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Abstract

The quest for an irrationality of pi proof that can be incorporated into an

analysis (or a calculus) course is still extant. Ideally a proof would be well

motivated and use in an interesting way the topics of such a course. In par-

ticular e
πi should be used and the more easily algebraic of derivatives and

integrals – i.e. derivatives. A further worthy goal is to use techniques that an-

ticipate those needed for other irrationality and, maybe even, transcendence

proofs. We claim to have found a candidate proof.

Introduction

Invariably irrationality proofs use proof by contradiction. The number in question

is assumed to be rational and a contradiction is derived. Why does this work? It

works because irrational numbers are always changing; their tails change. Assum-

ing that they don’t change, that all zeros or 9s occur, eventually the approximation

implicit in an irrational number represented by a rational becomes large enough

that it is manifest that the fixed assumption can’t work: there’s a contradiction.

A combination of polynomials with fixed roots and ever changing partial sums

of series seem a likely avenue to an irrationality proof. This is especially true

as series in the form of a power series or ex or eix have partials that double as

polynomials. Assuming the polynomial has a certain root and that the series for

which the polynomial is a partial is also converging to this number should work

to generate the schism mentioned. A natural candidate that embodies these ideas

is Euler’s famous formula:

eπi − 1 = 0.
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Derivatives of Polynomials

All polynomials are integer polynomials, z is a complex number, n and j are non-

negative integers, and p is a prime number.

Definition 1. Given a polynomial f(z), lowercase, the sum of all its derivatives is

designated with F(z), uppercase.

Example 1. If f(z) = czn then

F (z) =
n

∑

k=0

f (k)(z) = czn + cnzn−1 + cn(n − 1)zn−2 + · · · + cn!.

Lemma 1. If f(z) = czn, then

F (0)ez = F (z) + f(z)
∞

∑

k=1

zkn!

(n + k)!
(1)

Proof. As F (z) = c(zn + nzn−1 + · · · + n!), F (0) = cn!. Thus,

F (0)ez = cn!(1 + z/1 + z2/2! + · · · + zn/n! + . . . )

= czn + cnz(n−1) + · · · + cn! + czn+1/(n + 1)! + . . .

= F (z) + czn(z/(n + 1) + z2/(n + 1)(n + 2) + . . . )

= F (z) + f(z)
∞

∑

k=1

zkn!

(n + k)!
,

giving (1).

Definition 2. Let

δn! =
∞

∑

k=1

zkn!

(n + k)!
.

Lemma 2.

lim
p→∞

δn!

(p − 1)!
= 0. (2)

Proof. We have
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∣

∣
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and

lim
n→∞

∣

∣

∣

∣

ez

(p − 1)!

∣

∣

∣

∣

= 0.

This implies (2).

Lemma 3. If F (z) is the sum of the derivatives of f(z) = c0 + c1z + · · · + cnz
n,

then

F (0)ez = F (z) +
n

∑

k=0

ckz
kδk!(z). (3)

Proof. Let fj(z) = cjz
j, for 0 ≤ j ≤ n. Using the derivative of the sum is the

sum of the derivatives,

F =
n

∑

k=0

(f0 + f1 + · · · + fn)
(k) = F0 + F1 + · · · + Fn,

where Fj is the sum of the derivatives of fj. Using Lemma 1,

ezFj(0) = Fj(z) + fj(z)δj!(z) (4)

and summing (4) from j = 0 to n, gives

ezF (0) = F (z) +
n

∑

j=0

fj(z)δj!(z).

This is (3).

Definition 3. If fj(z) = cjz
j, for 0 ≤ j ≤ n, then define

εn!(f(z)) =
n

∑

j=0

fj(z)δj!(z),

where

f(z) =

n
∑

j=0

fj(z).

Lemma 4.

lim
p→∞

εn!(z)

(p − 1)!
= 0. (5)
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Proof. As δj!(z) < ez for j = 0, . . . , n,

∣

∣

∣

∣

εn!(z)

(p − 1)!

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑n

j=0 fj(z)δj!(z)

(p − 1)!

