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ABSTRACT 

 

The Riemann hypothesis, stating that all nontrivial zeros of the Riemann zeta function have 

real parts equal to 1

2
, is one of the most important conjectures in mathematics. In this paper 

we prove the Riemann hypothesis by adding an extra unbounded term to the traditional 

definition, extending its validity to Re 0z  . The Stolz-Cesàro theorem is then used to 

analyse    1z z    as a ratio of complex sequences. The results are analysed in both 

halves of the critical strip (  1

2
Re 0,z ,  1

2
Re ,1z ), yielding a contradiction when it is 

assumed that   0z   in either of these halves. 
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1. INTRODUCTION 

 

In 1859 Bernhard Riemann published an article titled, On the number of primes less than a 

given quantity [1]. In that work he speculated that all complex valued nontrivial zeros of the 

zeta function have a real part equal to 1

2
. This became known as the Riemann hypothesis. 

Ever since then, mathematicians have endeavoured to prove it. In 1900 David Hilbert 

included it in his list of 23 most important problems of the twentieth century. And since 2000 

it has remained as one of six millennium problems.  

 

The Riemann zeta function with real part, Re 1z   is traditionally defined by the infinite sum  

 

   
1

1
,    Re 1

z
n

z z z
n






    .                                           (1) 

 

In this work we start with an integral form of the zeta function, which is analytically 

continued to the imaginary axis but excludes the only pole at 1z  . This form is given by [2]  

 

    1

1
,    1,  Re 0

1

zz
z z x x dx z z

z



    

  .                               (2) 

 

We further rely on Riemann’s functional equation, which implies symmetry on the positions 

of nontrivial zeros about the critical line ( 1

2
Re z  ), and allows the zeta function to be 

analytically continued to the whole complex plane. This is given by [1] 

 

     12 sin 1 1
2

z z z
z z z


    

    
 

                                        (3) 

 

where  

 

  1

0
,    Re 0z xz x e dx z


     

 

is the gamma function extending the factorial function to the entire complex plane. From 

equation (3) it is straightforward to determine the trivial zeros at  2 ,  \ 0z n n   . All 

other zeros are known to lie only within the critical strip defined by 0 Re 1z   [2].  

 

In this work we prove the Riemann hypothesis in four stages. The first is to write the zeta 

function in terms of the infinite sum shown in equation (1), which is extended to Re 0z   by 

the addition of an extra divergent term. By examining the properties of equation (3) it is 

shown that    1z z    has no poles or zeros within the critical strip. In the third stage we 

apply the Stolz-Cesàro theorem [3,4] in the analysis of complex sequences converging to the 

zeta function. Finally, all of the preceding analysis is drawn together. When we assume 

  0z   in either half of the critical strip (  1

2
Re 0,z ,  1

2
Re ,1z ) we obtain a 

contradiction to known properties of the functional equation, leaving only the critical line 

where zeros may be found.  
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2. PROOF OF THE RIEMANN HYPOTHESIS 

 

The first task is to prove the following theorem:  

 

Theorem 1: The Riemann zeta function for Re 0z  , in terms of the traditional infinite sum is 

given by  

 

 
1

1

lim ,    Re 0.
1

zN
z

N
n

N
z n z

z








 
   

 
                                             (4) 

Proof:  

 

We begin with the following known relationship [2, p8]  

 

    1

1
,    Re 0.

1

zz
z z x x dx z

z



   

                                       (2) 

 

The first thing to note here is that since  x x x      implying that  0 1x  , then  

 

  1 1

1 1

z zx x dx x dx
 

     .  

 

Because  Re 1 1z   , the integral on the right of this inequality converges. Therefore, the 

integral in equation (2) converges, hence defining the zeta function as meromorphic for 

Re 0z   with a single pole at 1z  . Moreover, the resulting analytic continuation to the 

imaginary axis is unique [5, p362]. 

