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In this pedagogical article, we elucidate on the direct derivation of the classical non-relativistic
Rutherford scattering cross section, differential, in the laboratory frame of two equal mass particles,
ala relativistic quantum mechanics as presented in the book of Bjorken and Drell.
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I. INTRODUCTION

The classical non-relativistic Rutherford scattering cross section, differential, in the laboratory frame is computed in

the classical mechanics in two steps. First the Rutherford scattering cross section, differential, in the center of mass
2

#Sm%@, where, O is the c.0.m scattering angle. Then using transformation from the

the center of mass to the laboratory frame, [, the differential bcattering cross section is calculated in the laboratory
k2 0

st
angle. On the other hand, in the relativistic quantum mechanics of Dirac, the differential scattering cross section can
be calculated in the laboratory frame directly, [?]. Taking non-relativistic limit yields us the classical non-relativistic

differential cross-section.

frame is calculated, [1], as

frame, for two particles of equal mass and elastic scattering, as where, 6 is the laboratory frame scattering

II.
The Dirac equation of a spin half particle, of rest mass mg and charge q, in the presence of electromagnetic field, A*,
is given by
(ihy" 0y — qy" Ay — moc)p(x) =0

The transition amplitude, S¢;, of an electron of charge, e, in the presence of electrmagnetic field, A", is given by

Spi = d*wipp(2)yuti(x) A
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where, ¢;(z) and s (x) represent initial and final free states of an electron, away from the electromagnetic field, A*.
If the electromagnetic field, A* is generated by a proton current, then

A%(z) = —pce [ d'a' Dl ~ 2 )f (a1 o] ()

where, ! (z) and ¢Jf’ () represent initial and final free states of a proton, away from the electron. The free electro-
magnetic field propagator or the Green’s function is given by,

! 1 1 4_1 —iq(z—a ) /R

Hence, the transition amplitude of an electron and a proton getting scattered from each other, is given by
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Putting in the expressions of ¥;(z), ¥ (z) and ¥ (), ¢f (z) respectively, we get the transition amplitude as
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The transition probability from an initial state i to a final state f, S¢;S7};, is obtained as
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Summing over the final spin states and averaging over the initial spin states, one gets,
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By integrating over the full final states phase space and dividing by the incident flux of electron, 7+ and the the time
of travel, T, of the electron from the initial state to the final state, one gets a quantity of the dimension of length
square referred to as total scattering cross-section and denoted as o, as below,
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Dividing by the differential solid angle swept out by the final state electron, one derives the differential scattering

. do .
cross-section, denoted as aQ; and given by
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In the laboratory frame, P, = 0. The differential scattering cross-section |zab, is thereby expressed as
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As a routine, two kinds of approximations at this point make the calculation proceed easily, [2]. This is acheived by
either assuming F; is far away from the proton mass scale or, from the electron mass scale. Here we take a different
route. We assume a hypothetical proton with its mass being equal to that of the electron i.e. we set mg = My and



proceed forward. We get,
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resorting to non-relativistic limit tentamounting to,
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one achieves,
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Hence, the differential scattering cross-section, in the NR, for two non-identical particles of equal mass and equal but
opposite charges, in the laboratory frame i.e. when one particle is at rest initially is given by,
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