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Comparing Cosmological Models. 

Andrew Holster. ATASA Research. 2022.  

Introduction.  

The standard model of cosmology is acclaimed in physics as accurate, robust, well-tested, our best scientific 

theory of the cosmos, “the primary theory of the universe” (Lambda-CDM model - Wikipedia). Its picture of 

the universe is routinely presented as established scientific fact. It is taken for granted by many academics and 

science commentators. But it has had serious anomalies for a while, including the Hubble tension, anomalous 

galaxies, and the completely unexplained nature of dark energy and dark matter. And lurking behind it all is the 

lack of a unified theory: General Relativity (GR) and quantum mechanics (QM) are inconsistent. We have 

known for some time that something is seriously missing from our fundamental theories.   

Now startling new observations by the James Webb Space Telescope (JWST) in 2022 of the early universe 

present the strongest challenge yet to the standard model, and whispers have started that this shows there is 

something wrong with the fundamental theory, General Relativity itself, that it all rests on. This would be a 

crisis for cosmology, because it has been locked into this theory for decades. Practically all models considered 

or tested in conventional cosmology are variations of GR Friedmann (FLRW) models. If it is wrong, the theorists 

have been on a wild goose-chase for decades: and they have no ideas for an alternative.  

But how could it be wrong? Isn’t the standard model scientifically tested? Cosmologists talk a lot about testing 

their theories, and they report thousands of tests of cosmological models. (Lee, 2022). However, we should 

realise that these are just computer simulations of variations of the standard FLRW theory. They are about 

comparing different models of the theory, to try to find the model that best fits the somewhat scanty data. 

Physically, the models represent different mixtures of stuff appearing in the evolution of the universe at 

different times, including ordinary matter and radiation, black holes, dark matter, dark energy, the 

cosmological constant. A combination of these is included in the favoured CDM model, and other speculative 

models include other combinations, including different types of exotic matter. Key interest lies in getting stars 

and galaxies to form at the right times in the simulations, while keeping the expansion rate of the universe 

consistent with the empirical data on the Hubble constant.  

But the point is that these are not tests of GR or the FLRW theory against any alternative theory. Physicists 

have not considered alternatives to GR for a long time. GR and the FLRW equations have long been taken for 

granted, as the theoretical bedrock of cosmology. The major effort in cosmology has been to find best-fitting 

parameters for the FLRW equations, to fit sparse empirical data to what theorists are already convinced is the 

correct fundamental theory. Cosmologists (e.g. Panotopoulos, 2019; Lee, 2022) claim that the CDM model is 

a very good fit with the data, and infer this provides strong empirical evidence for the theory. In particular, 

they claim it is strong evidence for dark energy, which the CDM model requires.  

But now with the new JWSP data, the standard cosmology has hit an empirical rock! It has been making 

predictions about unobserved realms, including early star or galaxy formation, around 300 My after the Big 

Bang – but this realm has now suddenly become observable, and it doesn’t look anything like what the theory 

predicts! Indeed, it is so far from the model simulations that the question is whether the standard theory can 

survive. It is not just the CDM model under threat, but the entire framework of GR and the FLRW equations 

that the new data brings into question. 

But how could the physicists be so wrong, if they have scientifically tested the CDM theory so carefully? We 

should realise that mainstream cosmology has only been testing models of the standard theory against each 

other. They have established that models with dark energy (the CDM model) work better than models 

without it. But this is only a weak verification of the general theory itself, i.e. the FLRW equation or GR. And 

https://en.wikipedia.org/wiki/Lambda-CDM_model
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there are few tests of it except against classical gravity. The problem is that if we want to test a theory, we 

really need an alternative theory to test it against, to give us some idea of where it may go wrong. But very few 

cosmologists think GR is wrong! Most can hardly credit the possibility that it could be wrong, and they have 

not tried to develop any alternatives to GR.  

I note that the main alternative to GR that has been proposed is MOND, or Modified Newtonian Gravity. 

(Milgrom, 1988). This postulates that the gravitational force acts differently on the large scale. It is rejected by 

most cosmologists because it appears too ad hoc, but it has supporters, and is still being tested. But there are 

only weak tests, and it has problems as a theory (Skordis and T. Złośnik, 2021). However, MOND is not in itself 

a cosmological theory. Nor is it a fundamental theory. It does not propose any consistent alternative to replace 

the metric theory of GR or the FLRW. It’s chief motivation is to dispense with dark matter, but otherwise it just 

adopts the general framework of conventional physics. It has implications for cosmology, but it is not at all 

clear what they are. It is presented as an instrumentalist theory. We present a quite different type of 

alternative, which is a fundamental theory which must be evaluated counterfactually, with inter-theoretic 

transformations. It is very definite, and much simpler to analyse. We do not discuss MOND further here. 

Here we compare the standard cosmology with an alternative fundamental theory, that has a strikingly 

different overall cosmological behaviour: a simple cyclic expansion function. It is simple and deterministic. 

There are only two or three general parameters. The interesting result is that this alternative cosmology: (A) 

closely matches the expansion observed and modelled through the CDM standard model, now going back to 

red-shifts of 5-15; and (B) it also predicts unexpected early galaxy formation now being reported by the JWST.  

The first result (A), matching expansion curves, is a modelling exercise that we simulate in a simple 

spreadsheet. There is an empirical coincidence between the expansion rates predicted by two models. It also 

reflects similar mathematical shapes of intervals of two quite different curves. The early-mid interval of the 

cyclic sin-squared solution we introduce looks like the FLRW solution for the same interval. The latter is a 

polynomial with just enough parameters to model this section of the sin-squared function accurately.  

This shows that the empirical data is far too weak to determine what the true general expansion function is. 

Data on expansion rates (Hubble parameter) cannot distinguish between the standard model, and our simple 

cyclic solution. The second results (B) reflect a change in the fundamental physics. The theory means gravity 

was stronger in the past. This requires a separate evaluation of physics, not given here. But it was obtained 

from a unified theory, which supports its consistency with quantum mechanics, and expanded version of 

general relativity. 

The aim here is to support this alternative theory as a serious possibility, and a kind of possibility that has been 

overlooked by the highly instrumentalist approach taken in modern physics, which has made this theory 

invisible. However, we are not concerned to try to prove it here. We only review the cosmological evidence, 

mainly related to the new JWST data, as a comparison with the standard theory. We do not review the whole 

theory, which extends to gravity and quantum mechanics. Some essential theory is given in Appendices, but 

the background is given elsewhere. The main purpose here is to present the key concepts and results as 

directly as possible.  

Philosophers will recognise a close parallel with themes made famous by (Kuhn, 1962), including inter-

theoretic translatability of facts or laws, and the problem of how much theory choice is influenced by 

conceptual models versus empirical data. Indeed Kuhn’s (1957) example of the Copernican Revolution, the first 

great modern cosmological revolution, has direct parallels with the present situation. The standard 

cosmological theory appears as like the Ptolemaic theory, with endless potential for ad hoc fixes to keep it 

matching anomalous data, while the alternative is a much simpler general law. We do not discuss this further 

here, but it provides a detailed example of the same kind of problem.   
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What’s wrong with this picture? 

Figure 1. The Standard Model of Cosmology. 

WIKIPEDIA. We have seen this picture plastered across 

the cosmologist’s narrative for years. It is meant to be 

the definitive picture of the universe. What’s wrong 

with it? Well, lots of problems have emerged, but most 

recently, in 2022 the JWST imaged galaxies fully 

formed by 300-600 million years after the Big Bang!  

