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1 Strongly coupled hidden sector

Assume that our universe has a strongly coupled hidden sector on top of the visible (stan-

dard model) sector. They may be weakly coupled. The theory is defined in an evolving

universe with a metric gab,

S =
1

16πG4

∫
d4x

√
−g [Svis + Shid + Sint] . (1.1)

Furthermore, we assume that the cosmological constant of the boundary has a zero cosmo-

logical constant!

We will assume that the hidden sector has a holographic dual and that the four-

dimensional hyper-surface is embedded into a five dimensional bulk space time Gµν with

a metric

ds2 = −e2λ(r)dt2 + e2ν(r)dr2 +
( r

L

)α
dx⃗2. (1.2)

To find the embedding t(r), we define the four un-normalised tangent vectors

Rµ =

(
∂t

∂r
, 0, 0, 0, 1

)
, Xµ = (0, 1, 0, 0, 0) , (1.3)

Y µ = (0, 0, 1, 0, 0) , Zµ = (0, 0, 0, 1, 0) . (1.4)

The normalised normal vector to the hyper-surface is

nµ = ±

√
e2λ

e2(λ−ν)t′2 − 1

(
−1, 0, 0, 0, t′

)
. (1.5)

The induced metric can be written as

γµν = gµν − nµnν , (1.6)

and the extrinsic curvature as

Kµν = − 1

L
γµν . (1.7)
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The junction equation (1.7) allows us to solve for ∂t/∂r,

∂t

∂r
= ± re2ν−λ√

r2e2ν − 1
4L

2α2
. (1.8)

The induced metric’s line element is thus

ds2 = −
(

L2α2e2ν

4r2e2ν − L2α2

)
dr2 +

( r

L

)α
dx⃗2. (1.9)

The metric has no dependence on the function λ(r).

We can now look for the time coordinate τ and the FRW scale factor a(τ) of the

boundary space-time. The time coordinate is

τ = τ0 ±
∫

dr
Lαeν√

4r2e2ν − L2α2
. (1.10)

In the late-time regime we have r ≫ 1. Now, if limr→∞ r2e2ν = 0 then τ would become

imaginary. If limr→∞ r2e2ν = O(1), as in the AdS-Schwarzschild, the integral depends on

the details of the function ν. In that case

ν = −1

2
log

[( r

L

)2
(
1−

(rh
r

)4
)]

(1.11)

If, however, r2e2ν ≫ 1
4L

2α2, we find that

τ = τ0 +
Lα

2
log r. (1.12)

This result does not depend on the details of two functions specifying the metric.

Finally, we are able to write down the late-τ hyper-surface metric

ds2 = −dτ2 + a(τ)2dx⃗2, (1.13)

where the scale factor is

a(τ) = e
1
2L

τ . (1.14)

The Hubble time is

H =
ȧ

a
=

1

2L
, (1.15)

which can be written in terms of the vacuum energy density, H2 = 8πG4ρV /3. Further-

more, ρV = 3/(32πLG5) and Λ = 8πG4ρV , which gives us an effective cosmological constant

on the brane, which is universal for all theories [of some type]. The cosmological constant

is

Λ =
3

4L2
, (1.16)
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and is provided in the dual description solely by the dynamics of the strongly coupled hidden

sector. In reality Λ ≈ 10−52m−2 or Λ ∼ 10−121M2
P = 10−1211038GeV 2 = 10−83GeV 2 in

c = h = 1 units. Thus L2 ∼ 1083GeV −2 and L4 ∼ 10166GeV −4. Assume 1/ℓs = Mp, so

L4

ℓ4s
∼ 10166 · 1076 = 10242 (1.17)

or

L ∼ 1026m (1.18)

The diameter of the sphere which is the observable universe is 8.8× 1026m.

In the standard AdS/CFT example with D3 branes the supergravity description is

applicable in the regime

L4

ℓ4s
∼ gsN ∼ g2YMN = λ ≫ 1. (1.19)

Hence, Λ ∼ 1
ℓ2s
√
λ

Λ ∼ 1

L2
≪ 1

ℓ2s
. (1.20)

This is not a very strong bound, but at least we know that the cosmological constant needs

to be much smaller that the string scale.

Gubser states that the cut-off of the theory can be measured as the energy of a fun-

damental string stretched form the Planck brane to the horizon of AdS5 when measure

in time τ . This is equivalent to separating one D3 brane from the rest so that the string

tension give the mass of the heaviest W boson. Now, since at large τ requires large r,

by UV/IR the dual theory should be able to access the extreme UV degrees of freedom.

