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Abstract

The quest for an irrationality of pi proof that can be incorporated into an
analysis (or a calculus) course is still extant. Ideally a proof would be well
motivated and use in an interesting way the topics of such a course. In par-
ticular e™ should be used and the more easily algebraic of derivatives and
integrals —i.e. derivatives. A further worthy goal is to use techniques that an-
ticipate those needed for other irrationality and, maybe even, transcendence
proofs. We claim to have found a candidate proof.

Introduction

Invariably irrationality proofs use proof by contradiction. The number in question
is assumed to be rational and a contradiction is derived. Why does this work? It
works because irrational numbers are always changing; their tails change. Assum-
ing that they don’t change, that all zeros or 9s occur, eventually the approximation
implicit in an irrational number represented by a rational becomes large enough
that it is manifest that the fixed assumption can’t work: there’s a contradiction.

A combination of polynomials with fixed roots and ever changing partial sums
of series seem a likely avenue to an irrationality proof. This is especially true
as series in the form of a power series or e” or ¢ have partials that double as
polynomials. Assuming the polynomial has a certain root and that the series for
which the polynomial is a partial is also converging to this number should work
to generate the schism mentioned. A natural candidate that embodies these ideas
is Euler’s famous formula:

e™ —1=0.



Derivatives of Polynomials

All polynomials are integer polynomials, z is a complex number, n and j are non-
negative integers, and p is a prime number.

Definition 1. Given a polynomial f{z), lowercase, the sum of all its derivatives is
designated with F(z), uppercase.

Example 1. If f(z) = cz" then
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Lemma 1. If f(2) = c2", then
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This implies (2). U

Lemma 3. If F'(z) is the sum of the derivatives of f(2) = co + c12+ -+ - + ¢, 2",
then

F(0)e* = F(2) + > cx2*ou(2). (3)
k=0

Proof. Let f;(z) = ¢;27, for 0 < j < n. Using the derivative of the sum is the
sum of the derivatives,
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where F); is the sum of the derivatives of f;. Using Lemma 1,
e Fj(0) = Fy(2) + fi(2)0(2) )
and summing (4) from j = 0 to n, gives

CF(0) = F(=) + 3 f5(2)0n(2).

This is (3). O

Definition 3. If f;(z) = ¢;27, for 0 < j < n, then define
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Proof. As 0ji(z) <e*forj=0,...,n,
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Then, noting
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where ¢ = max{|co|, |cl|, ..., |cn|} and |z| = max{|z|, |z|% ..., |z|"} and
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we arrive at (5). Note: r will not vary with n. U

Structuring Roots

There is a relationship between the roots of f(z) and those of F'(z). This will
enable us to structure the roots of polynomials and apply (3) using z values that
are roots of f(z). A pattern will emerge of the following form

0=1+¢€
where I is a non-zero integer and e is as small as we please: a contradiction.

Lemma 5. If polynomial f(z) has a root r of multiplicity p, then f*)(r) = 0 for
0 < k <p — 1and each term of f*(r), p < k < n is a multiple of p.

Proof. Suppose r = 0 then, for some n we have f(z) = 2P(b,2" +-- -+ by). Now
f(2) has byz? as its term with minimal exponent. Using the derivative operator,
D(2™) = nz""!, repeatedly, we see the 0 through p — 1 derivatives of f(z) will
have a positive exponent of z in each term. This implies that » = 0 is a root for
these derivatives. Using the product of p consecutive natural numbers is divisible
by p!, terms of subsequent derivatives will be multiples of p!.

If r # 0, then f(z) = (2 — 7)PQ(z), for some polynomial ()(z). Let g(z) =
f(z471)=22Q(z + 7). As g®) = f®) forall k, g (0) = f*)(r), and the r = 0
case applies. O



Lemma 6. If a and b are two non-zero Gaussian integers, then there exist a large
enough prime p such that
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Proof. Suppose a = ay + ias and b = by + ibs.

> 1.

Ipla+ (p — 10| = |p!(a1 + iaz) + (p — Dby + iby)|

= (p— D!pai + ipas + by + ibs|
= (p — DY (pa1 + b1) + i(paz + b2)|
= (p = D!V (par + b1)? + (paz + b)?

The square root contains the sum of two positive or zero integers. Then as both a
and b are non-zero Gaussian integers, letting 0 indicate a zero value for a real or
complex component and a 1 indicate a non-zero component the possibilities are

ayb1] 00 10 01 11 forcing asbs| 11 01 10 00.

The only possibility resulting in a zero sum |pa + b| occurs with b = —pa with
b # 0. This is a 11 case. Assuming a; and b; are non-zero and p > max{|b|},
then p { |b1| and (pa; +b;)? must be non-zero as, if it is zero then then pa; +b; = 0
and pa; = —b and p||b; |, a contradiction. So one or both summands are non-zero
positive integers. As the square root of a number greater than 1 is greater than 1,
the Lemma is established. U

Pi is Irrational

Theorem 1. 7 is irrational.

Proof. Suppose not. Then e™ = ¢ where r is a rational, say a/b. Modify the
polynomial
Mz — ai/b)?

to make it an integer polynomial:

f(2) = (b2)P " (bz — ai)®.



Then, using Euler’s formula and Lemma 1
0=F(0)(e" +1)= F(ri)+ F(0) + eu(f(2)).
There is a prime p large enough that the left hand side of
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is less than one per Lemma 4 and the right hand side is greater than one per Lemma
6, a contradiction. O

Conclusion

This proof of the irrationality of 7 uses derivatives and limits at a level of a real
analysis course based on Rudin or Apostol [1, 3]. It also anticipates proofs of the
transcendence of e and 7 [2].
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