Now that is an unbelievably short period for galaxies to 

form. The standard model has long claimed that the 

first stars would just be forming in this time. Galaxies 

should take a billion years more. This has been shown 

in many computer simulations of the standard model.  

The claim that the first stars would only be appearing at about 400 Mys has long been assumed as a fact of 

cosmology, but now it turns out to be false. It is clear it represents theoretical speculation. Failed speculation. 

Clearly the standard theory has been extrapolated to a realm where it does not work. The standard model 

predictions for the first few hundred million years bears little resemblance to reality. Prior to the JWST 

observations in 2022, there were limited observations of this early period, and cosmologists had no suspicion 

of anything wrong. Now they have a swag of new data, and a severe problem with their theory. The early 

universe is full of galaxies that require billions of years to form in simulations. How could these form so fast?  

That is one key question for us, and it is closely connected with others. How did the universe start? And how is 

it going to end? And what is the mysterious appearance of dark energy in-between? We have been given a 

cartoon of this, presented as scientific fact, but it is time for us to question it.  

As the Hubble Space Telescope, Planck and other sources have given us more precise data over the last 

decades, we are seeing more empirical departures from the standard model. But so far, astronomical data has 

been primarily used to optimise the standard model, to select parameters to make it fit the observations as 

well as possible. Dark energy has been added to keep it working. The last fifty years of effort has been 

primarily to make the standard model work.  

But now it appears increasingly flawed, and we want to examine the standard model. We cannot just keep 

blindly pursuing it as the only theory. We will compare it against an alternative to get a comparison of how 

well it does. This alternative is a simple cyclic model that is a good match with the cosmological data, and a 

realistic physical model.    

Figure 2. The Cardioid cosmology. This is a cyclic 

model with a completely different shape to the 

standard model. It is much simpler, but it matches 

the empirical data surprisingly well.  

R’ = R’MAX sin2(A’T’) with: A’ = (T’MAX).  

Note it does not contract to a singularity but 

bounces at a small radius, and the cycle repeats.  

Now there could hardly be two more strikingly different pictures of cosmology! We will see the short-term 

predictions are similar, but the long-term behaviour is completely different. 

• Is such an alternative model viable? Is a cyclic cosmology still a realistic possibility? 

• Haven’t such models been ruled out by the standard model and discovery of dark energy? 
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• Could two such different cosmological models both still be plausible?  

Physicists may immediately say it is impossible. But how do they know? Because they believe in General 

Relativity as an absolute true and perfect theory. An alternative to the standard cosmology cannot be correct if 

it differs from GR. “Not worth checking” say the physicists. But we checked to make sure. 

The first main result is that the Cardioid expansion curve fits the observed data very well, giving very similar 

curves for red shift or Hubble parameter measurements against Age. This has been known for some time for 

the later universe (>2 By), but the curve is quite flat and it is hard to tell if it is just an accident. But now the 

very early-universe JWST data has also been found to match. Because the curves become quite steep in this 

region, this represents a strong match 

and strong confirmation. 

Figure 3. Matches of cardioid model 

and observed data, from 300 My – 14 

By. We have put these results in terms 

of the Age-Hubble match, there is a 

similar data on red shifts. The data for 

this is given later.  

The Cardioid model appears just as 

accurate as the standard model in the 

normal realm of observations. The 

next question is whether it can explain 

the recent JWST results. These are 

incomprehensible in the standard model, but the new model makes quite different predictions for the early 

universe. 

Figure 4. Early galaxies detected by JWST. WIKIPEDIA.  

These observations pose a direct existential threat to the 

standard theory of cosmology, and gravity. Until this new 

there has been a slow crisis, but scientists have been able to 

keep finding ways of patching up the standard model, by 

adjusting parameters. There have always been anomalies, 

such as the Hubble tension, the 10% difference in the 

Hubble constant measured by two different methods. 

Cosmologists have been able to ignore these and assume 

there will be a routine explanation within GR and the 

standard model. But the new JWST observations are too 

extreme to ignore. 

The physicists’ process has been to fit their model to data 

without ever questioning the fundamental theory. The form 

of their equations is pre-determined by a general theory (GR 

or FLRW). There is freedom to adjust model parameters to match data, and this is done by assuming all 

relationships are fixed by the general theory.  

This should have raised a concern that the standard model is built on a single point of theoretical 

extrapolation. GR has been extrapolated from the ordinary domains of gravity to the extreme domains of the 

early universe. Because data is scarce in these extreme domains, there has been much theorising, and little 

testing. But as the data has improved in leaps, this has not led to confirmation of the standard model, despite 
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intense efforts by the scientists to prove their theory right. Data is first curated in post-hoc data modelling, to 

find the best match to confirm the standard model, but now it is increasingly contradictory.  

The Cardioid model illustrates that practically the simplest possible cyclic solution, a sin-squared curve, 

matches the standard model almost exactly, with all its complexity and assumptions. This alternative function 

has the same behaviour in the main sequence we can observe, but it has a completely different fundamental 

behaviour at earlier and later times.  

• It has only two parameters.   

• It produces a quite different shape to the conventional expansion in the long term.  

• It fits the observational data and standard model perfectly in the present term. 

Figure 5. The Cardioid model predicts the blue 

line for the long term expansion rate: it will go 

to zero, with expansion reaching a maximum at 

about 64 BY, and then contraction will start. The 

standard model interprets an acceleration term, 

illustrated by the red dotted line.  

If the blue curve represents actual expansion, 

the sub-set of data from 5 By to the present 

13.8 By will fit a power function which matches 

the conventional model in this period. But the 

long-term predictions diverge.  

The differences may look small for most of this period, but after this the cyclic H goes negative, and the 

universe contracts, while the red line always remains positive, and the universe always expands. Indeed, they 

are radically different universes.  

Figure 6. Predictions over a whole expansion 

cycle diverge. One or other theory must be 

completely wrong, but do we know which? Our 

prediction of the future relies entirely on being 

correct in our assumption that we have the 

correct underlying theory. Note the curves in 

the future are strictly under-determined by the 

present data (brown), which is limited to before 

13.8 By. If the choice of underlying model is 

wrong, then it has no predictive power in the 

long-term.  

Hence the prediction of the long-term future is 

not decided by the empirical data at all, it depends on assuming the underlying model. This is what determines 

the general shape of the curves.  

• The red curve above was created as a trend-line using the data from the Cardioid curve up to 13.8 By.  

• Choosing a power function as the form of the underlying physical relationship pre-determines the 

shape of the future long-term prediction, whatever the present data is.  

• If we suppose the real data actually conforms to the Cardioid model, we would nonetheless predict 

the (red) accelerating expansion on the basis of the standard model, and claim it has an excellent fit. 

• The limited empirical data from the early universe is too weak to empirically determine the functions 

for the long-term future.  
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So current predictions of long-term behaviour are primarily determined by a priori assumptions of the 

fundamental theory, and the Cardioid model has a different theory to the standard model.  

Cardioid model function. We just briefly state the Cardioid model function so we can see how simple it is. The 

model predicts the radius of the universe expanding over time, which we write as: R(T) in conventional 

variables or: R’(T’) in model variables. Other properties like the Hubble parameter follow from the expansion 

function. The Cardioid solution is simply defined in model variables:  

• R’ =  R’MAX sin2( T’T’MAX) Cardioid model function.  

• Defining: A’ = (T’MAX) we write it as: R’ = R’MAX sin2(A’T’).  

• Defining:  a’(A’T’) = R’/R0’, we write it as: R’ = a’R0’. 

