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Collatz Conjecture 

 Krishna         By: Gaurav Rudra Krishna 

 

The problem 

Conjecture: The following operation is applied on an arbitrary positive integer n 

𝑓(𝑛) = {

𝑛

2
, 𝑖𝑓 𝑛 ≅ 0 𝑚𝑜𝑑2

3𝑛 + 1, 𝑖𝑓 𝑛 ≅ 1 𝑚𝑜𝑑2
 

The Collatz conjecture states: This process will eventually reach the number 1, regardless of which 

positive integer is chosen initially. 

Abstract  

We consider n to have only odd values, and even values are written in the form; 𝑛. 2𝑏. We create a 

predefined function 𝑟𝑏(𝑛).Define,  𝑔(𝑛) = 𝑟𝑏(𝑛) + 𝑟𝑏−1(𝑛) and prove 𝑔(𝑛) = 𝑓(𝑛).  

𝑔(𝑛) being an identical function to Collatz transformations, we use the properties of said function to 

probe if some number n can explode to infinity.  

We study 𝑛𝑥 in detail, establish pattern for 𝑛𝑥 modulo 3. We use our understanding to probe if some 

number n, can loop to itself with more than one transformation.  

Format of the solution: The solution does not adhere to the conventional framework of 

paragraphed proof writing, every piece of maths that is important (to conjecture) is tabular.  

• The solution template is inspired from Leslie Lamport; how to write a 21st century proof 

• The Solution is framed in a structured template with every argument followed its proof.  

• All the subsections are tabulated to study, IF-THEN clause: for main case and sub cases. 

• Tabulation should help the reader understand the larger picture in context to some specific 

case. 

Current understanding: The heuristic and probabilistic arguments that support the conjecture are 

well known. The conjecture has been proven valid for numbers upto 268 but hasnt been proven yet 

for all numbers. There has been a lot of interesting work done in this problem by notable 

mathematicians. Few of the notable efforts have been by; Terras showing almost all values n 

eventually iterated to a value less than n, Krasikov and Lagarias showed that for any large number x, 

there were at least x0.84 initial values n between 1 and x whose Collatz iteration reached 1. 

Terrence tao showed Almost all Collatz orbits attain almost bounded values. 

The conjecture has been studied using Benford's law, Markovs chains, binary systems among other 

approaches. Variants of the Collatz function have been studied, John  Conway invented a computer 

language called fractran in which every program was a variant of the Collatz function, it turned out 

to be Turing complete.  
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There has been some interesting commentary by reputed names, regarding the problem; Paul Erdos 

said about the Collatz conjecture: "Mathematics may not be ready for such problems." Jeffery 

Lagarias stated in 2010 that the Collatz conjecture "is an extraordinarily difficult problem, completely 

out of reach of present-day mathematics. Richard K guy stated "Don't try to solve these problems! " 

Some call it the most dangerous problem in mathematics. All this commentary makes us more 

interested in looking into the problem.  

For verbal explanation refer: https://www.youtube.com/watch?v=ZXK56OdwdrE 

Definition 0.1 Transformation: Application of 3n+1 followed by application of n/2( one or more 

times) till we get odd number is termed as transformation. Application of 3n+1 always results the 

form of 𝑛′. 2𝑏 and we just need to divide 𝑛′. 2𝑏 by 2, b number of times, to get n' which may go 

through transformation once again.  

Notation  

 {   } : square brackets are used to represent sets. All the sets in the analysis are open ray 

sets, that is having a certain starting point and can be extended to infinity.  

 ≡ : Equivalence is used for operations under the defined transformations in the problem, 

that is 3n+1 & n/2. Example; 5 ≡ 1. One may consider ≡ as applying transformation on odd element 

and dividing it by max power of 2 with result being an integer.  

 n is defined to be only odd and we may apply 3n+1 upon it. Any even entity shall be 

represented as 𝑒𝑣𝑒𝑛 = 𝑛𝑜𝑑𝑑 . 2
𝑏 

 ≅ : is used to describe congruence modulo some number.  

Definition 0.2 

nx(before transformation; applying 3n+1)

≡ ns(after transformation; applying 3n+1 and dividing it bymaxpower of 2) 

𝑛𝑥  & 𝑛𝑠 𝑎𝑟𝑒 𝑎𝑙𝑤𝑎𝑦𝑠 𝑜𝑑𝑑 

The co-application of 3n+1 and n/2 shall be considered as a single step 

3𝑛𝑥 + 1 = 𝑛𝑠. 2
𝑏 |  𝑛𝑥  & 𝑛𝑠 = 2𝑘 + 1 & 𝑘, 𝑏 ∈ ℤ

+ 

D0.2 
3𝑛𝑥 + 1 = 𝑛𝑠. 2

𝑏 𝑖𝑠 𝑠𝑎𝑚𝑒 𝑎𝑠 𝑛𝑥 ≡ 𝑛𝑠 

 

Take the Universal set of all positive integers {U} 

{𝑈} = {1,2,3,4,5… . } 

On all even elements, apply map (n/2 till we get odd) on {U}, we get: 

𝑛

2
→ {𝑈},𝑤𝑒 𝑔𝑒𝑡{𝑈′} = {1,3, 5, 7, 9… . } 

We begin our study considering set {𝑈′} with only positive odd integers 

https://www.youtube.com/watch?v=ZXK56OdwdrE
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Rooster Notation: {𝑈′} = {1,3, 5, 7, 9… . } Set Builder Notation: {𝑈′} = {2𝑘 − 1}| 𝑘 ∈ ℤ+ 

We define {ry }& { rb}, formulate expansion for {rb} and establish the relationship between rb& ns 

Definition 1: {𝐫𝐲}  is a set of sets contains elements corresponding to values of {U’} based upon 

parity of y with the given definition;  

D1 Condition 
ry =

ry−1 ± 1

2
|  

{𝑟0} = {U
′}  ⟹ r0 = nx 𝑎𝑛𝑑 𝑟, y ∈ {ℤ

+} ⋃ {0} 

D1.1 y ≅ 1 mod2 

(y=odd) 
ry = 

ry−1 + 1

2
 

D1.2 y ≅ 0 mod2 

(y=even) 
ry = 

ry−1 − 1

2
 

ry−1 ± 1 implies, we add or subtract 1 to the value of r for any given subset (y-1) 

ry−1 is mapped to ry if and only if value of r in  ry−1 is odd. The mapping continues till r is even.  

For value of r being even, we define said set as rb.  

Example: Say, nx = 13, r0 = 130(by definition) 

- For  ry = r1: because y is odd, ry =
ry−1+1

2
 implies r1 =

r0+1

2
= 7, so r1 = 71 

 Since value of r in r1 is odd, we extent the set further;  

- For  ry = r2: because y is even, ry =
ry−1−1

2
 implies r2 =

r1−1

2
= 3, so r2 = 32 

 Since value of r in r2 is odd, we extend the set further.  

- For  ry = r3: because y is odd, ry =
ry−1+1

2
 implies r3 =

r2+1

2
= 2, so r2 = 23 

 Since value of r in r3 is even, we cannot extend the set further. Thus, b=3 and rb = 23 

Definition 2: {𝐫𝐛} 

rb = ry| 𝑟 𝑖𝑛 ry = 2𝑘, 𝑘 ∈ ℤ
+ 

Since, rb is same as ry with the only condition is that value of r in ry is even. So, rb carries the same 

defination as ry 

D2 Condition 
rb =

rb−1 ± 1

2
| b ∈ ℤ+ 

D2.1 b ≅ 1 mod2 

(b=odd) 
rb = 

rb−1 + 1

2
 

D2.2 b ≅ 0 mod2 

(b=even) 
rb = 

rb−1 − 1

2
 

If one applies relevant map on rb where value of r is even, result is a rational solution which is not a 

positive integer or zero, thus is invalid.  
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Remark: For condition r=0, we use the classification of zero being even described by Penner 1999, 

p. 34: Lemma B.2.2 

Define: {𝑹b} = {{r1} ∪ {r2} ∪ {r3} ∪ {r4} ∪ {r5} ∪ {r6} ∪. . . } 

Lemma 1.0: There does not exist 𝑛𝑥 that is a subset of {U’}, and does not have an associated 

representation in {𝑟𝑏}. In other words, all elements of {U’} are a subset of 𝑟𝑏 such that 𝑏 = 1 → ∞. 

