Author: John Evans Bwire

Email: bwirejohn1@gmail.com

Number Theory

Part 1: Transcendental Equations:

Solving Transcendental Equations using the βw-convergence formula

Abstract

The main purpose of inventing this paper is based on the general idea that an equation of this form can't be $a^x + b^x = c$ algebraically. In this question derived, the formula (($\beta w - convergence$) with mathematical proof can be used to solve such an equation with ease. Since the formula is purely invented with my own approach, the article lacks references

βw-convergence Formulae for Solving $a^x + b^x = c$

Say, $n \cong x$, then, n

$$(a^{x} - a^{n}) + (b^{x} - b^{n}) = c - a^{n} - b^{n}$$

Factorizing, then

$$a^{n}(a^{x-n}-1)+b^{n}(b^{x-n}-1)=c-a^{n}-b^{n}$$

Factorized, then

$$(b^{x-n}-a^{x-n})(a^nb^n)=c-a^n-b^n$$
, this is true if $n\approx x$ or $n=x$

Dividing $a^n b^n$ both sides, then

$$(b^{x-n} - a^{x-n}) = \frac{c - a^n - b^n}{(a^n b^n)}$$

This can also be written as;

$$\frac{b^x}{b^n} - \frac{a^x}{a^n} = \frac{c - a^n - b^n}{(a^n b^n)}$$

Back to the equation, $a^x + b^x = c$,

$$a^x = c - b^x$$

Therefore,

$$\frac{b^{x}}{b^{n}} - \frac{(c - b^{x})}{a^{n}} = \frac{c - a^{n} - b^{n}}{(a^{n}b^{n})}$$
$$\frac{a^{n}b^{x} - b^{n}c + b^{n}b^{x}}{a^{n}b^{n}} = \frac{c - a^{n} - b^{n}}{(a^{n}b^{n})}$$

Multiplying both sides by $a^n b^n$

$$a^n b^x - b^n c + b^n b^x = c - a^n - b^n$$

This can also be written as;

$$a^n b^x + b^n b^x = c - a^n - b^n + b^n c$$

Factorizing,

$$b^{x}(a^{n}+b^{n}) = c - a^{n} - b^{n} + b^{n}c$$

Where b^x will be:

$$b^{x} = \frac{b^{n}c + (c - a^{n} - b^{n})}{(a^{n} + b^{n})}$$

Therefore,

$$x = \frac{log(\frac{b^nc + (c - a^n - b^n)}{(a^n + b^n)})}{loab}$$

Similarly, following the same procedure,

$$x = \frac{log(\frac{a^nc + (c - a^n - b^n)}{(a^n + b^n)})}{loga}$$

Theorem

- I. When $n \to x$, the closer n approaches x, then accurate the answer until n = x
- II. Meaning n_1 will be closer to answer than n_2 , n_3 than n_2 n_j

- III. n_1 must be used to get n_2 , n_2 to get n_3 ... until $n_i = x$
- IV. Using βw convergence formula, k can be used to calculate the first value of n
- V. k can be any value assumed. as long the $c a^n b^n > 0$, or equal to 0
- VI. Here in all calculations, I have taken $b^x > a^x$; however, whichever the case, it does not interfere with the calculations. One can also use $a^x > b^x$
- VII. The larger the value of k, the more calculations would be needed, but the closer the value k to, n fewer calculations would be needed.
- VIII. The same formula calculates the first value of n

$$n = \frac{log(\frac{b^kc + (c - a^k - b^k)}{(a^k + b^k)})}{logb}$$

IX. $x = \frac{log(\frac{b^nc+(c-a^n-b^n)}{(a^n+b^n)})}{logb}$ requires less calculation than $x = \frac{log(\frac{a^nc+(c-a^n-b^n)}{(a^n+b^n)})}{loga}$ to find the accurate answer.

βw-convergence formulae for Solving $b^x - a^x = c$

Following the same rule & procedure

 $n \rightarrow x$, then

$$(a^{x} - a^{n}) + (b^{x} - b^{n}) = c + a^{n} - b^{n}$$

Factorizing, then

$$a^{n}(a^{x-n}-1)+b^{n}(b^{x-n}-1)=c+a^{n}-b^{n}$$

However, if $n \to x$, where n = x, then $a^n(a^{x-n} - 1) + b^n(b^{x-n} - 1) = c + a^n - b^n$

