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Abstract. In this paper, we prove the special squeeze principle for all suf-

ficiently large n ∈ 2N. This provides an alternative proof for the asymptotic
version of the binary Goldbach conjecture in [3].

1. Introduction and background

In our seminal paper [2], we introduced and developed the method of circles of
partition. This method is underpinned by a combinatorial structure that encodes
certain additive properties of the subsets of the integers and invariably equipped
with a certain geometric structure that allows to view the elements as points in
the plane whose weights are just elements of the underlying subset. We call this
combinatorial structure the circles of partition and is refereed to as the set of points

C(n,M) = {[x] | x, n− x ∈M} .
Each point in this set - except the center point - must have a uniquely distinct
point that are join by a line which we refer to as an axis of the CoP. We denote an
axis of a CoP with L[x],[y] and an axis contained in the CoP as

L[x],[y] ∈̂ C(n,M) which means [x], [y] ∈ C(n,M) with x+ y = n.

The method of circles of partition and their associated structures have been well
advanced in [4], where the corresponding points have complex numbers as their
weights and a line (axis) joining co-axis points. The following structure was con-
sidered as a complex circle of partition

Co(n,CM) = {[z] | z, n− z ∈ CM ,=(z)2 = <(z) (n−<(z))}
where

CM := {z = x+ iy | x ∈M, y ∈ R} ⊂ C
with M ⊆ N. We abbreviate this complex additive structure as cCoP. The condition
=(z)2 = <(z)(n − <(z) is referred to as the circle condition and it pretty much
guarantees that all points on the cCoP lie on a circle in the complex. This circle
is the embedding circle of the cCoP Co(n,CM), denoted as Cn. The embedding
circles of cCoPs have the property that they reside fully inside those embedding
circle with a relatively larger generators, except the origin as a common point [4].
For each axis we have the following assignment

L[z1],[z1] ∈̂ C(n,CM) which means [z1], [z2] ∈ C(n,CM) with z1 + z2 = n.
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The structure of the complex circles of partition is much more versatile and has
extra structures that are not readily available in the structures of circles of partition.
Most notably, for each axis L[z],[n−z] of a cCoP there exists

L
[z],[n−z]

a conjugate axis, where [z], [n− z] denotes the corresponding conjugate points. The
space occupied by the embedding circles of partition and correspondingly outside
the embedding circle had turned out to be very interesting, since this notion can be
passed down to studying a certain ordering principle of the points of two interacting
axes of distinct cCoPs. Much more striking is the fact which comes with ease by
virtue of the circle condition that

|L[z1],[z2]| = n

for any axis L[z1],[z2] ∈ Co(n,CM) = {[z] | z, n− z ∈ CM ,=(z)2 = <(z) (n−<(z))}.
The squeeze principle [3] can be considered as a black box for studying the binary
Goldbach conjecture. A slightly different version of this principle appears in [4].
For the sake of the reader, we provide a brief recap of this elegant principle as below

Lemma 1.1 (The squeeze principle). Let B ⊂ M ⊆ N and Co(n,CM) and Co(n +
t,CM) with t ≥ 4 be non–empty cCoPs with integers n, t, s of the same parity. If
there exist an axis L[v1],[w1] ∈̂ Co(n,CM) with w1 ∈ CB and an axis L[v2],[w2] ∈̂ Co(n+
t,CM) with v2 ∈ CB such that

<(v1) < <(v2) and <(w1) < <(w2) (1.1)

then there exists an axis L[v2],[w1] ∈̂ Co(n + s,CB) with 0 < s < t. Hence also
Co(n+ s,CM) is not empty.

Proof. From the existence of an axis L[v1],[w1] ∈̂ Co(n,CM) follows <(w1) = n −
<(v1). With the requirement (1.1) we get

<(w1) > n−<(v2). (1.2)

On the other hand from the existence of an axis L[v2],[w2] ∈̂ Co(n + t,CM) follows
<(w2) = n+ t−<(v2) and with the requirement (1.1) and the result (1.2) we get

n−<(v2) < <(w1) < n+ t−<(v2) | +<(v2)

n < <(w1) + <(v2) < n+ t

n < n+ s < n+ t.