∀ nx ∈ {U
′} ∃ {rb(nx)} ∈ Rbfor b = 1 → ∞|3nx + 1 = ns. 2

b & nx , ns = 2k − 1 & k, b ∈ ℤ
+ 

⟹ q{U′} = ∑ q{rb}

b→∞

b=1

| for b ≅ 1 mod2, rb = 
rb−1 + 1

2
 &b ≅ 0 mod2, rb = 

rb−1 − 1

2
 &b ∈ ℤ+ 

Proof: let number of elements in any given set be represented by q{x} 

L1  
∀ nx ∈ {U

′} ∃ {rb(nx)} ∈ Rbfor b = 1 → ∞ 

L1.1  
q{U′} = total numberofelements in universal set {U′} 

q{ry} = total numberofelements in set {ry} 

Proof: By definition 

L1.2 Base Case 
q{r1} =

1

21
q{U′} 

Proof: By definition 2 

{evenry} = {rb} &{oddry} = {ry+1} 

q(ry+1) = q(oddry) = q(oddry+1) + q(evenry+1) 

Quantity of odd numbers are equal to quantity of even numbers  

q(oddry) = q(evenry) 

q(evenry) =
1

2
q(ry+1) 

q{rb=1} =
1

21
q{rb=0} =

1

21
q{U′} 

L1.3  
q{rb=2} =

1

22
q{U′} 

Proof: 
q{rb=1} = q{ry=2} + q{rb=2} = 2q{rb=2} 

q{rb=2} =
1

2
q{rb=1} =

1

22
q{U′} 

L1.4 Mathematical 
Induction 
Assumed case 

q{rb=x} =
1

2b=x
q{U′} | x ∈ ℤ+ 

Proof: Assumed for induction 

L1.5  
q{rb=(x+1)} =

1

2b=(x+1)
q{U′} | x ∈ ℤ+ 
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Proof: 
q{rb=x} = q{ry=(x+1)} + q{rb=(x+1)} = 2q{rb=(x+1)} 

q{rb=(x+1)} =
1

2
q{rb=x} =

1

2b=(x+1)
q{U′} 

L1.6  

q{U′} = ∑ q{rb}

b→∞

b=1

 

Proof: 

∑ q{rb}

b→∞

b=1

= q{rb=1} + q{rb=2} + q{rb=3} + q{rb=4} + q{rb=5}… 

Using L1.6 

∑ q{rb}

b→∞

b=1

= q{U′} (
1

21
+
1

22
+
1

23
+
1

24
+
1

25
…) = q{U′}(1)

= q{U′} 

L1.0  
∀ nx ∈ {U

′} ∃ {rb(nx)} ∈ Rbfor b = 1 → ∞ 

Proof: By L1.6 

∎ 

Theorem 1.0: for all values of nx, the rb has well defined values that depend upon the parity of b 

⇔  b = even, rb =
3nx − 2

b + 1

3. 2b
 ∧ ⇔  b = odd, rb =

3nx + 2
b + 1

3. 2b
 |3nx + 1 = ns. 2

b & nx , ns

= 2k − 1 & a, k, b ∈ ℤ+ 

Proof:  

T1.0 Condition 

⇔  b = even, rb =
3nx − 2

b + 1

3. 2b
 ∧ ⇔  b = odd, rb

=
3nx + 2

b + 1

3. 2b
 | 

3nx + 1 = ns. 2
b & nx , ns = 2k − 1 & k, b ∈ ℤ

+ 

T1.1 IF  
rb =

rb−1 ± 1

2
 

Proof: 
By definition D2 

T1.2.1 If b=even 
Base case b=2 r2 =

3nx − 2
2 + 1

3. 22
 

Proof: 

r2 =
r2−1 − 1

21
=

nx + 1
21

− 1

21
=
nx −

3
3

22
=
3nx − 3

3. 22
=
3nx − 2

2 + 1

3. 22
 

T1.2.2 𝑏 = 2𝑎| ∈ ℤ+ 

r2a =
3nx − 2

2𝑎 + 1

3. 22𝑎
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Proof: 
Assumed for induction 

T1.2.3 𝑏 = 2𝑎 + 2| 
𝑎 ∈ ℤ+ r2a+2 =

3nx − 2
2𝑎+2 + 1

3. 22𝑎+2
 

Proof: Using T1.2.2 

r2a+2 =
r2a+2−1 − 1

21
⟹ r2a+2 =

3nx − 2
2𝑎 + 1

3. 22𝑎
+ 1

21
− 1

21
  

r2a+2 =
3nx − 2

2𝑎+2 + 1

3. 22𝑎+2
(by algebra) 

T1.2.4 Then, 

rb =
3nx − 2

𝑏 + 1

3. 2𝑏
 

Proof: 
Using mathematical induction in T1.2.2 & T1.2.3 and substituting 2a 
with b 

T1.3.1 If, b=odd 
Base case b=1 r1 =

3nx + 2
1 + 1

3. 21
 

Proof: 

r1 =
nx + 1

21
=
nx +

3
3

21
=
nx +

21 + 1
3

21
=
3. nx + 2

1 + 1

3. 21
 

T1.3.2 𝑏 = 2𝑎 + 1| 
𝑎 ∈ ℤ+ r2a+1 =

r2a + 1

21
 

Proof: 
Using definition D2.1 

T1.3.3 Then, 

r2a+1 =
3nx + 2

2𝑎+1 + 1

3. 22𝑎+1
 

Proof: Using T1.2.2  

r2a+1 =
r2a + 1

21
⟹ r2a+1 =

3nx − 2
2𝑎 + 1

3. 22𝑎
+ 1

21
 

r2a+1 =
3nx + 2

2𝑎+1 + 1

3. 22𝑎+1
(by algebra) 

T1.0 THEN 

𝑖𝑓 b = even, rb =
3nx − 2

𝑏 + 1

3. 2𝑏
 ∧  𝑖𝑓 b = odd, rb =

3nx + 2
𝑏 + 1

3. 2𝑏
 

Proof: 
By T1.2.4 & T1.3.3 

∎ 

Upon calculating based on Theorem 1, for values in rb, we get;  

𝑟1 =
nx + 1

21
, 𝑟2 =

nx − 1

22
, 𝑟3 =

nx + 3

23
, 𝑟4 =

nx − 5

24
, 𝑟5 =

nx + 11

25
, 𝑟6 =

nx − 21

26
… 

Theorem 2.0: 
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∀(rb + rb−1) = ns | rb & rb−1 ∈ nx & 3𝑛𝑥 + 1 = 𝑛𝑠. 2
𝑏 & 𝑛𝑥 , 𝑛𝑠 = 2𝑘 − 1 & 𝑘, 𝑏 ∈ ℤ

+ 

We establish the operation "rb + rb−1" is identical to application of 3n+1 ( on odd) followed by n/2 

(on even) till we get odd 

Proof:  

T2.0  
∀(rb + rb−1) = ns |  

rb & rb−1 ∈ nx & 3𝑛𝑥 + 1 = 𝑛𝑠. 2
𝑏 & 𝑛𝑥  , 𝑛𝑠 = 2𝑘 − 1 & 𝑘, 𝑏 ∈ ℤ

+ 

T2.1 IF 
∀(rb + rb−1) = ns  ⟹ ∀(rbeven + rb−1) = ns  ∧ ∀(rbodd + rb−1) = ns 

Proof: Since, parity of b seems to play a role, we put in the effort to study each case 
separately. 

T2.2.1 If. Case 1: 
b=even=2j 
| 𝑗 ∈ ℤ+ 

r2j =
3nx − 2

2𝑗 + 1

3. 22𝑗
 & 𝑟2𝑘−1 =

3𝑛𝑥 + 2
2𝑗−1 + 1

3. 22𝑗−1
 

Proof: Using Theorem 1 

T2.2.2  
r2j + r2j−1 =

(3𝑛𝑥 + 1)

22𝑗
 

Proof: 
Using Algebra 

T2.2.3 Then 
∀(rbeven + rb−1) = ns 

Proof: 
Substitute 2j with beven & 2j-1 with b-1 in T2.2.2 and equate with D0.2 

rbeven + rb−1 = ns =
(3𝑛𝑥 + 1)

2𝑏
 

T2.3.1 If, Case 2: 
b=odd=2j+
1| 𝑗 ∈ ℤ+ 

𝑟𝑏 =
3𝑛𝑥 + 2

2j+1 + 1

3. 22j+1
& 𝑟2j+1−1 =

3𝑛𝑥 − 2
2j+1−1 + 1

3. 22j+1−1
 

Proof: 
Using Theorem 1 

T2.3.2  
𝑟2j+1 + 𝑟2j+1−1 =

(3𝑛𝑥 + 1)

22j+1
 

Proof: Using Algebra 

T2.3.3 Then,  
∀(rbodd + rb−1) = ns 

Proof: 
Substitute 2j+1 with bodd & 2j+1-1 with b-1 in T2.3.2 and equate with D0.2 

rbodd + rb−1 = ns =
(3𝑛𝑥 + 1)

2𝑏
 

T2.0 THEN, 
∀(rb + rb−1) = ns 

Proof: 
Using T2.2.3 & T2.3.3 

∎ 
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Let g(nx) = rb(nx) + rb−1(nx) 

