Using Euler's Identity to Prove the Existence of Natural Logarithms of Numbers Approaching 0⁺ on the Complex Plane

Shikhar Sehgal

February 2023

Abstract

This paper provides an overview of using Euler's identity to prove that natural logarithms of numbers approaching zero exist on the complex plane.

 $e^{i\pi} = -1$ (by Euler's identity)

Hence, $\ln (-1) = i\pi$,

Which means: $\ln (0-1) = i\pi$

We know that ln(a-b) = ln(a(1-b/a) = ln a + ln (1-b/a)

Hence,

$$ln(x(1-1/x)) = ln x + ln (1-1/x) = i\pi$$

When $x \rightarrow 0$

Hence,

$$\ln x = i\pi - \ln (1-1/x)$$
 as $x \to 0+$...1