• R’MAX  is the maximum radius, and T’MAX is the time to maximum expansion.  

• R’0  and T’0 are present values.  

• a’(T’) = R’/R0’ is the scale function in model variables. 

• a(T) = R/R0 is the scale function in conventional variables. 

Note: T’MAX is half a full cycle, from zero radius to maximal radius. sin2(A’T’) = sin2() has period in   of  not 2. Note the 

Cardioid is classically written as: R’(t) = 2a(1-cos()), with twice the angular variable:  = 2.  

This is about as simple as a model could be! It is much simpler than the standard model. It means the 

expansion of the universe is pre-determined, and independent of processes inside the universe! It does not have 

“dark energy” any other substances added to correct or parametrise the solution.  

It may first be taken as simply a postulate that there is a characteristic cyclic function for expansion, much like 

the elliptical paths of planets, and it can be tested in the first instance as simply an empirical model.  

But it is not written in the normal measurement variables, and the key point is that there are variable 

transformations that must be made, to go from the Cardioid model variables (dashed) to standard 

measurement variables (undashed), to relate it to observations. The Cardioid solution in fact comes from a 

theory which unifies gravity with quantum particle physics, and this determines the solution. This is its first 

evidence. But the cosmological predictions are quite simple and definite by themselves, and their accuracy is a 

key reason to consider the theory seriously.  

We will only look at the recent cosmological data here, and the reader is referred to earlier studies for more 

details of the full theory, and various other tests. We complete a quick overview of the main concepts in the 

rest of this introduction, then we go on to present results primarily in graphs of model comparisons. We refer 

most details of the model equations to the Appendices. The theory has been developed in more detail in some 

other preprints (see References section). We provide the essential background here to specifically understand 

the cosmological model we propose.  

We do not try prove it here, we just propose it as an alternative for the expansion cycle, to compare with the 

standard model, to see how robust the standard model is to a theory change. We find that key aspects of the 

standard model are not robust against counterfactual theory change.  

Aspects of the standard cosmology that are not robust in the new theory. Dark energy disappears! The 

cosmological constant disappears! The universe has no singularity at the start! And it contracts in the future! 

Galaxies and stars form much faster! The early universe is filled with myriads of stars and galaxies! Local QM 

constants and global parameters are connected! The strength of gravity changes relative to the EM force!  

In terms of the alternative model, the main purpose here is to identify its matches with the new data and 

observational results, and provide results useful for others who may wish to investigate it further.   
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The Standard Model versus the Cardioid model. 

In the standard model, mass-energy components are divided into different types (CDM), and the 

mathematical form for these gives them different kinds of effects on the expansion.  

Figure 7. (Ned Wright, 2015) Variations of 

conventional GR models make different 

predictions for expansion, by mixing up different 

mass-energy types. In the conventional model 

comparisons illustrated here, the dark energy 

model conforms to the empirical data more closely 

than other models. This is its main evidence. It is 

the reason physicists now claim that DE has been 

conclusively proven to make up 70% of the 

universe!  

The standard model cannot work without dark 

matter and dark energy and the cosmological 

constant. The big theme in modern cosmology for 

two decades has been to establish the proportions 

of types of exotic matter required for the standard 

model to work.  

 

Figure 8. WIKIPEDIA. The fate of the universe and the proportion of dark energy in the universe. 

Estimates vary substantially, from about 68%-74%. Note that dark matter is independently real, 

inferred from gravitational phenomenon. But dark energy is a purely theoretical substance to keep the 

standard cosmology alive. It is purely to explain the Hubble acceleration.  

This detail makes the standard cosmology complicated. But we do not have this complexity in the Cardioid 

model, it is very simple and deterministic. However, there is something critical that we must get right, 

transformations between the model variables and conventional measurement variables.  
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The Cardioid Variable Transformations. 

The main point is that we need to counterfactually compare two different fundamental theories with each 

other. These theories have incompatible laws. They are written in two different systems of variables.   

• The (dashed) variables, R’, T’ are our Cardioid model variables, and must be transformed into 

conventional variables, R and T, to relate to our normal physical measurements. 

• The alternative model is written in these “true“ space-time variables, R’, T’, which are related to our 

conventional variables, R, T, by a set of transformations determined by their instrumental definitions.  

• The general equations of the new theory are simple in the true model variables. But in conventional 

variables they are messy and lack time invariance.  

The dramatic possibility of transforming to a new variable system has been overlooked in modern cosmology. 

Figure 9. Universe expansion on Cardioid model, seen 

in two different variable systems.  Smooth evolution of 

variables in (R’,T’) becomes distorted in (R,T). The 

present time is indicated by the red markers. In T’ we 

are 2/3’s through the universe expansion phase, but in 

T we are only 1/3.  

Physicists spend lots of time making coordinate 

transformations, within the theoretical frameworks of 

the theories we are working in. E.g. the Lorentz 

transformations are the transformations in SR. These 

are generalized in the relativistic tensor calculus.  

But while these are valid coordinate transformations 

within a theory, because they preserve the laws of the 

theory, they do not transform variables between 

theories, e.g. the LT’s do not relate classical physics to 

relativistic physics. They are not inter-theoretic 

translations of variables.  

What we are showing in this diagram is an alternative model, simulated in its own variables (bottom), then 

transformed into the standard theory variables (top), which is what it will look like to us normally. But note the 

new process seen in the standard variables will no longer be consistent with our standard theory.  

To appreciate this, suppose we are back in the 1900’s, and physicists have made a whole lot of measurements, 

on the basis of classical physics. They provide us with tables of astronomical data, recorded in the usual 

classical variables r, t. But we wish to propose a new theory, special relativity, which has variables: r’, t’  and 

laws that are not compatible with CM. We require a new analysis of measurement in our new theory to relate 

the theories. The measurement data does not change, but we need to transform the classical data variables 

(interpreted from raw data via classical assumptions), into the variables of our new theory.  

• These inter-theoretic translations are not the Lorentz transformations, or coordinate transformation 

within either theory.  

• They ultimately reflect models of the physical measurement processes, which fixes how the new 

theory predicts measured quantities in r, t.  

• In our theory, they are expressed as general coordinate transformations, which are consistent with 

standard models of QM without gravity, but are different when gravity is involved. 

The effect is seen by comparing expansion speeds in the two variable systems. 
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Cardioid model of expansion speed in conventional and model time variable.  

These are images of the same process in different time variables! 

Figure 10. Expansion speed. Cardioid expansion in 

conventional variables begins explosively and is 

decreasing quite linearly in the recent era, from about 2 

By to the present 14 By. The earlier we go back the more 

explosive the expansion is, if we go back early enough it 

is like the “inflationary” period in the first microseconds 

of the standard model.  

The standard model starts from a “Big Bang” singularity. 

But in the Cardioid model there is a minimum radius, of 

about 104 Km. The universe did not appear from an 

infinitely explosive process from a “singularity” of infinite 

density. Nonetheless it appears to be violently explosive, back to the first few seconds.  

How can this violently explosive process be the same reality as the gentle cyclic process below?  

Figure 11. Right. Expansion speed in the model variables 

is a smooth cyclic process, and completely different to the 

graph in conventional variables above. But they are the 

same process. Note the present age in model variables is 

about 56 By.  

The expansion starts slowly in: dR’/dT’, but when 

transformed into: dR/dT, it appears as the explosive 

expansion. It is a smooth cyclic curve, and the appearance 

of explosion is an illusion from the variable 

transformations. 