Then, (rb + rb−1) = ns ⟹ g(nx) = f(nx) 

Thus, we create an identical function to the collatz transformations 

 

Theorem 2 can also be re-written in an interesting form: sum of two continued fractions (using 

definition rb and rb−1) of for all the possible positive integer values of b; 

(rb + rb−1) = ns ⇒ lim
𝑏=1→∞

{
 
 

 
 
𝑛𝑥 + 1
2

− 1

2
+ 1

2
− 1

2
+ 1

2
…

⏟                
𝑏 𝑡𝑖𝑚𝑒𝑠

+

{
 
 

 
 
𝑛𝑥 + 1
2

− 1

2 + 1

2
− 1

2
…

⏟              
𝑏−1 𝑡𝑖𝑚𝑒𝑠

=
3𝑛𝑥 + 1

2𝑏
 

The continued fraction expression is pretty simple to prove. One may reach the same conclusion 

without going through Theorem1 

Now, we explore if there exists some element 𝑛𝑥, which under defined collatz transformations 

becomes infinity. 

nx ≡ nx| ns = ∞ 

Corollary 1.0: We identify the condition when any given element after undergoing transformation 

will definitely increase.  

if b = 1, ∀ns > ∀nx ∧ if b > 1, ∀ns < ∀nx| 3nx + 1 = ns. 2
b & nx , ns = 2k − 1 & k, b ∈ ℤ

+ 

increase/decrease: condition for any transformation = {
for b = 1, ∀ns > ∀n𝑥
for b > 1, ∀ns < ∀n𝑥

|ns > 1  

Proof:  

C1.0 Condition 
if b = 1, ∀ns > ∀nx ∧ if b > 1, ∀ns < ∀nx|3nx + 1 = ns. 2

b & nx , ns
= 2k − 1 & k, b ∈ ℤ+ 

C1.1 IF 
rb + rb−1 = ns 

Proof: 
By Theorem 2 

C1.2.1 If Case 1: 
𝑏 = 1 

r1 + r0 = ns 

Proof: 
By definition D1:  r0 = nx 

C1.2.2 Then 
ns > nx 

Proof: 
r1 + r0 =

nx + 1

2
+ nx > nx ⟹ ns > nx 

C1.3.1 If Case 2:  
𝑏 = 2 

ns = r2 + r1 

Proof: By Theorem 2 
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C1.3.2  
ns =

3nx + 1

4
 

Proof: 
ns =

nx − 1

22
+
nx + 1

2
=
3nx + 1

4
 

C1.3.2.1 If nx = 1 
Then 

ns = nx 

Proof: 
3nx + 1 = ns. 2

2 𝑖𝑓 nx = 1 𝑡ℎ𝑒𝑛 ns = 1 

C1.3.2.2 If nx > 1 
Then 

nx > ns 

Proof: 

3nx + 1 = ns. 2
2 & nx = 1 + n

′ ⟹ ns =
3 + 1 + 3𝑛′

4
= 1 +

3𝑛′

4
 

𝑛′ = 2𝑘′ & 𝑘′ ∈ ℤ+ 

C1.4.1 If Case 3: 
𝑏 ≥ 3 

3nx + 1 = ns. 2
≥3 

Proof: 
By definition D0.2: because b ≥ 3 

C1.4.2 Then 
nx > ns 

Proof: 
if ns > nx, then ns = nx + j | j ∈ ℤ

+ 

3nx + 1 = ns. 2
≥3⟹ 3nx + 1 = (nx + j). 2

≥3 

1 − j. 2≥3 = nx. (2
≥3 − 3) 

for j ≥ 1, left hand side is negative, implying nx is negative, implying 
nx ∉ ℤ

+. This is false.  

C1.5  
ns < nx with b > 2 

Proof: 
By C1.3.2.2 & C1.4.2 

C1.0 THEN 
if b = 1, ∀ns > ∀nx ∧ ifb > 1, ∀ns < ∀nx 

Proof: 
By C1.2.2 & C1.5 

∎ 

We consider applying transformation on some number multiple times such that it will definitely 

increase in all the applied transformations. Thus, the sub condition as per Corollary 1; ns is always 

greater than nx during all of these multiple transformations needs to be probed.  

Corollary 2.0: 

r1(s) =
3

2
r1(x) | r1(x) is rb for nx , r1(s) is rb for ns & b = 1 , 3nx + 1 = ns. 2

b & nx , ns

= 2k − 1 & k ∈ ℤ+ 
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𝑟1(𝑠) is the value of 𝑟𝑏 for 𝑛𝑠. Similarly, 𝑟1(𝑥) is the value of 𝑟𝑏 for 𝑛𝑥 When we repeatedly apply 

transformation: we always label the element that we apply transformation upon as 𝑛𝑥, the 

transformed element is always labelled as 𝑛𝑠 

Example: Say, 𝑛𝑥 = 9 then 𝑛𝑠 = 7, now apply transformation on 7, so 7 becomes 𝑛𝑥 
𝑛𝑥 = 7,  rb(7) = 41 then 𝑛𝑠 = 11 rb(11) = 61, again continue applying transformation upon 11, so 
11 becomes 𝑛𝑥 
𝑛𝑥 = 11, rb(11) = 61 then 𝑛𝑠 = 17, rb(11) = 42... and so on.  
  

Proof:  

C2.0 Condition 
r1(s) =

3

2
r1(x)| r1(x) is rb for nx , r1(s) is rb for ns & b = 1 , 3nx + 1

= ns. 2
b & nx , ns = 2k − 1 & k ∈ ℤ

+ 

C2.1 IF 
rb for nx = rb(x) & rb for ns = rb(s)| 3nx + 1 = ns. 2

b 

Proof: 
By definition 

C2.2  
nx = 2r1(x) − 1 & ns = 2r1(s) − 1 

Proof: By algebra on definition of 𝑟1 

𝑟1(𝑥) =
𝑛𝑥 + 1

2
& 𝑟1(𝑠) =

𝑛𝑠 + 1

2
 

C2.3  
r1(x) = ns − nx 

Proof: 
r1 + r0 = ns ⇒ r1(x) + nx = ns 

C2.4  
r1(x) = (2r1(s) − 1) − (2r1(x) − 1) 

Proof: 
Using substitution of 𝑛𝑠 & nx from C2.2  in C2.3 

C2.0 THEN 
r1(s) =

3

2
r1(x) 

Proof: 
Using algebra on C2.4 

∎ 

Corollary 1 implies for n greater than 1; b greater than 1 is the only condition for increase during 

transformations. Corollary 2 implies for n greater than 1, an element can grow finite number of 

times, as any number (3𝑟1(x)) that is divided by 2 will eventually result; an odd number. Thus, after 

some finite number of transformations, the element n will definitely decrease because b happens to 

be greater than 1. We do not conclude that n reaches a value less than itself, we only conclude that 

for all there does not exist n that can grow continuously infinite number of times.   

Thus, the transformational process, n continuously grows and transforms to infinity; that is 

described by the following equation 
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nu1 ≡ nu2 ≡ nu3 ≡ nu4 ≡ nu5… ≡ nu∞ | nu1 < nu2 < nu3 < nu4 < nu5 < ⋯ < nu∞ where nu∞

= ∞ & rb = r1 ∀ nu1, nu2, nu3, nu4, nu5… 

is false and invalid. One concludes that continuous increase to infinity is not possible.  

Notation:  

<≠> is used to describe relationship between 2 elements; one element may be greater than or 

smaller than the other element, but both the elements are not equal.  

Note: It would seem improper to use "<≠> " notation describing any series. However, It is okay to 

use such notation in the context of our analysis; we don't know if when they are larger or smaller to 

adjacent element, all we know is none of the elements in the series can be equal to any other 

element. We consider every element during the transformational process to be not equal to any 

other element, as that would imply, the elements loops, thus n cannot transform to infinity.  

Consider the transformational process described as:  

nu1 ≡ nu2 ≡ nu3 ≡ nu4 ≡ nu5… ≡ nu∞| nu1 <≠> nu2 <≠> nu3 <≠> nu4 <≠> nu5… 

The transformation from 𝑛𝑢1 𝑡𝑜 𝑛𝑢∞  with discontinuous growth may be described by the above 

equation. So, it is still possible for some number to grow to infinity at a relatively slower rate.  

Hence, the question of discontinuous growth to infinity remains valid and thus open. 

Proposition 1.0:  

nx ≢ ∞| 3nx + 1 = ns. 2
b & nx , ns = 2k − 1 & k, b ∈ ℤ

+ 

We prove proposition by contradiction.  