Hence, we require

Λcut-off ∼ L

α′ ∼
L

ℓ2s
, (1.21)

so for supergravity in the bulk to be a good approximation

Λ ∼ 1

L2
∼ 1

ℓ4sΛ
2
cut-off

≪ 1

ℓ2s
=⇒ 1 ≪ ℓ2sΛ

2
cut-off (1.22)

Rough estimate of the string scale near the Planck scale gives

Λ ≪ M2
p , (1.23)

which is much better than the QFT calculation giving

Λ ∼ G4M
4
p = ℏcM2

p . (1.24)

The Ricci tensor is given by

Rab =
3

2L2
diag

[
−1, e

√
2t/L, e

√
2t/L, e

√
2t/L

]
, (1.25)
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and the Ricci scalar is given by

R =
6

L2
. (1.26)

The Einstein’s equation without higher-curvature terms should be satisfied in the late

universe with small curvatures. If we use the holographic stress-energy tensor expression,

from which the embedding equation was derived,

Rµν − 1

2
Rγµν +O

(
R2

)
=

2

L
8πG5T

µν
vis +

2

L
8πG5T

µν
hid, (1.27)

should contain higher-curvature terms. However, in order for each term to be sub-leading,

we require

|R| ≫
∣∣R2

∣∣ =⇒ 1 ≫ 1

L2
=⇒ L2 ≫ 1. (1.28)

The validity of the Einstein-Hilbert action on the boundary thus imposes a stronger

bound on the effective cosmological constant

Λ ∼ 1

L2
≪ 1 (1.29)

2 Cosmological laboratory

Given the bulk metric

ds2 = −e2λ(r)dt2 + e2ν(r)dr2 +
( r

L

)2β
dx⃗2, (2.1)

the induced metric is

ds2 = −
(

β2L2e2ν

r2e2ν − β2L2

)
dr2 +

( r

L

)2β
dx⃗2. (2.2)

Hence the boundary time is

τ = τ0 ±
∫

dr
βLeν√

r2e2ν − β2L2
, (2.3)

and the scale factor

a(τ) =

(
r(τ)

L

)β

. (2.4)

Our goal is to reconstruct the bulk metric from our choice of a(τ). We assume that

the foliation function r(τ) is invertible, so that

dτ(r)

dr
=

Lβeν(r)√
r2e2ν(r) − β2L2

=⇒ dr(τ)

dτ
=

√
r(τ)2e2ν(τ) − β2L2

Lβeν(τ)
, (2.5)

– 4 –



and hence

d log r(τ)

dτ
=

√
r(τ)2e2ν(τ) − β2L2

βLr(τ)eν(τ)
. (2.6)

We know that

r(τ) = La(τ)1/β, (2.7)

which means that we can solve for

e2ν(τ) =
β2

a(τ)2/β
(
1− L2

(
d log r(τ)

dτ

)2
) =

β2

a(τ)2/β
[
1−

(
L
β
d log a(τ)

dτ

)2
] . (2.8)

Hence, we know both r(τ) and ν(τ), which are required for the metric, assuming we are

able to invert r(τ) to find τ(r). The function λ(r) is left undetermined. The bulk metric

can be written in terms of new coordinates (t, τ, x⃗),

ds2 = −e2λ(τ)dt2 +
β2L2

(
d log a(τ)

dτ

)2

β2 − L2
(
d log a(τ)

dτ

)2dτ
2 + a(τ)2dx⃗2. (2.9)

or

ds2 = −e2λ(τ)dt2 +
β2L2ȧ(τ)2

β2a(τ)2 − L2ȧ(τ)2
dτ2 + a(τ)2dx⃗2. (2.10)

In terms of the Hubble parameter,

H ≡ ȧ

a
, (2.11)

the metric is

ds2 = −e2λ(τ)dt2 +
β2L2H(τ)2

β2 − L2H(τ)2
dτ2 + a(τ)2dx⃗2. (2.12)

We can think of λ as parametrising a family of different metrics, which all give FRW on

the boundary. We should set β = 1, most likely without the loss of generality, so that the

metric is

ds2 = −e2λ(τ)dt2 +
L2H(τ)2

1− L2H(τ)2
dτ2 + a(τ)2dx⃗2. (2.13)

To simplify the metric, we could make the standard choice of λ = −ν,

ds2 = −
a(τ)2/β

(
β2 − L2H(τ)2

)
β4

dt2 +
β2L2H(τ)2

β2 − L2H(τ)2
dτ2 + a(τ)2dx⃗2. (2.14)

The simplest choice we can make is to take β = 1, and e2λ = (r/L)2. The bulk metric is

then

ds2 = a(τ)2
(
−dt2 + dx⃗2

)
+

L2H(τ)2

1− L2H(τ)2
dτ2. (2.15)

– 5 –


	Strongly coupled hidden sector
	Cosmological laboratory