∣

∣

∣

∣

∣

≤ e|z|
n

∑

j=0

|fj(z)|

(p − 1)!
.

Then, noting
n

∑

j=0

|fj(z)| ≤ c

n
∑

j=0

|zj| ≤ cn|z|r, (6)

where c = max{|c0|, |c1|, . . . , |cn|} and |z|r = max{|z|, |z|2, . . . , |z|n} and

lim
p→∞

cn|z|r

(p − 1)!
= 0,

we arrive at (5). Note: r will not vary with n.

Structuring Roots

There is a relationship between the roots of f(z) and those of F (z). This will

enable us to structure the roots of polynomials and apply (3) using z values that

are roots of f(z). A pattern will emerge of the following form

0 = I + ε

where I is a non-zero integer and ε is as small as we please: a contradiction.

Lemma 5. If polynomial f(z) has a root r of multiplicity p, then f (k)(r) = 0 for

0 ≤ k ≤ p − 1 and each term of f (k)(r), p ≤ k ≤ n is a multiple of p!.

Proof. Suppose r = 0 then, for some n we have f(z) = zp(bnz
n + · · ·+ b0). Now

f(z) has b0z
p as its term with minimal exponent. Using the derivative operator,

D(zn) = nzn−1, repeatedly, we see the 0 through p − 1 derivatives of f(z) will

have a positive exponent of z in each term. This implies that r = 0 is a root for

these derivatives. Using the product of p consecutive natural numbers is divisible

by p!, terms of subsequent derivatives will be multiples of p!.
If r 6= 0, then f(z) = (z − r)pQ(z), for some polynomial Q(z). Let g(z) =

f(z + r) = zpQ(z + r). As g(k) = f (k) for all k, g(k)(0) = f (k)(r), and the r = 0
case applies.
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Lemma 6. If a and b are two non-zero Gaussian integers, then there exist a large

enough prime p such that

|p!a + (p − 1)!b|

(p − 1)!
> 1.

Proof. Suppose a = a1 + ia2 and b = b1 + ib2.

|p!a + (p − 1)!b| = |p!(a1 + ia2) + (p − 1)!(b1 + ib2)|

= (p − 1)!|pa1 + ipa2 + b1 + ib2|

= (p − 1)!|(pa1 + b1) + i(pa2 + b2)|

= (p − 1)!
√

(pa1 + b1)2 + (pa2 + b2)2

The square root contains the sum of two positive or zero integers. Then as both a
and b are non-zero Gaussian integers, letting 0 indicate a zero value for a real or

complex component and a 1 indicate a non-zero component the possibilities are

a1b1| 00 10 01 11 forcing a2b2| 11 01 10 00.

The only possibility resulting in a zero sum |pa + b| occurs with b = −pa with

b 6= 0. This is a 11 case. Assuming a1 and b1 are non-zero and p > max{|b1|},

then p - |b1| and (pa1+b1)
2 must be non-zero as, if it is zero then then pa1+b1 = 0

and pa1 = −b1 and p||b1|, a contradiction. So one or both summands are non-zero

positive integers. As the square root of a number greater than 1 is greater than 1,

the Lemma is established.

Pi is Irrational

Theorem 1. π is irrational.

Proof. Suppose not. Then eπi = eri where r is a rational, say a/b. Modify the

polynomial

zp−1(z − ai/b)p

to make it an integer polynomial:

f(z) = (bz)p−1(bz − ai)p.
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Then, using Euler’s formula and Lemma 1

0 = F (0)(eri + 1) = F (ri) + F (0) + εn!(f(z)).

There is a prime p large enough that the left hand side of

∣

∣

∣

∣

εn!(f(z))

(p − 1)!

∣

∣

∣

∣

=

∣

∣

∣

∣

F (ri) + F (0)

(p − 1)!

∣

∣

∣

∣

is less than one per Lemma 4 and the right hand side is greater than one per Lemma

6, a contradiction.

Conclusion

This proof of the irrationality of π uses derivatives and limits at a level of a real

analysis course based on Rudin or Apostol [1, 3]. It also anticipates proofs of the

transcendence of e and π [2].
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