Proof:  

P1.0 Condition 
n ≢ ∞| 3nx + 1 = ns. 2

b & nx , ns = 2k + 1 & k, b ∈ ℤ
+ 

P1.1 IF 
ns ≡ ∞| nx , ns = 2k + 1 & k, b ∈ ℤ

+ 

Proof: 
Assumed to establish contradiction 

P1.2  
3rb ± 1 = ns 

Proof: 
By applying definition 2 on Theorem 2 

rb + rb−1 = 3rb ± 1 

P1.3  
rb ∉ {𝑈} 

Proof: By P1.1 & P1.2 

3rb ± 1 = ∞⟹ rb =
∞∓ 1

3
 

P1.4  
∀ rb ∈ {𝑈} 

Proof: 
By Definition 2 
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∀ rb ∈ ℤ
+& ℤ+ ∈ {𝑈} ⟹  rb ∈ {𝑈} 

P1.0 THEN 
n ≢ ∞ 

Proof: 
By contradiction in P1.3 & P1.4 

∎ 

Thus, no number can transform to infinity.  

Corollary 3.0 

ns ≇ 0 mod3 | 3nx + 1 = ns2
b, nx , ns = 2k − 1 & k, b ∈ ℤ

+ 

Despite the argument being trivial in nature, we will still prove it as it is instrumental in our study of 

the conjecture.   

Proof: 

C3.0  
ns ≇ 0 mod3 | 3nx + 1 = ns2

b, nx , ns = 2k − 1 & k, b ∈ ℤ
+ 

C3.1 IF 
3𝑛𝑥 + 1 = 𝑛𝑠2

𝑏 , 𝑛𝑥  , 𝑛𝑠 = 2𝑘 − 1 & 𝑘, 𝑏 ∈ ℤ
+ 

Proof: By definition 

C3.2  
ns ≅ 0 mod3 ⟹ ns = 3j | j ∈ ℤ

+ 

Proof: Assumed to establish contradiction 

C3.3  
nx ∉ ℤ

+ 

Proof: 

nx =
3j2b − 1

3
= j2b −

1

3
⟹ nx ∉ ℤ

+ 

C3.0 Then 
ns ≇ 0 mod3 

Proof: By contradiction in C3.1 & C3.3 

∎ 

Corollary 4.0 

if n1 ≅ 1 mod3 & n2 ≅ 1 mod3, then n3 ≅ 1 mod3 ∧ 

if n1 ≅ 2 mod3 & n2 ≅ 2 mod3, then n3 ≅ 1 mod3 ∧  

if n1 ≅ 1 mod3 & n2 ≅ 2 mod3, then n3 ≅ 2 mod3| n1. n2 = n3 & n1, n2, n3, k1, k2, k3, k ∈ ℤ  

The above arguments may be written in multiplicative format; 

2 mod3 ∗ 2 mod3 ≅ 1 mod3 ∧ 1 mod3 ∗ 1 mod3 ≅ 1 mod3 ∧ 1 mod3 ∗ 2 mod3 ≅ 2 mod3  

Proof: 

C4  
⇔ n1 ≅ 1 mod3 & n2 ≅ 1 mod3, n3 ≅ 1 mod3 ∧ 

⇔ n1 ≅ 2 mod3 & n2 ≅ 2 mod3, n3 ≅ 1 mod3 ∧  

⇔ n1 ≅ 1 mod3 & n2 ≅ 2 mod3, n3 ≅ 2 mod3 
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C4.1.1 If 
n1 ≅ 1 mod3 = 3k1 + 1 & n2 ≅ 1 mod3 = 3k2 + 1, n3 ≅ 1 mod3

= 3k3 + 1 

Proof: By definition 

C4.1.2 Then 
n1 ∗ n2 = n3 ≅ 1 mod3 

Proof: 
n1 ∗ n2 = (3k1 + 1 )(3k2 + 1 ) = 3.3k1k2 + 3k2 + 3k1 + 1

= 3(3k1k2 + k2 + 1k1) + 1 = 3k + 2 ≅ 1 mod3 

C4.2.1 If 
n1 ≅ 2 mod3 & n2 ≅ 2 mod3, n3 ≅ 1 mod3 

Proof: By definition 

C4.2.2 Then 
n1 ∗ n2 = n3 ≅ 1 mod3 

Proof: 
n1 ∗ n2 = (3k1 + 2 )(3k2 + 2 ) = 3.3k1k2 + 2.3k2 + 2.3k1 + 4

= 3(3k1k2 + 2k2 + 2k1 + 1) + 1 = 3k + 1 ≅ 1 mod3 

C4.3.1 If 
n1 ≅ 1 mod3 = 3k1 + 1, n2 ≅ 1 mod3 = 3k2 + 2, n3 ≅ 2 mod3

= 3k3 + 2 

Proof: By definition 

C4.3.2 Then 
n1 ∗ n2 = n3 ≅ 2 mod3 

Proof: 
n1 ∗ n2 = (3k1 + 1)(3k2 + 2) = 3.3k1k2 + 3k2 + 2.3k1 + 2

= 3(3k1k2 + k2 + 2k1) + 2 = 3k + 2 ≅ 2 mod3 

C4.0 THEN 
⇔ n1 ≅ 1 mod3 & n2 ≅ 1 mod3, n3 ≅ 1 mod3 ∧ 

⇔ n1 ≅ 2 mod3 & n2 ≅ 2 mod3, n3 ≅ 1 mod3 ∧  

⇔ n1 ≅ 1 mod3 & n2 ≅ 2 mod3, n3 ≅ 2 mod3 

Proof: By C4.1.2, C4.2.2, C4.3.2 

∎ 

Theorem 3.0: There is a well-defined relationship between  𝑛𝑠 𝑚𝑜𝑑𝑢𝑙𝑜 3 & parity of b in 2𝑏.One 

can determine 𝑛𝑠 𝑚𝑜𝑑𝑢𝑙𝑜 3 by the parity of b and vice versa. The relationship is independent of 𝑛𝑥. 

if ns ≅ 2 mod3, then b = odd ∧  if ns ≅ 1 mod3, then b = even, | 3nx + 1 = ns. 2
b & nx , ns

= 2k − 1  & j, k, b ∈ ℤ+ 

Proof: 

T3.0  ⇔ ns ≅ 2 mod3, b = odd ∧ ns ≅ 1 mod3, b = even, | 3nx + 1

= ns. 2
b & nx , ns = 2k + 1 & k, b ∈ ℤ

+ 

T3.1 IF T3.0 ⇒                          
 ⊣ b = odd ⇒ b = even , ns ≅ 2 mod3 is false 

 ⊣ b = even ⇒ b = odd , ns ≅ 1 mod3 is false 

Proof: 
𝐼𝑓 𝑃, 𝑡ℎ𝑒𝑛 𝑄 ⇒ ⊣ 𝑄, ⊣ 𝑃 

Modus Tollens 

T3.2.1 If. Case 1: 
b=even & 

3nx + 1 = ns ∗ 2
beven|  
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𝑛𝑠 = 3𝑗 + 2 ns ≅ 2 mod3 = 3j + 2  

Proof: 
By definition of ns in terms of 3n+1 

T3.2.2  
3nx + 1 = (3j + 2). 2

beven 

Proof: 
By definition of ns in terms of ns mod3 

T3.2.3  
3nx + 1 = 3j. 2

beven + 2bodd 

Proof: 
Since 2. 2bodd = 2beven 

T3.2.4 Then  ⊣ b = odd ⇒ b = even , ⊣ ns ≅ 2 mod3 

Thus,  

b = odd, ns ≅ 2 mod3 

Proof: Using Corollary 4.0 & T3.2.3⇒ 

3nx + 1 = 3j. 2
beven + 2bodd ⇒ 

1 mod3 ≅ 0 mod3 ∗ 1 mod3 + 2 mod3 

1 mod3 ≅ 2 mod3 is ⇐⇒, thus false 

T3.3.1 If. Case 2: 
b=odd &  
 𝑛𝑠 = 3𝑗 + 1 

3nx + 1 = ns ∗ 2
bodd|  

ns ≅ 1 mod3 = 3j + 1  

Proof: 
By definition of ns in terms of 3n+1 

T3.3.2  
3nx + 1 = (3j + 1). 2

bodd 

Proof: 
By definition of ns in terms of ns mod3 

T3.3.3  
3nx + 1 = 3j. 2

bodd + 2bodd 

Proof: 
Since 1. 2bodd = 2bodd 

T3.3.4 Then  ⊣ b = odd ⇒ b = even , ⊣ ns ≅ 1 mod3 

Thus,  

b = even, ns ≅ 1 mod3 

Proof: Using Corollary 4.0 & T3.3.3⇒ 

3nx + 1 = 3j. 2
bodd + 2bodd ⇒ 

1 mod3 ≅ 0 mod3 ∗ 2 mod3 + 2 mod3 

1 mod3 ≅ 2 mod3 is ⇐⇒, thus false 

T3.0 THEN ⊣ b = odd , ⊣ ns ≅ 2 mod3 ∧ ⊣ b = even , ⊣ ns ≅ 1 mod3 

b = even, ns ≅ 1 mod3 ∧ b = odd, ns ≅ 2 mod3 

Proof By T3.2.4 & T3.3.4 

∎ 
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Definition 3.0  {𝑛𝑥}: The set 𝑛𝑥, is a set that contains all the possible values of 𝑛𝑥 that would 

satisfy definition 1.0;  

 nx ≡ ns:  3nx + 1 = ns. 2
b⟹ nx =

ns. 2
b − 1

3
 for all valid values of b 

The set {𝑛𝑥} is infinitely large with values represented by; 

ns. 2
β − 1

3
,
ns. 2

β+2 − 1

3
 ,
ns. 2

β+4 − 1

3
,
ns. 2

β+6 − 1

3
,
ns. 2

β+8 − 1

3
…
ns. 2

β+2z − 1

3
 | 

 if ns ≅ 2 mod3, β = 1 ∧ if ns ≅ 1 mod3, β = 2 & z ∈ ℤ
+ 

All the above give the same result 𝑛𝑠 upon application of n/2.   