Can be written (factorized) as;

$$(b^{x-n} - a^{x-n})(a^n b^n) = c + a^n - b^n$$

Dividing $a^n b^n$ both sides, then

$$(b^{x-n} - a^{x-n}) = \frac{c + a^n - b^n}{(a^n b^n)}$$

This can also be written as;

$$\frac{b^x}{b^n} - \frac{a^x}{a^n} = \frac{c + a^n - b^n}{(a^n b^n)}$$

Back to the equation, $b^x - a^x = c$,

$$b^x = c + a^x$$

Therefore,

$$\frac{(c+a^x)}{b^n} - \frac{a^x}{a^n} = \frac{c+a^n - b^n}{(a^n b^n)}$$

$$\frac{a^n(a^x+c)-b^na^x}{a^nb^n} = \frac{c+a^n-b^n}{(a^nb^n)}$$

Multiplying both sides by $a^n b^n$

$$a^n a^x + a^n c - b^n a^x = c + a^n - b^n$$

This can also be written as;

$$a^n a^x - b^n a^x = c + a^n - b^n - a^n c$$

Factorizing,

$$a^x(a^n - b^n) = c + a^n - b^n - a^n c$$

Where a^x will be;

$$a^{x} = \frac{-ca^{n} + (c + a^{n} - b^{n})}{(a^{n} - b^{n})}$$

Thus,

$$x = \frac{log(\frac{-ca^n + (c + a^n - b^n)}{(a^n - b^n)})}{loga}$$

Similarly, following the same procedure,

$$x = \frac{log(\frac{-cb^n + (c + a^n - b^n)}{(a^n - b^n)})}{logb}$$

Theorem

- I. k any value assumed. as long the $c a^n b^n < 0$, or equal to 0
- II. This formula can also be used to find the value of x, in the equation

$$a^x + b^x = c^x$$

III. However, to do so, the equation must be first changed into

$$(a/c)^x + (b/c)^x = 1$$

0r

$$({}^{c}/_{a})^{x} - ({}^{b}/_{a})^{x} = 1$$

Example 1

Find the value of *x*

$$3^x + 2^x = 14$$

Solution

Let's take any value of k, say 8, and then

$$n1 = \frac{log(\frac{b^kc + (c - a^k - b^k)}{(a^k + b^k)})}{logb}$$

So, applying the formula;

$$n1 = \frac{log(\frac{(3^8 \times 14) + (14 - 2^8 - 3^8)}{(2^8 + 3^8)})}{log3}$$

Thus,

n1 = 2.29729050932

So, using n1 = 2.29729050932, then,

 $3^{2.29729050932} + 2^{2.29729050932} = 17.3916468296$

Doing the second calculation, where now, n1=2.29729050932

The value of *n*2

$$n2 = \frac{log(\frac{(3^{2.29729050932} \times 14) + (14 - 2^{2.29729050932} - 3^{2.29729050932})}{(2^{2.29729050932} + 3^{2.29729050932})}}{log3}$$

So, using n2 = 2.08198130882

$$3^{2.08198130882} + 2^{2.08198130882} = 14.0820980231$$

Doing the third calculation, where now, n2=2.08198130882

The value of *n*3

$$n3 = \frac{log(\frac{(3^{2.08198130882} \times 14) + (14 - 2^{2.08198130882} - 3^{2.08198130882})}{(2^{2.08198130882} + 3^{2.08198130882})})}{log3}$$

n3 = 2.07611695862,

So, using n3 = 2.07611695862

$$3^{2.07611695862} + 2^{2.07611695862} = 14.0016781963$$

The value of n4

$$n4 = \frac{log(\frac{(3^{2.07611695862} \times 14) + (14 - 2^{2.07611695862} - 3^{2.07611695862})}{(2^{2.07611695862} + 3^{2.07611695862})})}{log3}$$

n4 = 2.07599670273

So, using n4 = 2.07599670273

$$3^{2.07599670273} + 2^{2.07599670273} = 14.0000340751$$

So, finding n5

$$n5 = \frac{log(\frac{(3^{2.07599670273} \times 14) + (14 - 2^{2.07599670273} - 3^{2.07599670273})}{(2^{2.07599670273} + 3^{2.07599670273})}}{log3}$$

$$n5 = 2.07599426082$$

$$3^{2.07599426082} + 2^{2.07599426082} = 14.0000006918$$

If the calculations are repeated, it will reach a point where the value of n_k , $(3^{nk} + 2^{nk} = 14)$, solution of exactly 14, meaning, $n_k = x$