 

The next step is to rewrite the integral as   

 

   1 1

1 1
lim

N
z z

N
x x dx x x dx


   


   

 

while noting that N  . Integrating by parts gives  

 

 
 

 1

1 1

1

N
z z

N N
z

x x x
x x dx x dx

z z

 
 

    
  

  . 

 

And by differentiating the fractional part of x, this becomes  

 

 
 

 1

1 1

1

1

N
z z

N N
z

n

x x x
x x dx x n dx

z z


 
 



   
      

    
  .  

 

The first term on the right hand side vanishes due to the real part of z being positive and 

 1 0  at the lower limit. By directly evaluating the integral on the right hand side, the 

integral on the left becomes  



 4 

 
 

 

1
1

1
2

1

1

2

1

1

1 1
.

1

N
z NN

z z

n

z N
z

n

x
x x dx n

z z z

N
n

z z z


  








 
   

   


 







 

 

Note that the lower limit on the sum starts at 2n  . This is due to the lower limit on the 

integral being 1, where the discontinuity in  x  appearing there is not included. The first 

discontinuity is therefore seen at 2x   corresponding to 2n   in the sum.  

 

Substituting back into equation (2) we get  

 

 
1 1

2 2

1 1
.

1 1 1 1 1

z zN N
z z

n n

z N z N
z n n

z z z z z


 
 

 


      

    
   

 

Here we note that the sum starting at 2n   is just the sum starting at 1n   minus 1. 

Therefore, using  

 

2 1

1

1

N N
z z

n n

z
n n

z

 

 


 


    

we have  

 
1 1

1 1

1

1

1 1 1 1

1 1 1 1 1 1 1

,    ,    Re 0.
1

z zN N
z z

n n

zN
z

n

z z N z z N
z n n

z z z z z z z

N
n N z

z


 

 

 






  
        

      

   


 



 

 

This shows the validity of equation (4) extending the traditional definition to Re 0z  . 

Moreover, we see that this reduces to the original definition for Re 1z   due to the vanishing 

second term, hence reinforcing the statement that equation (2) is an analytic continuation of 

equation (1).  
 

 

A key part of the analysis to follow relies on certain properties of the Riemann functional 

equation. Rearranging equation (3) as 

 

 

 
 12 sin 1

1 2

z z

z

z z
F z

z

 




  
    

  
                                      (5) 

 

we quote and prove the following property:   

 

Theorem 2: In equation (5),  0,zF    for all points within the critical strip.  
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Proof: 

 

In equation (5) we need to show that zF  is bounded and nonzero within the critical strip. The 

first two factors on the right hand side are real multiples of the form, ,  za a  . These can 

be written as 
ita a

 where z it  , 1ita   and  0, ,  a     . Therefore, 12z z   has 

no poles or zeros within the critical strip.  

 

Expanding the sine factor we have    

 

sin sin
2 2 2

sin cos cos sin
2 2 2 2

sin cosh cos sinh .
2 2 2 2

z t
i

t t
i i

t t
i

  

   

   

   
    

   

       
        

       

       
        

       

 

 

The first thing to notice is that the hyperbolic functions are bounded for finite values of their 

arguments. Also, considering the real part of the right hand side, we always have  

 

cosh 0
2

t 
 

 
, and   sin 0,1

2

 
 

 
 for  Re 0,1z   . Therefore, we have  

 

   sin 0, ,    Re 0,1
2

z
z

 
   

 
. 

