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Abstract

We consider a general domain wall model with vanishingly small temperature. Under certain conditions, it

is very likely that we can have a stable domain wall structure on the horizon, in the limit of the

temperature, T → 0.

I. DOMAIN WALL CONSTRUCTION

Let us us begin by arguing why an effective (probe) action of the type

S = ∫ d4x
√
−g [1

2
(∂µϕ)2 +

1

2
e−2ηϕ (∂µa)2 + V (ϕ, a) +

1

e2
Z(ϕ, a)F 2] (1)

can appear very generically from supergravity. An important motivation for the arguments in this

note will be the “Holographic Vitrification” action [1], which is a genuine top-down truncation of

supergravity,

S = 1

8π
∫ d4x

√
−g [ 1

2ℓ2p
R − 3

4ℓ2p

(∂x)2 + (∂y)2

y2
− V (x, y) −GIJ(x, y)F I

µνF
Jµν −ΘIJ(x, y)F I

µνF̃
Jµν] .

(2)

The kinetic term

The kinetic term
(∂x)2+(∂y)2

y2
appears very generically in supergravity actions and the form

1
2 (∂µϕ)

2 + 1
2e
−2ηϕ (∂µa)2 follows from it via simple field re-definitions x ∼ ea, y ∼ eϕ. We will refer

to ϕ and a as the dilaton and the axion, respectively. The fact that ϕ suppresses the kinetic term

for a will be essential in our argument for the stability of domain walls.

The potential and domain wall formation

We would like to argue that domain walls can form very generically in certain types of gauge the-

ories. Typically, a cosine potential is generated in an effective field theory through non-perturbative

effects, such as for example the gaugino condensation, or the presence of instantons. We will imag-

ine that our bulk theory has instantons and that we are looking only at its low-energy effective

action, with QCD being the prototypical example of this.1

∗ matthewjstephenson@stanford.edu
1 In QCD, an extra U(1)PQ symmetry is introduced, which gives rise to the dynamical axion field. Its effective

action has a cosine potential, as argued for example in [2].
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Instanton effects are suppressed at high temperatures so we will think of this construction as

taking place at low temperature. Instantons lead to a periodic vacuum structure. The lowest order

approximation is a potential of the type

V (ϕ, a) = m4
a

λ
[1 − cos(

√
λ

ma
a)] + . . . . (3)

The vacua of the axion are then given by a = 2πnma/
√
λ. Note that we chose to normalise the

potential so that V = 0 for the axion vacuum. Hence, there is no extra vacuum contribution to

the negative cosmological constant, which gave us the AdS space. Because the kinetic term is

suppressed, the energy is minimised by the minima of the potential.

We can actually permit for a more general potential, under the condition that it does not mess

up the periodic structure of the axion vacuum,

V (ϕ, a) = m4
a

λ
[1 − cos(

√
λ

ma
a)] + V2(ϕ) + V3(ϕ)V4(a). (4)

To be more precise about the dilaton, we assume that its solution takes the form

ϕ(r →∞, x) → ∞+, (5)

in AdS space as T → 0,

ds2 = 1

r2
(−dt2 + dr2 + dx2 + dy2) . (6)

Then the axion kinetic term is completely suppressed in the near-horizon limit of r →∞.

As for the x-dependent behaviour of ϕ, we can follow [3] to argue that for thin domain walls

of a, all of its energy density is stored in the wall. Furthermore, ϕ must be continuous but non-

differentiable at the wall w.r.t. x and y, with the difference scale between derivatives on two sides

of the wall given by the energy density of the wall. Hence, for thin (small) nearby walls, the profile

will not vary wildly over the horizon.

Coupling to the Maxwell field

The equation of motion for the axion field is

1
√−g

∂µ [e−2ηϕ
√
−ggµν∂νa] − ∂aV −

1

e2
∂aZF 2 = 0. (7)

As long as the dilaton behaves as in Eq. (5), with η > 0, the kinetic term goes to zero in the limit

of r →∞ and we find

∂aV = −
1

e2
∂aZF 2. (8)

For some generic electric field flowing on the horizon (transistors), we find that ∂aZ = 0 in

the regions of the axion vacuum on the horizon (∂aV = 0). Z is thus extremised w.r.t a when
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a = 2πnma/
√
λ.