 The expansion speed: dR’/dT’ increases until half-way through the expansion cycle (A’T’ = /4), and then it 

decreases. This half-way point in the cycle is about 5 By in normal time, and 43 By in model time. This is the 

period of observations that forced cosmologists to introduce “dark energy” and the cosmological constant, 

giving the current CDM model. These observations give changes in the Hubble parameter, which represents 

the speed of expansion. In the standard model this corresponds to fitting a power function, as the 

mathematical form forced by the FLRW model. We see this fits the short-term data well! But in fact, this data 

is far too weak to determine what the underlying relationship is. 

Figure 12. Expansion speed before 5 M years. This 

closely matches a power function. It is increasingly 

explosive the earlier we go. This graph starts when the 

universe was about 20 years old.  

Note expansion rate cannot be measured directly, and 

the main data for testing the models are derived 

measurements, such as the Hubble constant, estimated 

from red-shift and distance data. But it is essential to 

appreciate that we must calculate predictions for the 

new model as a counterfactual theory.  
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Counterfactual theory testing.  

We emphasise we are testing the standard model or theory against an alternative model. We do this by 

simulating the new model, then translating the outcomes into conventional measurement variables, so we can 

see how they match the data. Note we do not start from the standard theory and try to work out the results of 

the new theory in the standard variables! That won’t make any sense. We must test counterfactually.  

This is analogous to the process Einstein worked though in his famous (1905) paper, where he defined Special 

Relativity as an alternative to the classical theory, with its own intrinsic system of variables for space and time. 

We see from that analogy that we are talking about inter-theoretic translations, not simply coordinate 

transformations within a theory, which is what physicists are familiar with.  

• We are testing a theory change, not a model choice within a theory.  

Some laws of a new theory (e.g. time dilation in SR) will contradict corresponding laws of the old theory (no 

time dilation in CM). They contradict each other when they are translated into the same variables, e.g.: d/dt = 

1 in CM, versus: d/dt = 1/ in SR. That is the point: to compare a theory with an alternative theory that has 

different laws.  

For ordinary physicists working in a theoretical framework, like classical physics or special relativity, a new 

theory often seems paradoxical or absurd. Many classical physicists had difficulty comprehending special 

relativity. Physicists assume a class of valid coordinate transformations as the backbone of their theories, and 

take them as inviolable definitions. But if we want to entertain an alternative theory which is inconsistent with 

the standard theory, we have to expect conflicts. We cannot take the standard theory as definitive of the 

concepts or definitions, and we have to translate between variables of two theories to compare them. We will 

define these translations with differential functions, but they have a different logic to normal coordinate 

transformations within a theory.  

Because of the challenge of getting these transformations right, we need to make numerical simulations and 

carefully test results before we can have confidence. Doing this gives us two independent ways to confirm 

results. We illustrate a numeric model simulation in a spreadsheet, which look like this.  

 

Figure 13. Spreadsheet simulating the Cardioid universe in 100 time steps, with transformations of 

T’,R’,H’ variables to T, R, H. We calculate functions both numerically and analytically and compare 

results, and check solutions match. We can model the whole cosmology quite accurately in a simple 

spreadsheet. 

We can provide a copy of this spreadsheet, see Appendix. 
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Witze six key anomalies from JWST. 

We now summarise key points of difference between the models, focussing on the anomalies appearing in the 

new JWST data.  A good early survey article is Alexandra Witze 2022, “Four revelations from the Webb 

telescope about distant galaxies.” 27 July 2022. Nature 608, 18-19 (2022). This surveys early JWST data studies, 

and we note six key points of interest for comparison with the Cardioid model. 

Alexandra Witze 2022 commentary and quotes. 

A. Early formation of stars and galaxies in the early Universe. 

“Combined with 11 previously known galaxies, the findings show that there was a significant population of 
galaxies forming stars in the early Universe1. Perhaps the highest-profile rush is the stampede of research 
teams vying to … break Hubble’s record for the most-distant galaxy, which dates to around 400 million years 
after the Big Bang2,3. One contender popped up in a Webb survey called GLASS that included another, slightly 
less faraway galaxy in the same image4. “ 

“The fact that we found these two bright galaxies, that was really a surprise,” says Marco Castellano, 
an astronomer at the National Institute for Astrophysics in Rome. He and his colleagues weren’t 
expecting to find any galaxies that distant in this small part of the sky.  

B. Multiple high-red-shift galaxies.  

“A second team also independently spotted the two galaxies5. The GLASS candidate has a redshift of about 13. 
But on 25 and 26 July, days after astronomers reported the GLASS galaxies, papers claiming even higher 
redshifts flooded the arXiv preprint server. One candidate, at a redshift of 14, emerged in a survey called 
CEERS, one of Webb’s highest-profile early projects. Another study looked at the very first deep-field image 
from Webb, released by US President Joe Biden on 11 July, and found two potential galaxies at a redshift of 16, 
which would place them just 250 million years after the Big Bang7. And arXiv papers speculate on other 
candidates, even out to redshifts of 208.” 

C. Early galaxies shaped like disks.  

“Webb’s distant galaxies are also turning out to have more structure than astronomers had expected. One 
study of Webb’s first deep-field image found a surprisingly large number of distant galaxies that are shaped 
like disks9. Webb observations suggest there are up to ten times as many distant disk-shaped galaxies as 
previously thought.” 

“With the resolution of James Webb, we are able to see that galaxies have disks way earlier than we 
thought they did,” says Allison Kirkpatrick, an astronomer at the University of Kansas in Lawrence. 
That’s a problem, she says, because it contradicts earlier theories of galaxy evolution. “We’re going to 
have to figure that out.”  

D. Early massive galaxies.  

“Another preprint manuscript suggests that massive galaxies formed earlier in the Universe than previously 
known. A team led by Ivo Labbé at the Swinburne University of Technology in Melbourne, Australia, reports 
finding seven massive galaxies in the CEERS field, with redshifts between 7 and 1010.” 

“We infer that the central regions of at least some massive galaxies were already largely in place 500 
million years after the Big Bang, and that massive galaxy formation began extremely early in the 
history of the Universe,” the scientists write. 
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E. Galactic chemistry different to expected. 

“Studies of galactic chemistry also show a rich and complicated picture emerging from the Webb data. One 
analysis of the first deep-field image examined the light emitted by galaxies at a redshift of 5 or greater. It 
found a surprising richness of elements such as oxygen11.” 

Astronomers had thought that the process of chemical enrichment — in which stars fuse hydrogen 
and helium to form heavier elements — took a while, but the finding that it is under way in early 
galaxies “will make us rethink the speed at which star formation occurs”, Kirkpatrick says. 

F. Closer galaxies are smaller than expected.  

“One study looked at … the period approximately three billion years after the Big Bang. … At the infrared 
wavelengths detected by Webb, most of the massive galaxies looked much smaller than they did in Hubble 
images12.” 

“It potentially changes our whole view of how galaxy sizes evolve over time,” Suess says. Hubble 
studies suggested that galaxies start out small and grow bigger over time, but the Webb findings hint 
that Hubble didn’t have the whole picture, and so galactic evolution might be more complicated than 
scientists had anticipated. 