Note: We have only even numbers and not odd numbers being added to the exponent of 2𝛽 in the 

above set representation because Theorem 3 dictates; the parity of b has to be the same, if we 

happen to add odd number to the exponent of 2𝛽, then the parity of b changes, thus we would not 

get any valid solution for 𝑛𝑥.  

Theorem 4.0: All elements of {𝑛𝑥} can be expressed in the form of its adjacent element.  

nx1+(z+1) = 4nx1+z + 1|  

{nx1, nx1+1 , nx1+2, nx1+3, nx1+4, nx1+5, n6x1+…nx1+z, nx1+(z+1)} ∈  {nx} & 

   3nx + 1 = ns. 2
b & nx1, nx1+1 , nx1+2, nx1+3… , nx , ns = 2k − 1 & k, b ∈ ℤ

+ 

Note: The notation 𝑛𝑥1+1 instead of 𝑛𝑥2, would seem a bit strange.  

There is a method to the madness;  

nx ≡ ns ⟹ nx =
ns.2

b−1

3
 with b =1 for ns ≅ 2 mod3 or b=2 for ns ≅ 1 mod3  

𝑛𝑥1: We refer this as base case. It is the first/smallest solution such that  

nx1 =
ns. 2

1 − 1

3
| ns ≅ 2 mod3 ∨ nx1 =

ns. 2
2 − 1

3
| ns ≅ 1 mod3 

Since, we write exponential of 2 in the form 2β+2z(z ∈ ℤ+)   

nx1+1, nx1+2, nx1+3… represent: 

nx1+1 =
ns. 2

1+2 − 1

3
| ns ≅ 2 mod3 ∨ nx1+1 =

ns. 2
2+2 − 1

3
| ns ≅ 1 mod3 

nx1+2 =
ns. 2

1+4 − 1

3
| ns ≅ 2 mod3 ∨ nx1+2 =

ns. 2
2+4 − 1

3
| ns ≅ 1 mod3 

nx1+3 =
ns. 2

1+6 − 1

3
| ns ≅ 2 mod3 ∨ nx1+3 =

ns. 2
2+6 − 1

3
| ns ≅ 1 mod3 

The notation makes sense as the z in the expression2b+2z is referred to as nx1+z. it creates a simple 

direct link to the additional component of exponent (2z) in expression; 2b+2z. The notation also 

helps identifying parity of nx modulo3 which will be evident as we study further.  
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Proof: 

T4.0  nx1+(z+1) = 4nx1+z + 1 

T4.1 IF 
{ns. 2

β, ns. 2
β+2, ns. 2

β+4, ns. 2
β+6, ns. 2

β+8, ns. 2
β+10, … } ≡ ns   

Proof: The said set transforms to ns upon application of n/2. Parity of b has been 
maintained same, complying with theorem 3.  

T4.2.1  

{nx} =

[
 
 
  

ns. 2
β − 1

3
,

ns. 2
β+2 − 1

3
,

ns. 2
β+4 − 1

3
,

  
ns. 2

β+6 − 1

3
,

ns. 2
β+8 − 1

3
,

ns. 2
β+10 − 1

3
, …]

 
 
 

 

Proof: By definition 

T4.2.2  Let [nx] =
[nx1, nx1+1, nx1+2, nx1+3, nx1+4, nx1+5, nx1+6, nx1+7…nx1+8…] 

Proof: By definition  

T4.3 Base case nx1+1 = 4nx1 + 1 

Proof: By substitution of ns. 2
β+2 

nx1 =
ns. 2

β − 1

3
⇒ ns. 2

β+2 = 22(3nx1 + 1) 

nx1+1 =
ns. 2

β+2 − 1

3
=
22(3nx1 + 1) − 1

3
 

By algebra, we get; 

nx1+1 = 4nx1 + 1 

T4.4 Mathematic
al Induction 

nx1+z = 4nx1+(z−1) + 1 

ns. 2
β+2.(z−1) − 1

3
, nx1+(z+1) =

ns. 2
β+2z − 1

3
 

Proof: Assumed for induction 

T4.0 THEN,  nx1+(z+1) = 4nx1+z + 1 

Proof: 
nx1+(z+1) =

ns. 2
β+2(z+1) − 1

3
 

nx1+(z+1) =
4. ns. 2

β+2(z) − 1

3
 

Using 3nx1+z + 1 = ns. 2
β+2z 

nx1+(z+1) =
4(3nx1+z + 1) − 1

3
 

∎ 

Corollary 5.0: Congruence modulo 3 is well ordered irrespective of the first solution, 0 mod3 

is followed by 1 mod3 is followed by 2 mod3 is followed by 0 mod3 is followed by 1 mod3 and so 

on... 
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 (if nx1 ≅ 0 mod3 then nx1+1 ≅ 1 mod3, nx1+2 ≅ 2 mod3, nx1+3 ≅ 0 mod3,… ) ∧ 

(if nx1 ≅ 1 mod3, then nx1+1 ≅ 2 mod3, nx1+2 ≅ 0 mod3,… ) ∧ 

(if nx1 ≅ 2 mod3, nx1+1 ≅ 0 mod3, nx1+2 ≅ 1 mod3,… )| 

{nx1, nx1+1, nx1+2, nx1+3, nx1+4, nx1+5, nx1+6…} ∈  {nx} &  

3nx + 1 = ns. 2
b & nx , ns = 2k − 1  & k, b ∈ ℤ

+ 

Proof: 

C5.0  (if nx1 ≅ 0 mod3,   nx1+1 ≅ 1 mod3, nx1+2 ≅ 2 mod3, nx1+3
≅ 0 mod3,… ) 

∧ (if nx1 ≅ 1 mod3, nx1+1 ≅ 2 mod3, nx1+2 ≅ 0 mod3,… ) 

∧ (if nx1 ≅ 2 mod3, nx1+1 ≅ 0 mod3, nx1+2 ≅ 1 mod3,… ) 

C5.1 IF {nx1, nx1+1, nx1+2, nx1+3, nx1+4, nx1+5, nx1+6…} ∈  {nx} 

Proof: By definition 

C5.2.1 Case1: If nx1 ≅ 0 mod3 ⇒ nx1 = 3m|m ∈ ℤ
+ 

Proof: By definition 

C5.2.2  nx1+1 ≅ 1 mod3 

Proof: By Theorem 4 

nx1+1 = 4nx1 + 1 = 4.3m + 1 ≅ 1 mod3 | m ∈ ℤ+ 

C5.2.3  nx1+2 ≅ 2 mod3 

Proof: By Theorem 4 

nx1+2 = 4nx1+1 + 1 = 4. (4.3m + 1) + 1 = 16.3m + 3 + 2
≅ 2 mod3 

C5.2.4  nx1+3 ≅ 0 mod3 

Proof: By Theorem 4 

nx1+3 = 4nx1+2 + 1 = 4. (16.3m + 3 + 2) + 1
= 64.3m + 12 + 8 + 1 ≅ 0 mod3 

C5.2.5  nx1+4 ≅ 1 mod3 

Proof: By C5.2.2 

C5.2.6 Then nx1+5 ≅ 2 mod3,   nx1+6 ≅ 1 mod3,   nx1+7 ≅ 0 mod3,   nx1+8
≅ 1 mod3,   nx1+9 ≅ 2 mod3, nx1+10 ≅ 0 mod3… 