Important Notice Based on Example 1

• If the value k>n, then the values of $C^n>C^x$. However, C^n will decrease with each calculation until it reaches, $C^n=C^x$

$$a^x + b^x = c^x$$

- If k < n, then the value of $C^n < C^x$. However, C^n will increase with each calculation until it reaches $C^n = C^x$
- In the calculation have assumed k=8, though any number can be used if and only if $c-a^n-b^n>0$, or equal to 0

Example 2

Find the value of x

$$3^x - 2^x = 14$$
 $k = 0.86135311614$

Applying the formula

$$n1 = \frac{log(\frac{-cb^n + (c + a^n - b^n)}{(a^n - b^n)})}{logb}$$

Then

$$n1 = \frac{\log(\frac{(-3^{0.86135311614}\times 4) + (4 + 2^{0.86135311614} - 3^{0.86135311614})}{(2^{0.86135311614} - 3^{0.86135311614})})}{\log}$$

n1 = 2.03004521829

So, using n1=2.03004521829, then,

$$3^{2.03004521829} - 2^{2.03004521829} = 5.24193926067$$

Doing the second calculation, where now, n1= 2.03004521829

The value of *n*2

$$n2 = \frac{log(\frac{(-3^{2.03004521829} \times 4) + (4 + 2^{2.03004521829} - 3^{2.03004521829})}{(2^{2.03004521829} - 3^{2.03004521829})})}{log3}$$

n2 = 1.81742690735

$$3^{1.81742690735} - 2^{1.81742690735} = 3.8398057357$$

Doing the third calculation, where now, n2= 1.81742690735

The value of x

$$n3 = \frac{log(\frac{(-3^{1.81742690735} \times 4) + (4 + 2^{1.56715353789} - 3^{1.56715353789})}{(2^{1.56715353789} - 3^{1.56715353789})})}{log3}$$

n3 = 1.84966718013

$$3^{1.84966718013} - 2^{1.84966718013} = 4.02567137244$$

Doing the fourth calculation, where now, **n=1.84966718013**

The value of *n*3

$$n4 = \frac{log(\frac{(-3^{1.84966718013} \times 4) + (4 + 2^{1.84966718013} - 3^{1.84966718013})}{(2^{1.84966718013} - 3^{1.84966718013})}}{log3}$$

n4 = 1.84460939966

$$3^{1.84460939966} - 2^{1.84460939966} = 3.99600675004$$

Doing the fifth calculation, where n4 = 1.84460939966

$$x = \frac{log(\frac{(-3^{1.84460939966} \times 4) + (4 + 2^{1.84460939966} - 3^{1.84460939966})}{(2^{1.84460939966} - 3^{1.84460939966})})}{log3}$$

n5 = 1.84539878668

$$3^{1.84539878668} - 2^{1.84539878668} = 4.00062407008$$

Doing the sixth calculation, where n5 = 1.84539878668

$$x = \frac{log(\frac{(-3^{1.84539878668} \times 4) + (4 + 2^{1.84539878668} - 3^{1.84539878668})}{(2^{1.84539878668} - 3^{1.84539878668})})}{log3}$$

n6 = 1.84527548465

$$3^{1.84527548465} - 2^{1.84527548465} = 3.99990254065$$

If the calculations are repeated, it will reach a point where the value of x ($3^x - 2^x = 4$), solution of exactly 4

Important Notice Based on Example 2

- As observed in the example, n1, n3, and n4, give Cⁿ>C^x, but the value decrease with
 each calculation. While the value of n2, n4, n6, give Cⁿ<C^x but increases by each
 calculation
- In the calculation have assumed k=0.86135311614, though any number can be used if and only if $c-a^n-b^n<0$, or equal to 0

$$m{eta w-convergence}$$
 Formular for Solving $\, \mathbf{a}^{\mathbf{x}\pm\mathbf{e}} + \mathbf{b}^{\mathbf{x}\pm\mathbf{d}} = \mathbf{c} \,$

 $n \rightarrow x$, then, and where (d, e) are known numbers

$$(a^{x+e} - a^{n+e}) + (b^{x+d} - b^{n+d}) = c - a^{n+e} - b^{n+e}$$

Factorizing, then

$$a^{n+e}(a^{x-n}-1)+b^{n+d}(b^{x-n}-1)=c-a^{n+e}-b^{n+d}$$

However, if $n \to x$, where n = x, then $a^{n+e}(a^{x-n}-1) + b^{n+e}(b^{x-n}-1) = c - a^{n+e} - b^{n+d}$