“References. (repeated in References.) 
1. Donnan, C. T. et al. Preprint at https://arxiv.org/abs/2207.12356 (2022). 
2. Oesch, P. A. et al. Astrophys. J. 819, 129 (2016). 
3. Jiang, L. et al. Nature Astron. 5, 256–261 (2021). 
4. Castellano, M. et al. Preprint at https://arxiv.org/abs/2207.09436 (2022). 
5. Naidu, R. P. et al. Preprint at https://arxiv.org/abs/2207.09434 (2022). 
6. Finkelstein, S. L. et al. Preprint at https://arxiv.org/abs/2207.12474 (2022). 
7. Atek, H. et al. Preprint at https://arxiv.org/abs/2207.12338 (2022). 
8. Yan, H. et al. Preprint at https://arxiv.org/abs/2207.11558 (2022). 
9. Ferreira, L. et al. Preprint at https://arxiv.org/abs/2207.09428 (2022). 
10. Labbé, I. et al. Preprint at https://arxiv.org/abs/2207.12446 (2022). 
11. Trump, J. R. et al. Preprint at https://arxiv.org/abs/2207.12388 (2022). 
12. Suess, K. A. et al. Preprint at https://arxiv.org/abs/2207.10655 (2022).” 
 

This group of anomalies is what got the science media excited in mid-2022, with pronouncements that the 

standard model is dead, and cosmology is in crisis with no reliable theory to guide it. Some have been arguing 

this for decades, but main-stream cosmologists have stuck to the standard model like glue. They have no other 

theory. But the new JWST data has brought home that the problems are real. It means the conflicts of theory 

and experiments can no longer be swept under the theoretical carpet. This makes it perhaps the most 

revolutionary moment since the discovery of the red shift data, that now signifies the Big Bang.  

The Cardioid cosmology has a different fundamental theory. It was proposed in [Holster, 2014, 2015]. It does 

not introduce any speculation about new types of particles: it entails the (cyclic) cosmology independently of 

particle mechanics. It has been tested with other data but the new JWST observations provide stronger 

evidence in the key realm of early cosmology, where the theories diverge. We will go through the points above 

and see. In all cases it gives good qualitative and quantitative predictions. It predicts the whole group of 

anomalous phenomenon, primarily from one cause: the gravitational constant was larger in the early universe.  

The other central empirical concept is the Hubble parameter. The Hubble tension, a discrepancy in the 

standard model predictions, has been a prominent issue for over ten years, and is unresolved. Separately, 

there is the anomaly in the Hubble parameter on normal models of matter, and dark energy had to be added, 

with the lambda term to keep the balance, to give the lambda-cold-dark-matter model: CMD. We briefly 

summarise this  
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Hubble parameter.  

Primary empirical predictions of the Cardioid model are for the value and behaviour of the Hubble parameter 

over time. This is how we first match it to empirical cosmology. There are two main issues. One is about dark 

energy. The Hubble acceleration data (which is real) has led cosmologists to postulate dark energy to be 

consistent with the standard FLRW model. But in the Cardioid model this appears as purely theoretical 

speculation. There is no dark energy required to explain the evolution of the Hubble parameter. Dark energy is 

the result of extrapolating GR beyond its domain of validity. The second issue is the Hubble tension, an issue 

that has been prominent for ten years now. This 

type of anomaly is expected in the Cardioid 

model, although the precise interpretation may 

be debateable. 

Figure 14. The Hubble tension. H measured by 

three different methods gives three significantly 

different results, around 67, 70 and 73 

(m/s)/MPSecs. They differ by 10%. 

 Physics needs to face its Demons – YouTube 

The biggest source of complexity and empirical uncertainty lies in measuring distances to distant galaxies 

accurately. We can work out red shifts quite well, from shifts in the wave-lengths or frequencies of known 

spectral lines. But we also need primary distance measurements to establish a time scale, and obtain the rate 

of expansion, which we want to map over time. The Hubble parameter is the (normalised) rate of expansion.  

The red shift shows how much light has stretched, and hence how much space has stretched, since the light 

left the star. This tells us the ratio by which the universe has stretched (no matter what its total radius is) since 

the light left the source. But we also need to know how long ago the light was produced, to relate the 

stretching to time, and get a rate of expansion. To 

estimate this, we need distances to the sources. 

Because light travels at a constant speed, we can 

infer times from distances. Estimating distances is 

the only known way to establish times of 

cosmological events – except for the CMBR. 

Figure 15. Luminosity-distance relation. “When 

distant stars at the TRGB are measured in the I-

band (in the infrared), their luminosity is somewhat 

insensitive to their composition of elements heavier 

than helium (metallicity) or their mass; they are a 

standard candle with an I-band absolute magnitude 

of –4.0±0.1.[3] This makes the technique especially 

useful as a distance indicator.” WKIPEDIA. 

Because we have to transform between the measurements variables and our new variables, and we have to 

model the measurement processes in the new model and derive the predictions for the conventional 

observations (they will not generally be the same as the predictions of the standard model), this may appear to 

be fraught with a lot of complexity.  

But we will see that for the most part, matching this with the new theory is fairly straightforward.   

  

https://www.youtube.com/watch?v=uPl6sN7Tl4c
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Cardioid equation and TAU metric. 

Before going on to results, I briefly note the model equations correspond to a non-standard metric. This is 

summarised in Appendices, but it is important to emphasise the difference with standard cosmology.   

The standard cosmology is based on the Friedmann metric, which is a solution for GR. 

 c2d2 = c2dt2 – a(t)2dr 2  FLRW metric for standard model. 

where dr is the 3D space metric term (often written as d ). All isotropic GR cosmologies have this form. For 

modern cosmologists, this is THE LAW OF COSMOLOGY, and it is set in stone! What physicists call “alternative 

cosmologies” are variations in the term a(t). Why is this law set in stone? Because it is the only isotropic 

solution consistent with GR. It is General Relativity that is set in stone! The Cardioid model instead obeys:  

 c2d’2 =  c2dt’2a’(t’)2 – a’(t’)4dr’ 2  TAU metric for Cardioid model 

Note this is written in a different variable system, and it translates into conventional variables as: 

 c2d2 = c2dt2/a(t) – a(t)dr2  TAU in conventional variables. 

This requires:  c2dt2/a – adr2 = a’ 2c2dt’2 – a’4dr’2, with: dt = dt’a’2 and: dr = dr’a’  and: a = a’2. 

• These two metrics cannot be transformed into each other, and they are inconsistent. 

We cannot make a second term in a(t) appear in the FLRW equation by transforming a(t). We cannot make 

one of the a(t) terms in the Cardioid equations disappear by transforming to another system of variables.  

Also note the basis for d’ changes: d’ = d0/a’, and inversely for space: dr’ = dr0a’, so that: d ’dr’ = constant. 

But: d dr ≠ constant. It is not time translation invariant in ordinary variables, but it is in the model variables. 

• But how can this be consistent, if the FLRW is the only consistent isotropic solution in GR?  

Well it is not consistent with the FLRW or GR. But it is a consistent model in its own terms. The full model is a 

unification of GR and QM in a six dimensional geometric space, and it is consistent in this space. This was 

found first, and the cosmology here worked out subsequently. It is not the only possibility, but it appears as 

the central solution to examine, like sine waves for EM radiation, and it is very simple. We do not need to go 

into any details of unification or types of particles and matter to analyse it.  

• It means the expansion cycle is a pre-determined form, like the orbit of a planet around the sun.  

The TAU metric contradicts GR, but as it has not been analysed, physicists cannot tell you whether it is a viable 

theory. It takes some work to compare the two theories. However, the intuitive plausibility revolves around 

the major physical effect. It was proposed in the 1930s, revived in the 1960s, rejected in the 1970s. This is that 

the gravitational constant, G, weakens with time.  

• The Cardioid model implies that the value of G get weaker relative to the EM force as the universe 

expands. Gravity appears stronger in the early universe, and gravitational processes run faster.  