Proof: By  C5.2.3, C5.2.4,  C5.2.2, C5.2.3,  C5.2.4 

C5.2.7  nx1+1 ≅ 1 mod3, nx1+2 ≅ 2 mod3, nx1+3 ≅ 0 mod3,   

nx1+4 ≅ 1 mod3, nx1+5 ≅ 2 mod3, nx1+6 ≅ 1 mod3, nx1+7
≅ 0 mod3,… 

Proof: By C5.2.2, C5.2.3, C5.2.4 

C5.3.1 Case 2: If  Let nx1 ≅ 1 mod3 ⇒ nx1 = 3m+ 1|m ∈ ℤ+ 



18 
 

Proof: By definition 

C5.3.2 Then nx1+1 ≅ 2 mod3, nx1+2 ≅ 0 mod3, nx1+3 ≅ 1 mod3, nx1+4
≅ 2 mod3,… 

Proof: By C5.2.3, C5.2.4, C5.2.2 

C5.4.1 Case3: If Let nx1 ≅ 2 mod3 ⇒ nx1 = 3m+ 2|m ∈ ℤ+ 

Proof: By definition 

C5.4.2 Then,  nx1+1 ≅ 0 mod3, nx1+2 ≅ 1 mod3, nx1+3 ≅ 2 mod3, nx1+4
≅ 0 mod3,… 

Proof: By C5.2.4, C5.2.2, C5.2.3 

C5.0 THEN (if nx1 ≅ 0 mod3, nx1+1 ≅ 1 mod3, nx1+2 ≅ 2 mod3… ) ∧
(if nx1 ≅ 1 mod3, nx1+1 ≅ 2 mod3, nx1+2 ≅ 0 mod3 … ) ∧ (if nx1 ≅
2 mod3, nx1+1 ≅ 0 mod3, nx1+2 ≅ 1 mod3,… ) 

Proof: By C5.2.7,  C5.3.2, C5.4.2 

∎ 

Classify elements of {U’} by using sets 𝑛𝑠 modulo9 and 𝑛𝑠 modulo27 definition.  

Grouped by 𝑛𝑠 mod9  grouped by 𝑛𝑠 mod27  grouped by 𝑛𝑥 mod9 

𝒏𝒔 
mod 9 

𝒏𝒔 mod 
27 

𝒏𝒙 
mod 9 

 𝒏𝒔 mod 
27 

𝒏𝒔 
mod 9 

𝒏𝒙 
mod 9  

𝒏𝒔 
mod 9 

𝒏𝒔 mod 
27 

𝒏𝒙 
mod 9 

1 mod 
9 

19 mod 
27 

7 mod9  1 mod 
27 

1 mod 
9 

1 mod 
9  

5 mod9 
23 

mod27 
0 mod3 

1 mod 
9 

10 mod 
27 

4 mod9  2 mod 
27 

2 mod9 1 mod9 
 

5 mod9 
14 

mod27 
0 mod3 

1 mod 
9 

1 mod 
27 

1 mod9  4 mod 
27 

4 mod9 5 mod9 
 

5 mod9 5 mod27 0 mod3 

2 mod9 
11 

mod27 
7 mod9  5 mod 

27 
5 mod9 0 mod3 

 
7 mod9 

25 mod 
27 

0 mod3 

2 mod9 2 mod27 1 mod9  7 mod 
27 

7 mod9 0 mod3 
 

7 mod9 
16 mod 

27 
0 mod3 

2 mod9 
20 

mod27 
4 mod9  8 mod 

27 
8 mod9 5 mod9 

 
7 mod9 

7 mod 
27 

0 mod3 

4 mod9 
13 

mod27 
8 mod9  10 mod 

27 
1 mod 

9 
4 mod9 

 
2 mod9 2 mod27 1 mod9 

4 mod9 4 mod27 5 mod9  11 mod 
27 

2 mod9 7 mod9 
 

1 mod 
9 

1 mod 
27 

1 mod9 

4 mod9 
22 

mod27 
2 mod9  13 mod 

27 
4 mod9 8 mod9 

 
4 mod9 

22 
mod27 

2 mod9 

5 mod9 
23 

mod27 
0 mod3   

14 mod 
27 

5 mod9 0 mod3 
 

8 mod9 
17 

mod27 
2 mod9 

5 mod9 
14 

mod27 
0 mod3   

16 mod 
27 

7 mod9 0 mod3 
 

2 mod9 
20 

mod27 
4 mod9 

5 mod9 5 mod27 0 mod3  17 mod 
27 

8 mod9 2 mod9 
 

1 mod 
9 

10 mod 
27 

4 mod9 

7 mod9 
25 mod 

27 
0 mod3  19 mod 

27 
1 mod 

9 
7 mod9 

 
4 mod9 4 mod27 5 mod9 
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7 mod9 
16 mod 

27 
0 mod3  20 mod 

27 
2 mod9 4 mod9 

 
8 mod9 8 mod27 5 mod9 

7 mod9 
7 mod 

27 
0 mod3  22 mod 

27 
4 mod9 2 mod9 

 
2 mod9 

11 
mod27 

7 mod9 

8 mod9 
17 

mod27 
2 mod9  23 mod 

27 
5 mod9 0 mod3 

 

1 mod 
9 

19 mod 
27 

7 mod9 

8 mod9 8 mod27 5 mod9  25 mod 
27 

7 mod9 0 mod3 
 

4 mod9 
13 

mod27 
8 mod9 

8 mod9 
26 

mod27 
8 mod9  26 mod 

27 
8 mod9 8 mod9 

 
8 mod9 

26 
mod27 

8 mod9 

Dist1             Dist 2       Dist3 

Table 2.0: nx 𝑚𝑜𝑑 9 𝑓𝑜𝑟 ns 𝑚𝑜𝑑9 & ns 𝑚𝑜𝑑27 

Theorem 5.0 

All elements in nx are well ordered and for all n𝑠 and nx modulo 9 is well distributed. 

𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 nx 𝑚𝑜𝑑9 ∀ ns 𝑚𝑜𝑑9 𝑖𝑠 𝑤𝑒𝑙𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 |  

3nx + 1 = ns. 2
b & ns ≠ nx & nx , ns = 2k − 1  & j, j

′, k, b ∈ ℤ+,  

q( ns  ≅ 1 𝑚𝑜𝑑9)  = q( ns  ≅ 2 𝑚𝑜𝑑9)  = q( ns  ≅ 4 𝑚𝑜𝑑9)  = q( ns  ≅ 5 𝑚𝑜𝑑9)  = q( ns  
≅ 7 𝑚𝑜𝑑9)  = q( ns  ≅ 8 𝑚𝑜𝑑9) 𝑓𝑜𝑟 {𝑈′}, ns ≇ 0 mod3 

Proof: 

T5.  All elements in nx are well ordered and for all n𝑠, nx modulo 9 is 

well distributed. 

T5.1 IF 
q( ns  ≅ 1 𝑚𝑜𝑑9)  = q( ns  ≅ 2 𝑚𝑜𝑑9)  = q( ns  ≅ 4 𝑚𝑜𝑑9)  

= q( ns  ≅ 5 𝑚𝑜𝑑9)  = q( ns  ≅ 7 𝑚𝑜𝑑9)  
= q( ns  ≅ 8 𝑚𝑜𝑑9) 𝑓𝑜𝑟 {𝑈′} 

Proof: 
Based upon the fact that there are always and exactly 3 sets of odd 

elements modulo 9, between 9(m) and 9(m+1) depending if m is 

odd or even.  

If m is odd, then odd elements that lie in between 9m & 9(m+1) are 

congruent to 2 mod9, 4 mod9 and 8 mod9 

If m is even, then odd elements that lie in between 9m & 9(m+1) 

are congruent to 1 mod9, 5 mod9 and 7 mod9 

T5.2.1  
Table 2.0 

Proof: 
Substitute 1 mod9 with 1+9j, 2 mod9 with 2+9j, 4 mod9 with 4+9j, 5 

mod9 with 5+9j, 7 mod9 with 7+9j, 8 mod9 with 8+9j; Find  nx1with 

β = 1 or 2 as per n𝑠 modulo 3 following theorem 3 |  1 + 9k, 2 +

9j, 4 + 9j, 5 + 9j, 7 + 9j, 8 + 9j = 2k − 1, k, 𝑗 ∈ ℤ+ 
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T5.2.2  
𝑞(nx ≅ 1𝑚𝑜𝑑9) = 𝑞(nx ≅ 2𝑚𝑜𝑑9) = 𝑞(nx ≅ 4𝑚𝑜𝑑9)

= 𝑞(nx ≅ 5𝑚𝑜𝑑9) = 𝑞(nx ≅ 7𝑚𝑜𝑑9)

= 𝑞(nx ≅ 8𝑚𝑜𝑑9) =
1

9
𝑞({𝑈′} − {1}) =

1

3
𝑞(n𝑥

≅ 0 𝑚𝑜𝑑3) =
1

3
𝑞(n𝑥 ≅ 1 𝑚𝑜𝑑3) =

1

3
𝑞(n𝑥

≅ 2 𝑚𝑜𝑑3) 

Proof: 
by table 2.0 

T5.2.3  
𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 nx 𝑚𝑜𝑑9 ∀ ns 𝑚𝑜𝑑9 𝑖𝑠 𝑤𝑒𝑙𝑙 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑 

Proof: 
By T5.2.2 

T5.0 THEN, 
All elements in nx are well ordered and for all n𝑠 𝑎𝑛𝑑 nx modulo 9 

is well distributed. 