This be written (factorized) as;

$$(b^{x-n} - a^{x-n})(a^{n+e}b^{n+d}) = c - a^{n+e} - b^{n+d}$$

Dividing $a^n b^n$ both sides, then

$$(b^{x-n} - a^{x-n}) = \frac{c - a^{n+e} - b^{n+d}}{(a^{n+e}b^{n+d})}$$

This can also be written as;

$$\frac{b^{x}}{b^{n}} - \frac{a^{x}}{a^{n}} = \frac{c - a^{n+e} - b^{n+d}}{(a^{n+e}b^{n+d})}$$

Back to the equation, $a^{x+e} + b^{x+d} = c$,

$$a^x = \frac{c - b^{x+d}}{a^e}$$

Therefore,

$$\frac{b^{x}}{b^{n}} - \frac{(c - b^{x+d})}{a^{e}a^{n}} = \frac{c - a^{n+e} - b^{n+d}}{(a^{n+e}b^{n+d})}$$

$$\frac{a^n b^x a^e - cb^n + b^{n+x+d}}{a^{e+n} b^n} = \frac{c - a^{n+e} - b^{n+d}}{(a^{n+e} b^{n+d})}$$

Multiplying both sides by $a^{n+e}b^n$

$$a^{n}b^{x}a^{e} - cb^{n} + b^{n+x+d} = \frac{c - a^{n+e} - b^{n+d}}{(b^{d})}$$

This can also be written as;

$$a^{n}b^{x}a^{e} + b^{n}b^{x}b^{d} = \frac{c - a^{n+e} - b^{n+d}}{(b^{d})} + b^{n}c$$

$$a^n b^x a^e + b^n b^x b^d = \frac{cb^{n+d} + (c - a^{n+e} - b^{n+d})}{(b^d)}$$

Factorizing,

$$b^{x}(a^{n+e} + b^{n+d}) = \frac{cb^{n+d} + (c - a^{n+e} - b^{n+d})}{(b^{d})}$$

Where b^x will be;

$$b^{x} = \frac{cb^{n+d} + (c - a^{n+e} - b^{n+d})}{(a^{n+e} + b^{n+d})(b^{d})}$$

Hence

$$x = \frac{log(\frac{(b^{n\pm d}c) + \left(c - a^{n\pm e} - b^{n\pm d}\right)}{(a^{n\pm e} + b^{n\pm d})(b^{\pm d})})}{logb}$$

Similarly, following the same procedure,

$$x = \frac{log(\frac{(a^{n\pm e}c) + \left(c - a^{n\pm e} - b^{n\pm d}\right)}{(a^{n\pm e} + b^{n\pm d})(a^{\pm e})})}{loga}$$

 βw – convergence Formular for Solving $\mathbf{b}^{x\pm d} - \mathbf{a}^{x\pm e} = \mathbf{c}$

 $n \rightarrow x$, then, and where (d, e) are known numbers

$$(a^{x+e} - a^{n+e}) + (b^{x+d} - b^{n+d}) = c + a^{n+e} - b^{n+e}$$

Factorizing, then

$$a^{n+e}(a^{x-n}-1)+b^{n+d}(b^{x-n}-1)=c+a^{n+e}-b^{n+d}$$

However, if $n \to x$, where n = x, then $a^{n+e}(a^{x-n}-1) + b^{n+e}(b^{x-n}-1) = c + a^{n+e} - b^{n+d}$

This be written (factorized) as;

$$(b^{x-n} - a^{x-n})(a^{n+e}b^{n+d}) = c + a^{n+e} - b^{n+d}$$

Dividing $a^n b^n$ both sides, then

$$(b^{x-n} - a^{x-n}) = \frac{c + a^{n+e} - b^{n+d}}{(a^{n+e}b^{n+d})}$$

This can also be written as;

$$\frac{b^{x}}{b^{n}} - \frac{a^{x}}{a^{n}} = \frac{c + a^{n+e} - b^{n+d}}{(a^{n+e}b^{n+d})}$$

Back to the equation, $a^{x+e} + b^{x+d} = c$,

$$a^x = \frac{b^{x+d} - c}{a^e}$$

Therefore,

$$\frac{b^{x}}{b^{n}} - \frac{(b^{x+d} - c)}{a^{e}a^{n}} = \frac{c + a^{n+e} - b^{n+d}}{(a^{n+e}b^{n+d})}$$

$$\frac{a^n b^x a^e + b^{n+x+d} - cb^n}{a^{e+n} b^n} = \frac{c + a^{n+e} - b^{n+d}}{(a^{n+e} b^{n+d})}$$