By virtue of the requirements w1, v2 ∈ CB and n + s = <(w1) + <(v2) there is an
axis L[v2],[w1] ∈̂ Co(n+ s,CB) and hence holds Co(n+ s,CB) 6= ∅. And from B ⊂M
follows immediately CB ⊂ CM and therefore holds also Co(n + s,CM) 6= ∅. This
completes the proof. �

Consequently, we obtain the special squeeze principle

Lemma 1.2 (Special squeeze principle). Let n, t, s ∈ 2N and P be the set of all odd
primes. If t ≥ 4 and there exist an axis L[z1],[z2] ∈̂ Co(n) with z2 ∈ CP and an axis

L[w1],[w2] ∈̂ Co(n+ t) with w1 ∈ CP such that

<(z1) < <(w1) < <(z1) + t

then there exists an axis L[w1],[z2] ∈̂ Co(n+ s,CP) with 0 < s < t.
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The Lemma 1.1 referred to as the squeeze principle may be regarded as a fun-
damental tool set for investigating the viability of dividing integers of a particular
parity, utilizing constituent elements originating from a specific subset of the inte-
gers. The mechanism operates by discerning a pair of cCoPs that are both non-
vacuous and share a common base set. Subsequently, supplementary cCoPs that
are non-vacuous and have generators restrained within the interstice of these two
generators are identified. This principle may be applied in a resourceful manner to
investigate the overarching matter of the practicality of divvying up numbers such
that each addend is a member of the identical subset of positive integers.

Remark 1.3. The CoP C(n,N) := C(n) is always non-empty and so is the cCoP
Co(n,CN) = Co(n).

2. Application to the Binary Goldbach Conjecture

In this section, we present an asymptotic proof for the binary Goldbach conjec-
ture. The proof has been condensed into the language of cCoPs but can be reduced
to the usual form of the conjecture.

Lemma 2.1 (juxtaposition principle). For all n ≥ 10, there exist an axis
L[z1],[z2] ∈̂ Co(n,CN) and L[w1],[w2] ∈̂ Co(n+ t,CN) for <(z1) < <(z2) and <(w1) <
<(w2) such that <(z1) 6= <(w1) and <(z2) 6= <(w2) with z2 ∈ CP and w1 ∈ CP for
t ≥ 4.

Proof. Let us choose a prime number <(w1) ≤ n+t
2 and choose a prime number

<(z2) ∈ (n2 , n) for all n ≥ 10 with n ≡ 0 (mod 2), which is feasible by virtue of the
prime number theorem. If <(z1) 6= <(w1) and <(z2) 6= <(w2) then there is nothing
to do. Without loss of generality, suppose that <(z1) = <(w1) then obviously
<(z2) 6= <(w2) since n+ t > n. We note that π(n+t2 ) ≥ 3 for all n ≥ 10 with t ≥ 4

so that we can choose a prime number <(w
′

1) ≤ n+t
2 such that <(w

′

1) 6= <(w1).

Thus we replace <(w1) with <(w
′

1) and obtain the axes L[z1],[z2] ∈̂ Co(n,CN) and

L[w
′
1],[w

′
2]
∈̂ Co(n+ t,CN) for <(z1) < <(z2) and <(w

′

1) < <(w
′

2) such that <(z1) 6=
<(w′1). If <(z2) 6= <(w

′

2) then we are done; otherwise, we choose another prime

number <(w
′′

1 ) such that <(w
′′

1 ) 6= <(w
′

1) and <(w
′′

1 ) 6= <(w1) since π(n+t2 ) ≥ 3 for
all n ≥ 10 and t ≥ 4. By virtue of our construction, we obtain finally the axes of
cCoPs L[z1],[z2] ∈̂ Co(n,CN) and L[w

′′
1 ],[w

′′
2 ] ∈̂ C

o(n + t,CN) for <(z1) < <(z2) and

<(w
′′

1 ) < <(w
′′

2 ) such that <(z1) 6= <(w
′′

1 ) and <(z2) 6= <(w
′′

2 ) with z2 ∈ CP and

w
′′

1 ∈ CP for t ≥ 4. �

Lemma 2.2. (The prime number theorem ) Let π(n) denotes the number of prime
numbers no more than n. Then we have

π(n) =
n

log n
+O(

n

log2 n
).

In particular, π(n) ∼ n
logn .

Lemma 2.3 (Bertrand’s postulate). For k ≥ 89693 there exists a prime number
in the interval

k < p ≤ (1 +
1

log3 k
)k.
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Proof. The proof of this inequality appears in [1]. �

Lemma 2.4. Let pn denotes the nth prime number, then

pn = n log n+O(n log log n).

In particular, pn ∼ n log n.

Lemma 2.5. There exist an no ∈ N such that for all even n ≥ no there exist an
axis
L[z1],[z2] ∈̂ Co(n,CN) and L[w1],[w2] ∈̂ Co(n+ t,CN) for <(z1) . <(z2) and <(w1) .
<(w2) such that <(z1) . <(w1) and <(z2) . <(w2) with z2 ∈ CP and w1 ∈ CP for
t ≥ 4.

Proof. Let us set <(z2) to be a prime number and choose <(z2) to be the π( 3n
4 )th

prime number. We note that via the prime number theorem holds

π(
3n

4
) =

3n
4

log( 3n
4 )

+O(
n

log2 n
)

=
3n

4 log n
+O(

n

log2 n
).