This contradicts the standard model. Physicists claim that strong empirical limits have been set on the present 

rate of change of G by lunar laser ranging and cosmological studies. But these claim are based on lazy analysis. 

Physicist have spent millions of dollars on high-tech equipment but cannot do the analysis required to match 

measurement to theory.  Proper treatment of the measurements shows the data is consistent with the 

Cardioid model. On the other hand, the increased strength of G in the early universe plays the striking role in 

explaining the JWST data, speeding up early galaxy formation and galaxy rotation by hundreds of times.   
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Spreadsheet model. 

 

Figure 16. Spreadsheet simulating the Cardioid expansion in 100 steps, with transformations of the 

model variables: T’,R’,H’ to the conventional measured variables: T, R, H.  

The model is calculated in the model variables, in the first few columns (A:F), and then transformed into the 

measurement variables (G:L). Further columns are used to calculate a variety of other quantities.  

We define: c0 = 1 (Ly/y), so we do not include it in calculations. Time is in By and distance in Bly.  

The picture shows row 50 (halfway through the expansion cycle) to 64 (our model for our present position in 

the cycle). These correspond to the model times (T’) of 43.36 By and 55.49 By. They correspond to the 

conventional times (T) of 4.84 By and 13.76 By.  So this covers about the last 9 Bys in conventional time, and 

this period appears as about 2/3rd of the total age in conventional time. In model variables, the amount of time 

T’ in this period is similar (11 By), but the universe is five times older!  

This spreadsheet model is set by three parameters: our present position in the cycle (64/100, A5), the empirical 

age (13.80, G2), and the maximal radius (38.6, D6). But there are really only two independent parameters, as 

the maximal radius is not independent. We leave it as a free parameter in the sheet so we can see how it 

behaves with other values. The empirical age is determined (for our era) as about 13.8 By. Hence the only 

actual free parameter we can choose for the model is our present position in time. This determines Hubble 

parameters and red-shifts, the empirical data we have to compare. 

• Our present position in the expansion cycle is the single essential open choice to determine the 

model. This is set in cell (A5), as 64 out of 100 time-steps in this model. It is 1.005 radians or 57 

degrees through the cycle.  

• The current empirical age T0 is measured as 13.8 By. The model parameter T’MAX is what directly 

drives the model, but: T’MAX = 2T0 giving: T’MAX = 2(13.8) = 86.71.  

• The current empirical radius R0 is not directly measurable. It highly model-dependant in cosmology. In 

our model it is related to the measured age, T0. Note in our model, R0 is a radius of curvature, and the 

physical distance around the universe is: 2R0 = 86.7 Bly.  

• The conventional “radius of the universe” may be interpreted as: R0 = 43.4 Bly. 

• Note we now set T’MAX at twice the value in the earlier model [Holster, 2015], see Appendix. We 

explain the modelling more in Appendices.  
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Primary model match.  

The current age and time position in the expansion cycle fixes the model. The primary empirical match is to get  

the present Hubble parameter. This empirical measure combines more basic measures of red shift and 

distance. There is no freedom to adjust the (conventional) age (13.8 By) (which is measured in several different 

ways and predicted to have this value in TAU).  

Adjusting the position in the time cycle alters the Hubble parameter. This is the single main adjustable 

parameter. But the Hubble parameter alters quite slowly and linearly in the middle of the time cycle. E.g. it 

decreases from about 72 → 52 if we set the time back from 0.64 to 0.50. (Which to us now appears as about T 

= 4By). The Hubble parameter does not vary greatly except in the very late or very early universe, which is not 

realistic for us (now). So there is limited scope to adjust the time position in the cycle, 

The model must predict the Hubble parameter (or equivalent expansion function) accurately, and it is very 

definite in its predictions. There is little scope to adjust parameters. In fact there is only one parameter free to 

choose, (T’0/T’MAX). This changes the apparent shape of the expansion curve, as we see it from our perspective 

in the present. It appears to match when the present 

time T’ is set at 64/100th of the first quarter of the whole 

cycle, or 0.64 x /2 = 1.007 radians.  

There is a difference of /2, or more generally tan(), 

between the directly predicted H0 in the model and the 

empirical measured value. 

• The present value of the Hubble parameter H0, 

calculated in the model, with no adjustment for 

measurement factors, is too small by /2.  

• The value of the Hubble parameter H generally in 

the model generally is too small by tan(A’T’).  

• This is a necessary scaling factor to match the 

empirical measurements and predictions of the 

Hubble parameter in the standard model.  

• It is expected some such factor is needed, e.g. to 

correct distance estimates, which should differ on 

the two models, due to different luminosities.  

Figure 17. Hubble parameter scale. We scale the Hubble 

parameter (L:L), interpreting: H* =  H tan(A’T’) as the 

empirically measured value. This is accurate at the 

present time, which in the model is: (64/100)(/2) = 

1.005 radians, and gives:  H0* =   H0/2.   

With this interpretation the predicted Hubble parameter 

matches observations and the standard model very well 

across the whole observed period of evolution, going back to the early observations made by the JWST at 

around 400 My.  

We have yet to fully explain this factor, but it is likely to reflect the construction of: H = (dR/dT)/R, where 

measurements of R reflect present distance across space, while measures of dR/dT reflect comoving distance. 

A scaling function is required at this point to match the distance interpretation, without solving it analytically. 

We fix this scaling of: H* = H tan(A’T’) for empirical predictions and, the Hubble predictions are reported for 

this variable: H*.  

Row 64: Radians:

A'T' = 0.64 * PI()/2 1.005
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Results.  

Results 1. Match of the expansion curve. 

The primary evidence is the match of the expansion curves on the two models, and with observations now 

going back to around 300 My, and H around ten times its present values, they match over a wide range. 

We summarise data from several studies, which are in turn summaries of multiple studies, and the data and 

matches is quite decisive. 

 

 

 

 

 

 

 

 

 

 

Figure 18. Cardioid model and standard model (multiple studies) match the Hubble parameter.  

For the power series trend-lines, the intercepts are not important, note the exponential factors: H = At-0.736, H = 

At-0.689. The Hubble parameter combines several measurements, and observational studies use several 

methods. However, red shift is the primary observable that we can measure most directly, from the star-light. 

 

Figure 19. Red shift z by Age T. The results from around 3 BY – present match closely, as in the 

previous graph. This is new data from the early universe, and confirms the model match.   
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Tests 1. Finkelstein, Atek, et al. Early red-shift galaxies.  

Comparison of four early red shift galaxies reported in 2022 with the Cardioid model.  

 

Figure 20. From the 12 references in Witze, three are on early high red shift galaxies. I found four data points 

for the earliest detected objects from two studies, Finkelstein 2022 and Atek 2022. The Cardioid model 

predicts that the times (age of universe) for these red shifts should be about 10%-20% larger.   

Table 1. Red-shift by time samples from JWST data. 

 

Each of these data points is close to the limits of observation records, and they are the result of extensive 

observation and analysis by the research teams. There is a lot of applied modelling already to extract the 

measurements from data. This models the role of ordinary matter like dust and stars in generating and filtering 

light, and the behaviour of photons, neutrinos, dark matter, and gravity waves. However, dark energy plays no 

role in the measurements. They are based measuring properties of light, like frequency, luminosity, period, 

polarisation. But dark energy does not interact with light or influence its path. And it was too small in the early 

universe (in the theory) to have much effect, until about 9By. 

The Cardioid model predictions are close to these four new observations. The estimated red shifts are 10%-

20% larger at these times, but this a good initial match, as the data has significant uncertainties. This confirms 

the viability of the Cardioid model.   
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Test 2. Panatopoulos. Middle red shift – Hubble parameter.  

