell equations (3.8) and (3.12) are derived as Euler-Lagrange equations
with minor changes in them as compared to classical ones.

The Maxwell equations (3.8) and (3.12) are complemented with the equations
(1.2) for the gravitational field. These equations are also derived as Euler-Lagrange
equations for the Lagrangian (1.10). Their right hand sides are expressed through
the electric and magnetic fields through the formulas (3.25) and (3.21).

The energy density Hel and the energy flow density S of the electromagnetic
field in the 3D-brane universe paradigm are given by the classical formulas (4.57)
and (4.35). The formulas (4.58) and (4.48) for the energy density Hgr and for the
components of the energy flow density vector J of the gravitational field are new
results of the present paper.
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Registration of gravitational waves in LIGO and Virgo interferometers is a recent
advance in physics. The first detection GW150914 was reported in [19]. Later on in
[20], based on gravitational waves observations, the following bounds for the speed
of gravitational waves were claimed, restricting the inequality (5.2):

0.55 cel 6 cgr 6 1.42 cel.

In 2017 the gravitational wave detection GW170817 was associated with the gam-
ma-ray burst GRB170817A. Relying on this association, in [21] it was claimed that
the equality (5.1) is fulfilled with the possible relative difference of the order of
10−15. However, the association of GW170817 with GRB170817A is the unique
case of such an association thus far. The further study in [22] of 105 gamma-
ray bursts during the LIGO-Virgo third run 03A did not reveal any associated
gravitational wave detections. Therefore the inequality (5.2) is not yet completely
disproved experimentally.

8. Dedicatory.

This paper is dedicated to my sister Svetlana Abdulovna Sharipova.
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