Multiplying both sides by $a^{n+e}b^n$

$$a^{n}b^{x}a^{e} + cb^{n} - b^{n+x+d} = \frac{c + a^{n+e} - b^{n+d}}{(b^{d})}$$

This can also be written as;

$$a^{n}b^{x}a^{e} - b^{n}b^{x}b^{d} = \frac{c + a^{n+e} - b^{n+d}}{(b^{d})} - b^{n}c$$

$$a^{n}b^{x}a^{e} + b^{n}b^{x}b^{d} = \frac{(-cb^{n+d}) + (c + a^{n+e} - b^{n+d})}{(b^{d})}$$

Factorizing,

$$b^{x}(a^{n+e} - b^{n+d}) = \frac{(-cb^{n+d}) + (c + a^{n+e} - b^{n+d})}{(b^{d})}$$

Where b^x will be:

$$b^{x} = \frac{(-cb^{n+d}) + (c + a^{n+e} - b^{n+d})}{(a^{n+e} - b^{n+d})(b^{d})}$$

Thus

$$x = \frac{log(\frac{(-b^{n\pm d}c) + \left(c + a^{n\pm e} - b^{n\pm d}\right)}{(a^{n\pm e} - b^{n\pm d})(b^{\pm d})})}{logb}$$

Similarly, following the same procedure,

$$x = \frac{\log(\frac{(-a^{n \pm e}c) + (c + a^{n \pm e} - b^{n \pm d})}{(a^{n \pm e} - b^{n \pm d})(a^{\pm e})})}{\log a}$$

 β w-convergence Formular for Solving $b^{x^d} + a^x = c$

Using the same steps (procedure) as formula for solving $b^x + a^x = c$

$$x = \frac{log(\frac{ca^{n} - (c - a^{n} - b^{n^{d}})}{(a^{n} + b^{n^{d}})})}{loga}$$

0r

$$x = \sqrt[d]{\frac{log(\frac{cb^{n^d} + (c - a^n - b^{n^d})}{(a^n + b^{n^d})})}{logb}}$$

However, this can be summarized as $(\mathbf{b}^{x^d} + \mathbf{a}^{x^e} = \mathbf{c})$

$$x = \sqrt[d]{\frac{log(\frac{cb^{n^d} + (c - b^{n^d} - a^{n^e})}{(b^{n^d} + a^{n^e})})}{logb}}$$

0r

$$x = \sqrt[e]{\frac{log(\frac{ca^{n^e} - (c - b^{n^d} - a^{n^e})}{(b^{n^d} + a^{n^e})})}{loga}}$$

General Bw-convergence Formula

Suppose,
$$a^x \pm b^x \pm c^x \pm d^x \dots \pm z^x = \beta$$

Then, applying the mathematical approach from the equation $a^x + b^x = c$

The value x of any value selected, say

$$z^{x} = \frac{\beta z^{n} + (\beta \mp a^{n} \mp b^{n} \mp c^{n} \mp d^{n} \dots \dots \mp z^{n})}{(a^{n} + b^{n} + c^{n} + d^{n} \dots + z^{n})}$$

However, this is true if $z^x + M = \beta$

Where
$$\mathbf{M} = (a^x \pm b^x \pm c^x \pm d^x \dots \pm y^x)$$

Thus

$$x = \frac{log(\frac{\beta z^n + (\beta \mp a^n \mp b^n \mp c^n \mp d^n \dots + z^n)}{(a^n \pm b^n \pm c^n \pm d^n \dots + z^n)})}{logz}$$

Where there is a subtraction in the equation,

Say,
$$\mathbf{a}^x \mp \mathbf{b}^x \pm \mathbf{c}^x \pm \mathbf{d}^x \dots \dots \pm \mathbf{z}^x = \boldsymbol{\beta}$$

Then, we apply the mathematical approach from the equation $b^x - a^x = c$

This is true if $M - b^x = \beta$

Where $M = (a^x \pm c^x \pm d^x \dots \pm z^x)$

$$b^{x} = \frac{-\beta b^{n} + (\beta \mp a^{n} \pm b^{n} \mp c^{n} \mp d^{n} \dots \dots \mp z^{n})}{(b^{n} \mp a^{n} \mp c^{n} \mp d^{n} \dots \dots \mp z^{n})}$$

Thus

$$x = \frac{log(\frac{-\beta z^n + (\beta \mp a^n \pm b^n \mp c^n \mp d^n \dots + \overline{z}^n)}{(b^n \mp a^n \mp c^n \mp d^n \dots + \overline{z}^n)})}{logz}$$