We now have several (bottom-up) types of choices we can make for Z:

● For the first choice we can assume that it’s more likely for a to have n = 0 than n > 0 in the

pockets of vacuum. A good choice of Z for such a scenario might be

Z(ϕ, a) = 1

2
ã [ã − sin (ã)]Zϕ(ϕ), (9)

where we have defined a dimensionless

ã ≡
√
λ

ma
a. (10)

Z has the property that ∂aZ ∣ã=2πn = 0 and

Z(ϕ, ã = 2πn) = 2π2n2Zϕ(ϕ). (11)

● The second “conductor-insulator” choice can be made as

Z(ϕ, a) = 1

2
[1 − cos( ã

2
)]Zϕ(ϕ), (12)

which has ∂aZ ∣ã=2πn = 0 and

Z(ϕ, ã = 2πn) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0 if n is even

Zϕ(ϕ) if n is odd.
(13)

● The third choice is the most brutally insulating,

Z(ϕ, a) = 1

2
[1 − cos (ã)]Zϕ(ϕ), (14)

which has ∂aZ ∣ã=2πn = 0 and

Z(ϕ, ã = 2πn) = 0. (15)

In this case, only the very-near wall regions can conduct, while the pockets of vacuum are fully

insulating.

Let us now analyse the dilaton’s equation of motion,

1
√−g

∂µ [
√
−ggµν∂νϕ] + ηe−2ηϕ (∂µa∂µa) − ∂ϕV −

1

e2
∂ϕZF 2 = 0, (16)

in the limit of r → ∞ in pure AdS, hence e−2ηϕ (∂µa∂µa) is again completely suppressed by the

dilaton. We also assume that ϕ(x) is slowly varying (as argued above) and static. We find

r2∂2
rϕ − 2r∂rϕ − ∂ϕV −

1

e2
Za∂ϕZϕF

2 = 0. (17)
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The simplest (EFT) choice we can make is ∂ϕZϕ = 0 (set Zϕ = 1) and write

V (ϕ, a) = 1

2
m2

ϕϕ
2 + m4

a

λ
[1 − cos(

√
λ

ma
a)] . (18)

Hence,

ϕ(r →∞, x) → r
3
2
+νC1(x) + r

3
2
−νC2(x), ν =

√
9

4
+m2, (19)

which gives us a solution consistent with everything above.

The final action

The simplest action that seems to have the right properties is thus

S = ∫ d4x
√
−g [1

2
(∂µϕ)2 +

1

2
e−2ηϕ (∂µa)2 +

1

2
m2

ϕϕ
2 + m4

a

λ
[1 − cos(

√
λ

ma
a)] + Z(a)

4e2
F 2] , (20)

with two simple choices, i.e. the conductor-insulator and the insulator, or many other choices,

Z(a) = 1

2
[1 − cos(

√
λ

ma

a

2
)] , (21)

Z(a) = 1

2
[1 − cos(

√
λ

ma
a)] . (22)

If you don’t like cosines, a very similar thing could be done with the Higgs-type potential for

the a field.
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II. FIRST-ORDER DISCUSSION OF WEAK DISORDER IN OUR AXION-DILATON

MODEL

Use the action

S = ∫ d4x
√
−g [1

2
(∂µϕ)2 +

1

2
e−2ηϕ (∂µa)2 +

1

2
m2

ϕϕ
2 + m4

a

λ
[1 − cos(

√
λ

ma
a)] + Z(a)

4e2
F 2] , (23)

with

Z(a) = 1

2
[1 + cos(

√
λ

ma
a)] , (24)

chosen so that at a = 0, Z = 1 and the system is a conductor.

Let us consider weak disorder, parametrised by ε and write the expansions for the two scalars

as

ϕ = ϕ0 + εϕ1 + ε2ϕ2 + . . . (25)

a = εa1 + ε2a2 + . . . , (26)

so that the axion is the field driving the disorder.

The three equation of motions,

r4∂µ [e−2ηϕr−4gµν∂νa] −
m3

a√
λ
sin(

√
λa

ma
) + 1

4e2

√
λ

2ma
sin(

√
λa

ma
)F 2 = 0, (27)

r4∂µ [r−4gµν∂νϕ] + ηe−2ηϕgµν∂µa∂νa −m2
ϕϕ = 0, (28)

1

2
∂µ [(1 + cos(

√
λ

ma
a)) r−4Fµν] = 0. (29)

can be expanded in ε.

From Eq. (28) we see that ϵ-dependent disorder only couples ϕ2 to a1. To leading order, Eqs.