(Panotopolous et al 2019) was prior to the JWST observations, and report Hubble parameter measurements 

against red shifts with 18 data points up to red shifts of 2, and compare the Hubble evolution predicted on 

several models. They conclude the standard CDM model is the best fit. 

 

Figure 21. The data points are empirical observations, the interpretation is based on modelling 

assumptions which play some role, but altogether the values are quite robust. This has a good linear 

approximation, with a slope of about 68, which we compare with the Cardioid prediction below. 

(Intercepts are not important here.) Figure 22. The cardioid model has a linear approximation for the 

same section of data with a slope of about 66. This is consistent with the value of 68 from the 

empirical data and standard model above.  

This seems quite a coincidence, but the Cardioid does not just match the data roughly, it matches the CDM 

standard model quite specifically well, among several model variations tried in cosmology.  

Panatopoulos, 2019. This shows seven models compared, with the data points indicated, 2019.  

 

Figure 23. Left. “H as a function of red shift for seven models”. Panatopoulos, 2019. These models 

have different combinations of matter, energy, etc. The main model (central black line) is the CDM  

and conforms closest to the data. It also conforms most closely to the Cardioid model.   

Figure 24. Right. Illustrating the relation between z and H for z = 0 to z = 2 for the standard model by 

Panatopoulas (2019), and the Cardioid model. This standard model was fitted from about 27 data 

points, and it maximises the fit with the CDM model. The cardioid model is only fitted to match the 

present value of H (71). 
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• These match within a few percent, back to about 2 By, and they match closer than they match with 

the other standard models.  

• The Cardioid numerical model can be a few percent out, but more important, we have not discussed 

possible corrections in the measurement analysis, for distance or luminosity or mass.  

• The empirical data has only 27 data points (each from another detailed study) to fix the standard 

model. This is small with quite large variance.  

Considering the Cardioid model is just a simple cyclic function, with a simple shape, why does it match so well? 

The standard model took a vast amount of work to collect data and refine. It has taken years for the data to 

become accurate enough to fix the parameters, and there is still a lot of uncertainty. This is a truly remarkable 

achievement in experimental physics! But it appears we can predict it from our simple model.  

This match with the observed expansion process is the first big test of the Cardioid model. To this point, there 

are only small differences between the theory and data, expected from natural variances in the data.  

 

Test 3. Witze Ref 9. Ferreira Large red-shifts. 

Ferreira et al (2022) relates red-shifts to rest-frame wave-lengths at large red-shifts.  

 

Figure 25. Ferreira et al 2022. Graph of red-shift to rest-frame wavelength. They are trying to 

establish robust empirical measurements for red-shifts in the early period. Figure 26. The Cardioid 

model is consistent with Ferreira (2022). It means our interpretation of variables and measurements 

matches. These are matching empirically, back to the very early observable universe, around 300 My.  

Since our Cardioid model also matches the present time well (being set to get the present Hubble value right), 

it matches the whole standard model Hubble curve well, like power-function trend lines later.  
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Model 1. General.  

Model. Expansion in different variables compared.  

 

Figure 27. Two graphs of the Cardioid solution, in the two different variable systems. Left. In the 

model variables, R’(T’) is a sin-squared function. Right. In conventional variables, R(T) is like an ellipse. 

• See Appendix 1. Cardioid expansion function.  

• Note that the R(T) function is really a complex trigonometric equation in T, but it is modelled very 

closely by a polynomial of order four, with R-squared of 0.9975. 

• Models providing four or more polynomial factors are almost bound to get good matches.  

Figure 28. From around 100My - 200My in T, about 4 

By pass in T’. This means 4 billion years of 

gravitational processes may occur in a period with 

only 100 million years of QM or EM processes. 

This scaling of the time and space variables makes 

processes almost impossible to visualise without 

making graphs. We cannot trust our normal 

intuitions. We have to work out models as 

counterfactual propositions, and predict what the 

measurements will be.  

The Hubble parameter also looks different in the different time variables. 

Figure 29. Relative behaviour of the Hubble 

parameter by time T’  for H (top, blue) and H’ 

(bottom, apricot). Time goes from about 5 By to 14 

By in conventional time. These represent the same 

model of H, but in two different variable systems for 

time, because: H is equivalent to: 1/T.   
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Model 1. H Early time.  

 

Figure 30. 1 – 20 My. Hubble parameter becomes 

astronomical as the radius shrinks.  

Figure 31. 20My – 150 My. Just before the 

earliest galaxies observed with JWST.  

Figure 32. The period around 300 – 600 My is 

where multiple disk galaxies and many very old 

galaxies have now been observed by JWST.  

Notice how stable the parameters for the power function are, with y ≈ 1200 x -1.01 

Note if the two models have matching predictions of red shifts at early times, they also have matching 

predictions of Hubble parameters, since the distance is almost the same in both models, c times the age of the 

universe minus a small amount of time.  
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Model 2. Scale function over early-present time. 

In our graphs, the cardioid is the blue curve, and the trendlines are the best fit to a power function. We can 

see how well they match the standard model for that part of the curve.   

Figure 33. Friedmann Equation Solutions. WIKIPEDIA. The 

standard model tells us this power function of time,  a(t) = 

a0t2/3(w+1), is the solution when it is spatially flat, meaning k=0.  

Solutions with: w=0 and w=1/3 correspond to matter and 

radiation. Solutions with: w → -1 have a cosmological constant, k 

not zero, and do not necessarily conform to this power function.  

• Note close to the present, this looks like the: a(t) = a0t2/3(w+1) 

solution with w = 0, and: a(t) = a0t2/3. We have values of 

0.664 and 0.633 around the 5 - 15 By period.  

• This is like a standard model for a matter-dominated 

universe - but only for a limited period of time.  

 

Figure 34. The power function matches in our short-term present, but not over a cycle.  

 

Figure 35. Earlier it still appears as a power function, with a slightly larger exponential. 

The trend-line power function changes from: t0.63 to t0.67 to t0.74 to t0.78… It is not a power function, it is really 

the sin-squared function: a(t)’ = a0 sin2(A’T’). This is in the variable t’, not t, for time. And a’ represents the 

radius ratio function: a’(t’) = R’(t’)/R’0 for the spatial variable r’, not r.  
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Model 3. H over long time. 14 By – 120 By. 

The Hubble parameter has the inverse behaviour.  

 

Figure 36. The power function matches in the short-term, but not over a cycle. Over a whole cycle, H’ 

reduces to zero, and becomes negative.  

Figure 37. For the mid-term period a power function fits the data very well. But the data generating 

this curve is not a power function. The red point is the present in the true time variable. In the long-

term, there is no match with the power function.  
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Results 2. Galaxy formation. 

We have established direct matches between the model predictions for the expansion and the standard model 

fitted to observational data. Now what about the features of the new data, in the points A-F above?  

On the Cardioid model:  

• What are the expected formation rates of early stars and galaxies?  

• Can we analyse luminosity? Sizes? Periods? Masses? Distances?  

• Can we explain the Hubble tension?  

Test 4. Rapid early galaxy and star formation in the early universe.  

Figure 38. Castellano, M. et al. Preprint at 

https://arxiv.org/abs/2207.09436 (2022). 

Authors of this and other papers are startled 

to find ten times or more than the number 

of galaxies they expected in the early 

universe. At their first glance! Indeed, that is 

conservative: they are finding massive 

galaxies that appear impossible on the 

standard model.  