We also note via basic power series identities, we can write

− log(1− 1

log n
) =

1

log n
+

1

2(log n)2
+

1

3(log n)3
+ · · ·

=
1

log n
+O(

1

(log n)2
).

Then with Lemma 2.4 and Lemma 2.2 we obtain

<(z2) = pπ( 3n
4 ) = π(

3n

4
) log π(

3n

4
) +O(π(

3n

4
) log log π(

3n

4
))

= (
3n

4 log n
+O(

n

log2 n
))(log(

3n

4 log n
+O(

n

log2 n
)) +O(π(

3n

4
) log log π(

3n

4
))

We note that we can write

log(
3n

4 log n
+O(

n

log2 n
) = log(

3

4
) + log(

n

log n
) + log(1 +O(

1

log n
))

= log n− log log n+O(1) (2.1)

It follows from (2.1), we can write for the product

(
3n

4 log n
+O(

n

log2 n
))(log(

3n

4 log n
+O(

n

log2 n
)) = (

3n

4 log n
+O(

n

log2 n
))(log n− log log n+O(1))

=
3n

4
+O(

n log log n

log n
) (2.2)

as the main term. Now we analyze the error term in a similar manner. By virtue
of the prime number theorem, we can write

π(
3n

4
) log log π(

3n

4
) = (

3n

4 log n
+O(

n

log2 n
))(log log(

3n

4 log n
+O(

n

log2 n
))) (2.3)

We observe that

log log(
3n

4 log n
+O(

n

log2 n
)) = log(log(

3n

4 log n
) + log(1 +O(

1

log n
)))� log log n

(2.4)
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so that we obtain for the product

π(
3n

4
) log log π(

3n

4
) = (

3n

4 log n
+O(

n

log2 n
))(log log(

3n

4 log n
+O(

n

log2 n
)))

� n log log n

log n
(2.5)

and by combining (2.1) and (2.5), we obtain

<(z2) =
3n

4
+O(

n log log n

log n
) +O(

n log log n

log n
) =

3n

4
+O(

n log log n

log n
).

Consequently, we have for the real weight of the lower axis point

<(z1) = n−<(z2)

= n− 3n

4
+O(

n log log n

log n
)

=
n

4
+O(

n log log n

log n
). (2.6)

It is easy to see that

<(z1) ∼ n

4
<
n

2
and

<(z2) ∼ 3n

4
>
n

2
Now, by virtue of Lemma 2.3, we set <(w1) to be a prime number and choose <(w1)
so that

n

4
< <(w1) ≤ (1 +

1

log3 n
4

)(
n

4
) (2.7)

for all n ≥ 358772, then it implies that <(z1) . <(w1). It is easy to see that

<(w1) .
n+ t

2
for t ≥ 4, since

(1 +
1

log3 n
4

)(
n

4
) .

n

2

by virtue of the fact that

(1 +
1

log3 n
4

) ∼ 1.

It follows from (2.7) the lower bound

<(w2) = n+ t−<(w1)

≥ n+ t− (1 +
1

log3 n
4

)(
n

4
)

and since (1 +
1

log3 n
4

) ∼ 1

∼ n− n

4
+ t

> n− n

4
=

3n

4
∼ <(z2)

for all t ≥ 4 and n > no for some fixed no ∈ N. This completes the proof. �
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We are now ready to prove the binary Goldbach conjecture for all even numbers
greater than some n0 ∈ N. This result provides an alternative solution to our first
result and in very few instances adopts the proof technique in [3]. The benefit of
the strong version of Bertrand’s postulate (Lemma 2.3) is good enough to verify
the asymptotic version of the binary Goldbach conjecture using this version of the
squeeze principle, which is a slight variation of the version that appears in the paper
[3].

Theorem 2.6 (The asymptotic binary Goldbach theorem). There exist some no ∈
N such that every even number n ≥ no can be written as a sum of two prime
numbers.

Proof. We note that the above statement is equivalent to the statement that the
cCoPs Co(n,CP) are non–empty for all even n ≥ no.

By remark 1.3 all cCoPs basing on CN with generators ≥ 2 are non–empty. By
virtue of Lemma 2.5 all cCoPs Co(n) and Co(n + 4) with even generators n ≥ no
fulfil the requirements of the special squeeze principle (Lemma 1.2). Hence for each
such n there is always a non–empty cCoP Co(n+ 2,CP). We start with Co(no) and
Co(no + 4) and continue this procedure with Co(no + k) and Co(no + k + 4) for all
even k ≥ 2. We verify that all cCoPs Co(no + k + 2) for even k ≥ 2 ad infinitum
are non–empty. �
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