Proof: 
By C5 and T5.2.3 

∎ 

Theorem 5 is based upon modular analysis implying the cyclic nature of transformation from 

{τt} 𝑓𝑟𝑜𝑚 {τt+1}. Thus, one may extend the understanding to whole universal set {U’} and all the 

reverse transformations elements can go through.  

Notation: 

 ≡≡ double equivalence implies more than 1 transformation.ns ≡≡ ns implies that some 

number ns transforms to ns with more than 1 transformation; nx ≠ ns 

Proposition 2: some number loops to itself 

Proposition 2.a: the loop happens with single transformation such that 𝑛𝑠 ≡ 𝑛𝑠 

Proposition 2.b: the loop happens with more than one transformation such that 𝑛𝑠 ≡≡ 𝑛𝑠 such that 

𝑛𝑥 ≠ 𝑛𝑠 

Proposition 2.a 𝒏𝒔 ≡ 𝒏𝒔: Case for single transformation loop has trivial solution 1 ≡ 1 with no other 

possible solution. nx = ns 

3nx + 1 = ns2
b⟹ 3ns + 1 = ns2

b⟹ ns(2
b − 3) = 1 ⟹ (2b − 3) =

1

ns
 

For any value of ns > 1, right hand side gives a rational solution and on the right-hand side, no value 

of b could dish out rational solution. Thus, no other value of ns satisfies the condition 𝑛𝑠 ≡ 𝑛𝑠 

𝑛𝑠 ≡ 𝑛𝑠| 𝑛𝑥 = 𝑛𝑠 = 1 

Definition 4.0: 

{τ0} is an arbitrarily defined ordered set that is similar to {U’} such that {𝑈′} = {1} ∪ {τ0} 
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All elements of {τ0} are zero reverse transformations away from {U’}. The element “1” is excluded as 

𝑛𝑠 ≡ 𝑛𝑠| 𝑛𝑥 = 𝑛𝑠 = 1 

τt is a set that contains all elements that are t reverse transformations away from its 

associated element in {U’} 

{τt} = {τt
1m3} ∪ {τt

2m3} ∪ {τt
0m3} 

{τt
1m3} is a set that contains all the elements that congruent to 1 mod3 and are t reverse 

transformations away from its associated element in {U’}  

{τt
2m3} is a set that contains all the elements that congruent to 2 mod3 and are t reverse 

transformations away from its associated element in {U’}  

{τt
0m3} is a set that contains all the elements that congruent to 0 mod3 and are t reverse 

transformations away from its associated element in {U’}  

Let q be an element counting function such that q{τt
1m3} represents total number of 

elements that are 1 mod3 and are t reverse transformations away from {U’}. Similarly, q{τt
2m3} 

represents total number of elements that are 2 mod3 that are t reverse transformations away from 

{U’} and q{τt
0m3} represents total number of elements that are 0 mod3 that are t reverse 

transformations away from {U’}. 

q{τt
⊣0m3} refers to inverse of q{τt

0m3} that is elements that are not 0 mod3.  

q{τt
⊣0m3} =  q{τt

1m3} ∪  q{τt
2m3} 

All elements that are no congruent to 0 mod3, will have a representation in {τt+1} 

q{τt+1} = q{τt
⊣0m3} =  q{τt

1m3} ∪  q{τt
2m3} 

𝑞{τ0} = 𝑞({𝑈′} − [1]) 

The notation 𝑞({𝑈′} − [1]) implies; all elements of {U’} except the element “1”. 

 

Proposition 2.b 𝒏𝒔 ≡≡ 𝒏𝒔: We explore the possibility for any number to loop with more than one 

transformation such that 𝑛𝑥 ≠ 𝑛𝑠.  

Methodology for checking validity of proposition 2.b 

Loop 𝑛𝑠 ≡≡ 𝑛𝑠 implies that when the number of transformations 𝑡 → ∞ one should have a valid 

value for 𝑛𝑠 and all the possible interim values of 𝑛𝑥 such that no value of 𝑛𝑥 for any given 𝑛𝑠 can be 

congruent 0 mod3, such that 𝑛𝑥 ≠ 𝑛𝑠 

𝑛𝑥 ≇ 0 𝑚𝑜𝑑3 

⟹∀ 𝑛𝑠: (𝑛𝑥 ≅ 1 𝑚𝑜𝑑3 ∨ 𝑛𝑥 ≅ 2 𝑚𝑜𝑑3) 

Corollary 3; 𝑛𝑠 cannot be congruent to 0 mod3 even as t → ∞. Using elimination of 𝑛𝑠 ≅ 0 𝑚𝑜𝑑3 as 

the set τ0 is expanded to τ1 expanded to τ2 expanded to τ3… expanded to τt→∞, one can test if loop 

is possible. If there is some element that loops with more than one transformation then said process 
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of elimination should leave us with some definite value with 𝑛𝑠 and 𝑛𝑥 not being congruent to 0 

mod3 

For the set {τ0}, t = 0 

{τ0} = {τ0
1m3} ∪ {τ0

2m3} ∪ {τ0
0m3} 

Using Corollary 5; One third of all elements would be eliminated as they are congruent to 0 mod3. 

For deriving  {τ1} 𝑓𝑟𝑜𝑚 {τ0}, continue with reverse transformation for rest non-eliminated 

elements; 

{τ1} = {τ0
⊣0m3} = {τ0

1m3} ∪ {τ0
2m3} 

For the set {τ1}, t = 1 

{τ1} = {τ0
⊣0m3} = {τ0

1m3} ∪ {τ0
2m3} = {τ1

1m3} ∪ {τ1
2m3} ∪ {τ1

0m3} 

Using Corollary 5; One third of all elements would be eliminated as they are congruent to 0 mod3. 

For deriving  {τ2} 𝑓𝑟𝑜𝑚 {τ1}, continue with reverse transformation for rest non-eliminated 

elements; And so on…  

Note: For deriving {τt} 𝑓𝑟𝑜𝑚 {τt−1}, we do not consider the infinite values of 𝑛𝑥 for any given 𝑛𝑠, we 

only consider the base solution of 𝑛𝑥 that is 𝑛𝑥1 as other solutions like 𝑛𝑥1+1, 𝑛𝑥1+2. .. would 

automatically be considered as it already exists in {U’} .  

Including all the possible values of {𝑛𝑥}, gives us infinite solutions for every element in {U’} and going 

back just one more step would break our analysis because of the infinities popping up everywhere. 

We keep the relationship between {τt} 𝑎𝑛𝑑 {τt−1} as bijective and invertible to able to keep track of 

number of elements in every set by avoiding the abyss of infinities. Also, no element is kept out of 

our study as all the possible solutions of {𝑛𝑥} are already a part of {U’} 

Example:  

{τ0} = {𝑈′}  = {1}  ∪ {3,5,7,9,11,13,15. . . . } 

{U’} {τ0} {τ1} {τ2} {τ3} {τ4} 

1 Does not exist  
𝑛𝑥 = 𝑛𝑠 

    

3 3 Does not exist  
𝑛𝑠 ≅ 0 𝑚𝑜𝑑3 

   

5 5 3 Does not exist  
𝑛𝑠 ≅ 0 𝑚𝑜𝑑3 

  

7 7 9 Does not exist  
𝑛𝑠 ≅ 0 𝑚𝑜𝑑3 

  

9 9 Does not exist  
𝑛𝑠 ≅ 0 𝑚𝑜𝑑3 

   

11 11 7 9 Does not exist  
𝑛𝑠 ≅ 0 𝑚𝑜𝑑3 

 

13 13 17 11 7 9 

15 15 Does not exist  
𝑛𝑠 ≅ 0 𝑚𝑜𝑑3 

   

17 17 11 7 9 Does not exist  
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𝑛𝑠 ≅ 0 𝑚𝑜𝑑3 
19 19 25 33 Does not exist  

𝑛𝑠 ≅ 0 𝑚𝑜𝑑3 
 

21 21 Does not exist  
𝑛𝑠 ≅ 0 𝑚𝑜𝑑3 

   

23 23 15 Does not exist  
𝑛𝑠 ≅ 0 𝑚𝑜𝑑3 

  

25 25 33 Does not exist  
𝑛𝑠 ≅ 0 𝑚𝑜𝑑3 

  

27 27 Does not exist  
𝑛𝑠 ≅ 0 𝑚𝑜𝑑3 

   

29 29 19 25 33 Does not exist  
𝑛𝑠 ≅ 0 𝑚𝑜𝑑3 

Table 1.0: deriving {τt} 𝑓𝑟𝑜𝑚 {τt−1} 

Consider; 𝑛𝑠 = 11, {𝑛𝑥} = {7,29,117,469, 1877. . . } 

𝐹𝑜𝑟  𝑛𝑠 = 11, {𝑛𝑥1 = 7, 𝑛𝑥1+1 = 29, 𝑛𝑥1+2 = 117 𝑛𝑥1+3 = 469, 𝑛𝑥1+4 = 1877. . . } 

At T=1, only consider 𝑛𝑠 = 7, other values like 29. 117, 469 etc may be ignored as they are going to 

be evaluated in their respective rows row.  