(27) and (29) give

r4∂µ [e−2ηϕ0r−4gµν∂νa1] −m2
aa1 −

√
λ

4e2ma
a1F

2 = 0, (30)

∂µ [(1 −
λ

4m2
a

a21) r−4Fµν] = 0. (31)

Now, we can use the bound

1

e2E [1/Z]
≤ σ ≤ E [Z]

e2
(32)

to see that

1

e2 (1 + λ
4m2

a
ε2E [a21])

≤ σ ≤
(1 − λ

4m2
a
ε2E [a21])
e2

(33)

(1 − λ
4m2

a
ε2E [a21])
e2

≤ σ ≤
(1 − λ

4m2
a
ε2E [a21])
e2

, (34)
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hence the two inequalities give an exact equality,

σ = 1

e2
− ε2 λ

4e2m2
a

E [a21] (35)

We can go further and write

Z(a) = 1 − ε2 λa
2
1

4m2
a

− ε3λa1a2
2m2

a

+ ε4λ
2a41 − 12m2

aλa
2
2 − 24m2

aλa1a3
48m4

a

+O(ε5), (36)

E [Z(a)] = 1 − ε2
λE [a21]
4m2

a

− ε3λE [a1a2]
2m2

a

+ ε4
λ2E [a41] − 12m2

aλE [a22] − 24m2
aλE [a1a3]

48m4
a

+O(ε5),

(37)

and

1/Z(a) = 1 + ε2 λa
2
1

4m2
a

+ ε3λa1a2
2m2

a

+ ε4λ
2a41 + 6m2

aλa
2
2 + 12m2

aλa1a3
24m4

a

+O(ε5), (38)

E [1/Z(a)] = 1 + ε2
λE [a21]
4m2

a

+ ε3λE [a1a2]
2m2

a

+ ε4
λ2E [a41] + 6m2

aλE [a22] + 12m2
aλE [a1a3]

24m4
a

+O(ε5),

(39)

hence

1

E [1/Z(a)]
= 1 − ε2

λE [a21]
4m2

a

− ε3λE [a1a2]
2m2

a

+ ε4
3λ2E [a21]

2 − 2λ2E [a41] − 12m2
aλE [a22] − 24m2

aλE [a1a3]
48m4

a

+O(ε5). (40)

We find that the conductivity is given by

σ = 1

e2
− ε2

λE [a21]
4e2m2

a

− ε3λE [a1a2]
2e2m2

a

+ ε4
λ2E [a41] − 12m2

aλE [a22] − 24m2
aλE [a1a3]

48e2m4
a

− ε4σ̃4, (41)

0 ≤ σ̃4 ≤
λ2

16e2m4
Var [a21] , (42)

where Var [] is the variance, which can be computed from the distribution of a.

However, because ϕ0 diverges, Eq. (30) tells us that a1 = 0 and so σ = 1/e2 to leading order.

III. GENERAL DISCUSSION OF WEAK DISORDER

Let us define

σ = 1

e2
E [Z] − σ̃, (43)

so that the bounds give

0 ≤ σ̃ ≤ 1

e2
(E [Z] − 1

E [1/Z]
) . (44)
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Further define

Z = 1 −Z, (45)

where Z = O(ε). We can then show that under the assumption of a small sum of the moments of

the disorder distribution, i.e. ∣∑∞n=1E [Zn]∣ < 1,

0 ≤ e2σ̃ ≤
∞

∑
m=1

(−1)m−1 (
∞

∑
n=1

E [Zn])
m

−E [Z] = E [Z2] −E [Z]2 +O (ε3) . (46)

In our example with Z specified in Eq. (24), we have

Z = 1

2
[1 − cos(

√
λ

ma
a)] = ε2 λa

2
1

4m2
a

+ . . . . (47)

We can thus confirm the above result obtained in Eq. (42)

0 ≤ σ̃ ≤ λ2ε4

16e2m2
a

(E [a41] −E [a21]
2) + . . . = λ2ε4

16e2m4
Var [a21] + . . . . (48)

The final statement is that at weak disorder, the leading-order correction to σ = 1/e2 is given

by E [Z − 1] /e2 and the sub-leading correction is purely negative and bounded by the variance of

(Z − 1)2/e2.

IV. “DISORDER-DRIVEN METAL-INSULATOR TRANSITION”

Claim: An axion-dilaton model gives a perfect conductor at weak disorder and can only become

an insulator in the presence of strong disorder (up to possibly some even more fine-tuned setups).