 

The final factor in zF  is the gamma function,  1 z  . It is known, from the infinite product 

representation of  1 z ,  

 

  1

1
1 ,    z z n

n

z
ze e z

z n








 
   

  
  

 

where 
1 1 1

lim 1 Log 
2 3n

n
n




 
      

 
 

 

and the Weierstrass factor theorem [5, p384], that  1 z  is an entire function with simple 

zeros at 0 and ,  n n   [5, p394]. Therefore,  z  is analytic on  \ 0, :n n   and has 

no zeros. Since  z  has no poles or zeros within the critical strip, then the same follows for 

 1 z  . Having considered all of the factors of zF , it follows that it has no poles or zeros 

within the critical strip.  Therefore, zF  is both bounded and nonzero within the critical strip.  
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The next stage is to write zF  in terms of the zeta function in the form of equation (4). This 

gives us  

 
1

1

1

1

1
lim

zN
z

n
z zNN

z

n

N
n

z
F

N
n

z





















                                                       (6) 

 

which takes the form limz N N
N

F a b


  where ,N Na b  . In the case that   0z   then this 

limit takes the form “ 0 0 ”, which we proceed to analyse using the Stolz-Cesàro theorem. 

However, in its original form, this theorem is only applicable to real valued sequences. 

Therefore, the theorem is here extended to complex sequences. This is done for the form, 

“ 0 0 ”, where the limit converges.  

 

Theorem 3, the Stolz-Cesàro theorem for complex sequences: Let  
1N N

a


 and  
1N N

b


 be 

two sequences of complex numbers, where   0Na   and   0Nb   as N  . Then  

 

1

1

lim     limN N N

N N
N N N

a a a
s s

b b b



 



  


.  

 

Proof:  

 

For N  we start with  

 

1

1

N N

N N

a a
s

b b









  

 

which we use as the base case in part of a proof by induction. In the inductive step we need to 

show that  

 

1    N N k N N k

N N k N N k k

a a a a
s s

b b b b

  

  

 
  

 
.  

 

Our starting point for the inductive step is  

 

N N k

N N k

a a
s

b b









 and from the base case we have 1

1

N k N k

N k N k

a a
s

b b

  

  





.  

 

Using elementary properties of limits [5, p110], we have  

 

1 1

1 1

    N N k N k N k N N k

N N k N k N k N N k

a a a a a a
s s

b b b b b b

     

     

   
  

   
  

 

which completes the inductive step. Therefore, we can say that  
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lim N N

N
N N

a a
s

b b














  

 

where ,N    independently. By hypothesis, , 0N Na b     as   . Consequently, this 

reduces to  

 

lim N

N
N

a
s

b
 .  

 

Therefore, we have   

 

1

1

lim     limN N N

N N
N N N

a a a
s s

b b b



 



  


  

 

as required. This concludes the proof of the Stolz-Cesàro theorem for complex sequences in 

the “ 0 0 ” case.  

 
 

 

The analysis so far has established a good position from which we can prove the Riemann 

hypothesis.  

 

Theorem 4, the Riemann hypothesis: All of the nontrivial zeros of the Riemann zeta function 

contained within the critical strip, 0 Re 1z  , have real parts equal to 1

2
.  

 

Proof:  

 

We begin by simplifying   

 

 

 

11 1

1 1 1 1

1
1 1 1 1

1 1

1

1 1

1

zzN N
z z

N N N N n n

zzN N
N N N N z z

n n

NN
n n

a a a a z z

b b b b NN
n n

z z

 
 

   


   

 


  

   
 

  
  

 

 

.                             (7) 

 

Evaluating the numerator, we have  
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 

 

 

 

    

    

    

111

1

1 1

11

1
1 1 1

1
1

1

1 21
21

1 21
21

11
2

1

1 1

1

1

1

1

1 1

1

1 1 1 1

1

1 1

1

1 1

1

zzN N
z z

N N

n n

zz

z

z
z z

z

z

z z

z z

z z

z z

NN
a a n n

z z

N N
N

z

N N N
N

z

N
N N

z

z N z z N
N N

z

z N z z N
N N

z

z z z N
N N


 



 






  






 

 

 

 

 



 


    

 

 
 



 
 



 
 



     
 



   
 



   
 



 

 

11

2

11

2
.

z z z

z

z

N N zN

N zN

   

 

   

  
 

 

Similarly  

 

  1 11
1 2

1z

N Nb b N z N 

     .  