∀ns ≢≢ ns| 3nx + 1 = ns. 2
b & ns ≠ nx & nx , ns = 2k − 1  & j, j

′, k, b ∈ ℤ+&  

…ns ≡ n(t−1)x ≡. . . ≡ n2x ≡ n1x ≡ nx ≡ ns ≡ n(t−1)x ≡. . . ≡ n2x ≡ n1x ≡ nx ≡ ns ≡ n(t−1)x… 

Proof: 

P2.b.0  
if ns ≥ 3, ∀ns ≢≢ ns 

P2.b.1 IF 
…ns ≡ n(t−1)x ≡. . . ≡ n2x ≡ n1x ≡ nx ≡ ns ≡ n(t−1)x ≡. . . ≡ n2x

≡ n1x ≡ nx ≡ ns ≡ n(t−1)x… 

Proof: By definition: if a loop exists then one may continue 

transformation (forward or backward) infinite times  

P2.b.2.1  
∄n1x, if nx ≅ 0 mod3 

Proof: 
nx ≅ 0 mod3 = 3j 

n1x =
nx2

b − 1

3
=
3j2b − 1

3
=
3j′ − 1

3
| j′ = j2b 

n1x ≅
2 mod3

3
∉ {U′} 

P2.b.2.2 If 
nx ≅ 0 mod3, then ns ≢≢ ns 

Proof: 
ns ≡ n(t−1)x 

if nx ≅ 0 mod3 ⇒ ∄n1x ⇒ ∄n2x ⇒ ∄n3x… ⇒ ∄n(t−1)x  

Due to contradiction the condition is false. 
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P2.b.3.1  
q{τt+1} = q{τt

⊣0m3} 

Proof: Using P2.b.2.2 

P2.b.3.2  
q{τt} = q{τt

0m3} + q{τt
1m3} + q{τt

2m3} 

Proof: According to Theorem 5 for all numbers upon applying reverse 

transformation there is ordered distribution of elements modulo 

3. Addition being commutative, the order of elements modulo 3 

does not matter.  

P2.b.3.3  

q{τt+1} =
21

31
q{τt

⊣0m3} 

Proof: q{τt+1} is the set of elements that are one more reverse 

transformation from q{τt}. According to P2.2.2, q{τt
0m3} will not 

have any representation in q{τt+1} as relevant n1x does not exist. 

Eliminating such elements, we have; 

q{τt+1} = q{τt
⊣0m3} = q{τt

1m3} + q{τt
2m3} = q{τt} − q{τt

0m3} 

Using Theorem 5 describing one third of elements being 0 mod3 

q{τt+1} = q{τt
⊣0m3} = q{τt} −

1

3
q{τt} =

2

3
q{τt} 

P2.b.4.1 At t=0 

q{τ0
0m3} =

20

31
q({U′} − [1]) ≅ 0 mod3 

q{τ0
⊣0m3} =

21

31
q({U′} − [1]) ≇ 0 mod3 

Proof: According to Theorem 5: one third of elements are 0 mod3 

q{τ0
0m3} =

1

3
q({U′} − [1]) =

20

31
q({U′} − [1]) ≅ 0 mod3 

Elements that are not 0 mod3 have their respective n1x 

represented in the set q{τ0
⊣0m3} 

q{τ0
⊣0m3} = q({U′} − [1]) − q(τ0

0m3)

= q({U′} − [1]) −
1

3
q({U′} − [1])

=
21

31
q({U′} − [1]) ≇ 0 mod3 

P2.b.4.2 At t=1 

q{τ1
0m3} =

21

32
q({U′} − [1]) & q{τ1

⊣0m3} =
22

32
q({U′} − [1]) 

Proof 
According to Theorem 5: one third of elements are 0 mod3 

q{τ1
0m3} =

1

3
q{τ0

⊣0m3} =
1

3
.
21

31
q({U′} − [1]) =

21

32
q({U′} − [1]) 
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Elements that are not 0 mod3 have their respective n1x 

represented in the set q{τ1
⊣0m3} 

q{τ1
⊣0m3} = q{τ1} − q{τ1

0m3} =
22

32
q({U′} − [1]) 

P2.b.4.3 Mathematical  

Induction 
q{τt

0m3} =
1

3
q{τt−1

⊣0m3} =
2t

3t+1
q({U′} − [1]) 

& q{τt
⊣0m3} =

21

3
q{τt−1

⊣0m3} =
2t+1

3t+1
q({U′} − [1]) 

Proof: Assumed case for mathematical induction 

P2.b.4.4  
q{τt+1

0m3} =
2t+1

3t+2
q({U′} − [1]) 

& q{τt+1
⊣0m3} =

2t+2

3t+2
q({U′} − [1]) 

Proof: Using P2.b.4.4 

q{τt+1
⊣0m3} =

2

3
q{τt+1

⊣0m3} =
2

3

2t+1

3t+1
q({U′} − [1])

=
2t+2

3t+2
q({U′} − [1]) 

q{τt+1
0m3} = 𝑞{τ𝑡} − q{τt+1

⊣0m3}

=
2t

3t+1
q({U′} − [1]) −

2t+2

3t+2
q({U′} − [1])

=
2t

3t+2
q({U′} − [1])(3 − 1) 

q{τt+1
0m3} =

2t+1

3t+2
q({U′} − [1]) 

P2.b.5.1  

q({U′} − [1]) = ∑ q{τt
0m3}

t→∞

t=0

 

Proof: 
∑ q{τt

0m3}

t→∞

t=0

= q{τ0
0m3} + q{τ1

0m3} + q{τ2
0m3} + q{τ3

0m3}

+ q{τ4
0m3} + q{τ5

0m3} + q{τ6
0m3} + q{τ7

0m3}. .. 

∑ q{τt
0m3}

t→∞

t=0

= q({U′} − [1])(
20

31
+
21

32
+
22

33
+
23

34
+
24

35
+
25

36
+
26

37

+
27

38
…) 

let 
20

31
+
21

32
+
22

33
+
23

34
+
24

35
+
25

36
+
26

37
+
27

38
+
28

39
+
29

310
+⋯ = s 

(
2

3
(
20

31
+
21

32
+
22

33
+
23

34
+
24

35
+
25

36
+
26

37
+
27

38
+
28

39
+⋯)) = s −

1

3
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s = 1 

∑q{τt
0m3}

t→∞

t=0

= q({U′} − [1]) 

P2.b.0 THEN 
ns ≢≢ ns 

Proof: Using P2.b.5.1 upon applying reverse transformation, the total 

number of elements that are 0 mod3 is equal to total number of 

elements in {𝑈′} − [1] implying all the elements of {𝑈′} − [1] 

reach 0 mod3.  

Using P2.b.2.2: none of the elements that are 0 mod3 loop. 

None of the elements can loop under given transformational 

conditions.  

∎ 

Alternatively, one could prove that 𝑛𝑠 ≡≡ 𝑛𝑠|𝑛𝑠 ≠ 𝑛𝑥 for any and all arbitrary element/s by just 

using  Corollary 5 encountering similar expression mentioned in proof of P2.b.5.1 

However, in the negative domain loop exists, example:−7 ≡ −5 ≡ −7, but we don’t care as it is out 

of domain of the conjecture.  

 

Possible solutions at 𝑡 → ∞ may be represented as; ns ≡≡ ∞ ∨ ns ≡≡ ns ∨ ns ≡ ns 

𝑠 = 𝑝 ∨ 𝑞 ∨ 𝑟| 𝑝 = (𝑛𝑠 ≡≡ ∞), 𝑞 = (𝑛𝑠 ≡≡ 𝑛𝑠|𝑛𝑠 ≠ 1), 𝑟 = (𝑛𝑠 ≡ 𝑛𝑠 = 1) 

Using P1.0, P2.b.0 & P2.a.0, we know  

∀𝑛𝑠 ≢ ∞ ∨ 𝑛𝑠 ≢≢ 𝑛𝑠 ∨ 𝑛𝑠 ≡ 𝑛𝑠 = 1 

⊣ 𝑝 ⊣ 𝑞 ⊢ 𝑠 = 𝑟 

∀ lim
t→∞

ns ≡≡ 1 

Thus, the conjecture is true. 

∎ 
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