Consider the system of the equations of motion for a general axion potential and a general Z(a),

r4∂µ [e−2ηϕr−4gµν∂νa] − ∂aV − ∂aZF 2 = 0, (49)

r4∂µ [r−4gµν∂νϕ] + ηe−2ηϕgµν∂µa∂νa −m2
ϕϕ = 0, (50)

∂µ [Zr−4Fµν] = 0. (51)

At weak disorder, which we measure with ε ≪ 1, we write the axion part of the axio-diaton

τ = a + ie−ϕ as

a = εa1 + ε2a2 + . . . , (52)

and allow for the dilaton to have an O(ε0) piece,

ϕ = ϕ0 + εϕ1 + ε2ϕ2 + . . . . (53)

This is necessary in this setup because we need a diverging dilaton at the horizon in order to have

the possibility of creating domain walls and stabilising strong disorder to create an insulator.
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Let us first study Eq. (50), which gives

ε0 {r4∂µ [r−4gµν∂νϕ0] −m2
ϕϕ0}

+ε1 {r4∂µ [r−4gµν∂νϕ1] −m2
ϕϕ1}

+ε2 {r4∂µ [r−4gµν∂νϕ2] + ηe−2ηϕ0gµν∂µa1∂νa1 −m2
ϕϕ2} + . . . = 0. (54)

Assuming that the background is that of AdS-Schwarzschild4 (with boundary at r = 0), we can

solve for ϕ0,

ϕ0(r) = A0 (
r

r0
)

3
2
−ν

2F1 [
1

2
− ν

3
,
1

2
− ν

3
; 1 − 2ν

3
;( r

r0
)
3

] +B0 (
r

r0
)

3
2
+ν

2F1 [
1

2
+ ν

3
,
1

2
+ ν

3
; 1 + 2ν

3
;( r

r0
)
3

] ,

(55)

where ν =
√
(3
2
)2 +m2

ϕ. From the properties of hypergeometric functions (Gauss’s theorem), we

find that

ϕ0(r0) =
⎡⎢⎢⎢⎣
A0

Γ (1 − 2ν
3
)

Γ (12 −
ν
3
)Γ (12 −

ν
3
)
+B0

Γ (1 + 2ν
3
)

Γ (12 +
ν
3
)Γ (12 +

ν
3
)

⎤⎥⎥⎥⎦
Γ(0) = ∞, (56)

unless we specially tune the integration constants. It is also possible to get a finite dilaton at the

horizon for mϕ = 0, when ν = 3/2. In that case

ϕ0(r) = A0 +B0 ln (1 − r3/r30) , (57)

which is constant at the horizon for B0 = 0.
The same result is obtained for

ϕ1(r) = A1 (
r

r0
)

3
2
−ν

2F1 [
1

2
− ν

3
,
1

2
− ν

3
; 1 − 2ν

3
;( r

r0
)
3

] +B1 (
r

r0
)

3
2
+ν

2F1 [
1

2
+ ν

3
,
1

2
+ ν

3
; 1 + 2ν

3
;( r

r0
)
3

] .

(58)

However, because ϕ1 is treated perturbatively compared to ϕ0, this is actually inconsistent with

the expansion. We cannot have a divergent small perturbation at the horizon, unless we specially

tune A1 and B1 to

B1 = −A1

Γ (1 − 2ν
3
)Γ (12 +

ν
3
)2

Γ (1 + 2ν
3
)Γ (12 −

ν
3
)2

. (59)

Although we cannot solve exactly for ϕ2, we still see that because e−2ηϕ0 → 0 at the horizon, at

least the horizon behaviour of ϕ2 is the same as that of ϕ1 and we must again tune the integration

constants to avoid perturbation expansion inconsistencies.

Let us now look at Eq. (49). It is now easy to see that in the presence of a diverging ϕ at the

horizon, which is necessary to have the possibility of an insulator at strong disorder, the kinetic

term has

e−2ηϕ0 [1 − 2ηεϕ1 + 2ε2η (ηϕ2
1 − ϕ2) + . . .] , (60)
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which goes to zero at the horizon at all orders of ε. Hence, the equation of motion near horizon

always reduces to the same equation as at strong disorder,

∂aV = −∂aZF 2. (61)

at all order in ε. Now, again, because we are working at weak disorder, we must expand the

equation out in ε and solve it order-by order. Thus, we get that all ai = 0 [most likely, unless

we again pick some strange V and Z and play the ε expansion of the vector field Aµ against the

expansion for the axion]. A possible way out would be to have a potential with flat directions (like

a moduli space), but that’s probably a bit silly.

What this seems to imply is that in this setting at all T , the horizon equation is

∂aV = −∂aZF 2, (62)

which requires strong disorder (large field amplitude) in order for the field to be able to jump into

the vacuum which isn’t a = 0.
This model should have the property that if we tune a from weak-field disorder to strong-field

disorder, at first Z = 1 and we see no reduction in conductivity at all. Then when the disorder

has become strong enough and the axion is able to settle into different vacua so Z is no longer 1

everywhere and an insulator can form.
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