 

By taking the ratio of the dominant terms top and bottom, we have  

 

1 21

1

1

 as 
1 1

z
zN N

z

N N

a a N z z
N N

b b N z z








    
     

     
  

 

where we note that  0 1z z    .  

 

Hence, by theorem 3, we can state that whenever   0z   then  

 
1

1 21

1

1

11
  as  ,    Re

1 2

zN
z

n

zN
z

n

N
n

zz
N N z

N z
n

z

 













    







                      (8a)  

 
1

1 21

1

1

11
0,    Re

1 2

zN
z

zn

zN
z

n

N
n

zz
N z

N z
n

z













  







.                                    (8b) 
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If we contradict the statement of the Riemann hypothesis and assume that   0z   in the 

lower half of the critical strip, then a divergent equation (8a) implies that  

                                        

 1 1
2 sin 1 ,    Re .

2 2

z z z
z z


   

    
 

                                       (9a) 

 

Similarly, in the upper half of the critical strip, from equation (8b), we have  

 

 1 1
2 sin 1 0,    Re .

2 2

z z z
z z


   

    
 

                                        (9b) 

 

But because zF  remains bounded everywhere within the critical strip, equation (9a) reveals a 

contradiction to the assumption that   0z   when 1

2
Re z  . Moreover, since the pattern of 

zeros is symmetrical about the critical line, there can be no zeros when 1

2
Re z   either; which 

is borne out by equation (9b). Therefore, the only place where zeros can exist within the 

critical strip, is on the critical line. This concludes the proof of the Riemann hypothesis.  
 

 

Before concluding, we make a few remarks about phase. From the preceding analysis, we 

note that  

 

1 21

1 1

zN N

N N

a a z
N

b b z





  
  

  
                                            (10) 

 

which is derived from the assumption that   0z  . The right hand side can be expanded to 

read   

 

 
 

   

2 2

1 2 1 2

2 2

exp
exp 2 ln

1 1 exp

z
t iz

N N i t N
z t i

  

 

 
 

  
   

 

 

where z it  ,  1tan t   and   1tan 1t    . Therefore, the overall phase is 

given by  

 

1 2 1 1arg tan tan 2 ln
1 1

z z t t
N t N

z  

         
        

       
.  

 

Consequently, because the term, 2 lnt N , diverges the phase is infinitely sensitive to small 

changes in t. This means that the phase can be made to fit that of equation (5) whenever 

  0z  , irrespective of the value t takes. Furthermore, the right hand side of equation (10) 

matches zF  in equation (5) by modulus everywhere on the critical line as one would expect. 

However, this does not provide any straightforward way to compute the positions of zeros 

along the critical line.  
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3. SUMMARY OF THE PROOF 

 

Given the conditions imposed by equations (4, 5) the proof presented here can be summarised 

with a single expression, given by  

 

  1

2
0  Equations (8a,b)   Rez z     . 

 

Or equivalently  

 

 1

2
Re   Equations (8a,b)  0z z     . 

 

In this work we followed the path  

 

  0  Equations (8a,b)z     

 

followed by  

 
1

2
Re   Equations (8a,b)z    .  

 

 

4. CONCLUSION 

 

In this paper we have demonstrated the Riemann hypothesis to be true and that the real parts 

of all nontrivial zeros are 1

2
. By writing the zeta function in a form that includes the 

traditional sum extended to Re 0z  , with an appropriate application of the Stolz-Cesàro 

theorem to complex sequences, it has been shown that, due to a contradiction, no nontrivial 

zeros can exist when 1

2
Re z  . Otherwise equation (5) would be required to diverge/vanish in 

the lower/upper half of the critical strip. Since it is established that it does neither, the only 

occurrences of zeros within the critical strip are at 1

2
Re z   as hypothesized.  
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