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ABSTRACT 

 

The Riemann hypothesis, stating that all nontrivial zeros of the Riemann zeta function have 

real parts equal to 1

2
, is one of the most important conjectures in mathematics. In this paper 

we prove the Riemann hypothesis by adding an extra unbounded term to the traditional 

definition, extending its validity to Re 0z  . This is then analysed in both halves of the 

critical strip ( 1 1

2 2
0 Re ,  Re 1z z    ). A contradiction is obtained when it is assumed that 

  0z   in either of these halves. 
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1. INTRODUCTION 

 

In 1859 Bernhard Riemann published an article titled, On the number of primes less than a 

given quantity. In that work he speculated that all complex valued nontrivial zeros of the zeta 

function have a real part equal to 1

2
. And this became known as the Riemann hypothesis. 

Ever since then, mathematicians have endeavoured to prove it. In 1900 David Hilbert added 

this problem to his list of 23 most important problems of the twentieth century. And since 

2000 it has remained as one of six millennium problems.  

 

The Riemann zeta function with real part, Re 1z   is traditionally defined by the infinite sum  
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In this work we start with an integral form of the zeta function, which is analytically 

continued to the imaginary axis but excludes the only pole at 1z  . This form is given by 

(Heymann, 2020, p8)  
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We further rely on Riemann’s functional equation, which implies symmetry on the positions 

of nontrivial zeros about the critical line ( 1

2
Re z  ), and allows the zeta function to be 

analytically continued to the whole complex plane. This is given by (Riemann, 1859) 
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where  

 

  1

0
,    Re 0z xz x e dx z


     

 

is the gamma function extending the factorial function to the complex plane. From equation 

(3) it is straightforward to determine the trivial zeros at  2 ,  0z n n    . All other zeros 

are known to lie only within the critical strip defined by 0 Re 1z   (Heymann, 2020).  

 

In this work we prove the Riemann hypothesis in two stages. The first is to write the zeta 

function in terms of the infinite sum shown in equation (1), which is extended to Re 0z   by 

the addition of an extra divergent term. This is used to aid the second stage where we use the 

functional formula to obtain a contradiction when we assume   0z   in both halves of the 

critical strip ( 1 1

2 2
0 Re ,  Re 1z z    ). This leaves only the critical line where zeros may be 

found.  

 

 

2. PROOF OF THE RIEMANN HYPOTHESIS 

 

The first task is to prove the following theorem:  

 

Theorem 1: The Riemann zeta function for Re 0z  , in terms of the traditional infinite sum is 

given by  
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Proof:  

 

We begin with the following known relationship  
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We then rewrite the integral as   
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where  x x x     , while noting that N . Integrating by parts gives  
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And by differentiating the fractional part of x, this becomes  
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The first term on the right hand side vanishes due to the real part of z being positive and 

 1 0  at the lower limit. By directly evaluating the integral on the right hand side, the 

integral on the left becomes  
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Note that the lower limit on the sum starts at 2n  . This is due to the lower limit on the 

integral being 1, where the discontinuity in  x  appearing there is not included. The first 

discontinuity is therefore seen at 2x   corresponding to 2n   in the sum.  

 

Substituting back into equation (2) we get  
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Here we note that the sum starting at 2n   is just the sum starting at 1n   minus 1. 

Therefore, using  
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This shows the validity of equation (4) extending the traditional definition to Re 0z  . 

Moreover, we see that this reduces to the original definition for Re 1z   due to the vanishing 

second term.  

 
 

 

The next stage is to complete the proof using equation (4). For this we adopt the following 

shorthand notation,  
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We are now in a position to proceed with the second stage to prove the Riemann hypothesis. 

 

Theorem 2, the Riemann hypothesis: All of the nontrivial zeros of the Riemann zeta function 

contained within the critical strip, 0 Re 1z  , have real parts equal to 1

2
.  

 

Proof: 

 

From the shorthand expressions defined above it is known that within the critical strip, zF  is 

bounded and nonzero. Equation (4) is also written as   z zz S C   . From this and the 

functional equation, we get  
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Also, from the expression for zC  it is straightforward to deduce   
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while noting the divergence of both zC  and 1 zC   independently. It follows that this quotient 

is bounded and nonzero only when 1

2
Re z  .  

 

The next task is to write equation (5) in terms of 1z zC C  . For this we start with the 

functional equation,  
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Therefore, we have  
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Now let   0z  . This gives us z zS C  and 1 1z zS C  . Therefore, equation (6) becomes    
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Because 1 1z zS C  , we may also substitute the denominator on the right hand side of 

equation (7),  
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This allows us to write  
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From here we arrive at  
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Assuming continuity zF  and the zeta function, from equation (5) this implies that zR F  

whenever   0z  . Since 0zF   and is bounded, the only way that this can be true is if the 

same applies to R , and this is only the case when 1

2
Re z  .  

 

One might be tempted to apply the above analysis without assuming   0z  , and we would 

still arrive at equation (9). However, it is known that zR F  is not true everywhere in the 

critical strip. At the very least we could say that equation (8) is invalidated and the right hand 

side of equation (9) would not correspond to zF . Fortunately, equation (5), remains valid 

irrespective of whether   0z   or not, and the only place where the right hand side of 

equation (9) could equate to zF  is at 1

2
Re z  .  

 

Away from the critical line equation (9) translates to  
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But because none of the factors on the left hand side here vanish for 1

2
Re 1z   and zF  

remains bounded everywhere within the critical strip, equations (10, 11) show the expected 

contradiction to the assumption that   0z  . Therefore, the only place where zeros can 

exist within the critical strip, is on the critical line. This concludes the proof of the Riemann 

hypothesis.  

 

 

Before concluding, we make a few remarks about phase. From equation (9), we note that  
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whenever   0z  . The right hand side would certainly fix the phase, and one may question 

whether this would generate an undesirable contradiction. The phase of the left hand side is 

given by the following,  

 

   

   

2 2 1 21 2

2 2

exp exp 2 ln

1 1 exp

z t i N i t NzN

z t i

 

 

  


  

  

 

where z it  ,  1tan t   and   1tan 1t   . Therefore, the phase of the left 

hand side of equation (12) is given by  
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z
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
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In the third term on the right hand side here, we note that ln N  . The phase is therefore 

infinitely sensitive to changes in Imz t . Therefore, any value of t  can be made to fit the 

phase belonging to the right hand side of equation (12). Moreover, this in no way provides a 

straightforward way to compute the imaginary parts of the nontrivial zeros, nor does it 

invalidate the proof of the Riemann hypothesis.  
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3. CONCLUSION 

 

In this work we have demonstrated the Riemann hypothesis to be true and that the real parts 

of all nontrivial zeros are 1

2
. By writing the zeta function in a form that includes the 

traditional sum, extended to Re 0z  , it has been shown that no nontrivial zeros can exist 

away from the critical line, implying that the only occurrences of zeros within the critical 

strip are at 1

2
Re z   as hypothesized.  
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