They expected some early galaxies, on the basis of fuzzier HST data. But the standard model does not predict 

anything like this! It predicts much slower star and galaxy formation. Stars should only be appearing around 

500 My ago, and galaxies should not form until about 1-2 By. It depends on the model. But slow rates of galaxy 

formation have been a problem for the standard model.  

But this is the Cardioid model’s big point of difference. It was previously its big problem, because its 

predictions for early gravity are different from the standard model. But now we find this is its strength. It 

predicts faster galaxy formation, and more dynamic early formation of large-scale structure. 

• First it is expected to speed up gravitational collapse of dust clouds.  

• Second it predicts faster rotation and smaller radius for early rotating galaxies and dust clouds.  

• Third it suggests increased luminosity of early stars, and increased speed of stellar processes, if these 

are dependent on gravitational pressure.  

Typically large stars have more pressure, burn hotter, and burn out faster. We expect early stars and galaxies 

to act gravitationally in “fast motion”, like more massive stars or galaxies today.  

Figure 39. In the Cardioid model, the universe is 

some 55 By old in “real time". Yet it appears only 14 

By in conventional time. What does this mean? We 

can think of T as the amount of “QM time” passing, 

and T’ as the amount of “gravitational time” passing.  

• In the first 20 By of T’, only 20 years of 

conventional QM time T passes.  

• In the first 30 By of gravitational time, 1 By of 

QM time passes. 

• In the next 25 By of gravitational time, 13 By of 

QM time passes.  
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The conventional time variable in physics in defined so that the present rate of QM (primarily EM) processes is 

invariant in time, t. This is set by an instrumentalist definition or convention.  

• This sets real time, t, to proper time, , defined in QM processes.  

• But the Cardioid model means proper time defined by gravitational processes changes like: 1/a.  

Conversely, in the Cardioid model variables, QM processes speed up with expansion.  

• QM processes were slower in past in true time, T’.  

• The gravitational constant G’ is constant in T’.  

Note there is a change in the form of mass-energy in the model. Rest-mass is transformed to “dark matter 

mass”, which is an expansion of space.    

Time for early galaxies to form. 

 

Figure 40. This shows the period T from about 63 My to 326 My.  

The model suggests early galaxies have ample time to form in this period, from around a ≈ 0.02. This is only 

300 My in ordinary time, but 6-7 By in model time. At the start of this period, around 60 My, a is about 1/50, 

and in our simplest model, galaxies rotate some 2,500 times faster than the same galaxies today! P = P0a2= 

P0/2,500. And they will be 1/50th their present radius:  R = R0a = R0/50. At around 150 My, a is about 1/30, and 

rotation is about 1,000 times faster.  

So in the early period, we expect there will be compact fast-spinning globules or rings of dust or stars, forming 

proto-galaxies. We do not know the dynamics of their formation in our model, but it must resemble the 

standard model, appropriately re-scaled, fairly well. At some point dense turbulent clouds of hydrogen form 

stars and eventually coalesce into stable structures, some of which eventually become disk galaxies.  

This process of gravitational collapse and aggregation into both stars and galaxies must happen much faster 

than in our current era, of weak gravity. By around 300-400 My, or Z = 10-15, there must have formed 

multiple, old-looking disk-like galaxies.  
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Test 5. Galaxy expansion with changing G. 

“One study looked at … the period approximately three billion years after the Big Bang. … At the 

infrared wavelengths detected by Webb, most of the massive galaxies looked much smaller than they 

did in Hubble images. 

 

It seems they are talking about sizes smaller by about 50%. What happens in our model to the rotational speed 

and radii of gravitational systems, like spinning galaxies or star systems? There may be several equilibrium 

states that systems might evolve into, if the gravitational force slowly weakened. The first and simplest model, 

which is valid in the short-term with slow change, maintains Kepler’s 3rd Law and makes: r → ra and: P → r/a2.  

However this does not take the production of dark matter into account, and in the recent past (from about 2By 

to the present), the variations are likely to be only on the scale of a1/2 rather than a. But here we report the 

higher rate, on the Kepler model.  

Table 2. At T = 3 By, a = 0.35, and in the simplest model, we expect 

that galaxies of similar mass to those today will be only 35% of their 

current radius. At T = 5 By, this may be 50%. They may also appear 

brighter than expected.  

Indeed, galaxies are predicted in this simplest model to expand with 

the universe, whereas in the standard model they are locked in local 

gravitational orbits. However we think that the real solution is likely to 

be in-between, mainly because of the role of dark matter. These 

graphs show the maximal expansion rate.  

 

 

Figure 41. On the simplest model, galaxies were about third of their present sizes at about 3 By.   

Figure 42. On the simplest model, galaxies rotated about ten times faster at 3 By.   

Figure 43. On the simplest model, stars had about three times the orbital speed at 3 By.   
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These are general dynamics we analyse. But the process of galaxy formation and development is affected by 

the conversion of particle energy to dark matter, which slows the expansion and changes the shapes.   

Dark Matter. 

• Do stars or galaxies that formed in the very early period survive today?  

• Which period did our present stars and galaxies form in?  

• Did a generation of very large galaxies form and disperse?  

 

The current dark matter ratio is about 85% of total mass on average, but it varies between galaxies on an 

individual basis, commonly between 80%-90% of the galactic mass, but can be more or less. Some small dwarf 

and elliptical galaxies have no DM, thought to be lost as a result of interactions with other galaxies. The critical 

question in our scenario is when the period of onset of galactic formation begins, when galaxies retain their 

DM, and are able to form halos. The general pattern and average indicates that: 

• On average, about 7 times the mass energy has been transferred from the spatial potential energy, 

since the galaxies began to accumulate dark matter.  

The first estimate is simply to take: a ≈ 0.15, and we get a time of about 1By or so for the onset of DM. 

 

Figure 44. The period for a DM proportion of 80% - 90% is about: a = [0.1, 0.2] and: T = [0.7, 1.4] By, 

on the simplest assumption. Some small galaxies lose or fail to retain dark matter.  

Note that in model time, T’ = 30 By, not 1 By. There has been the equivalent of billions of years of gravitational 

processes already passed. But for some reason, modern galaxies do not stabilise and begin to retain their dark 

matter, in the halos we observe or deduce today, until about 1 By.  

 

Test 6. Speed of rotation and formation of disks. 

“With the resolution of James Webb, we are able to see that galaxies have disks way earlier than we thought 

they did,” says Allison Kirkpatrick, an astronomer at the University of Kansas in Lawrence. “That’s a problem, 

she says, because it contradicts earlier theories of galaxy evolution.” 

On the Cardioid model, the rotational frequency is expected to be higher in the past, by between 1/a  and 1/a2. 

This applies in the very early universe, when early galaxies coalesce faster and spin faster (from stronger G) 

and may be expected to form disks and massive galaxies much earlier than expected. The feature of mature or 

older disk or spiral galaxies is that it takes many rotations to create structures. Unless the galaxies rotate faster 

than on the standard model, there is no apparent way for them to form these disks.  

Ferreira et al. 2022. “The JWST Hubble Sequence: The Rest-Frame Optical Evolution of Galaxy Structure at 

1.5<z<8” 

“We present results on the morphological and structural evolution of a total of 4265 galaxies 

observed with JWST at 1.5<z<8 … this is the biggest visually classified sample observed with JWST yet, 
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∼20 times larger than previous studies, and allows us to examine in detail how galaxy structure has 

changed over this critical epoch. All sources were classified by six individual classifiers using a simple 

classification scheme aimed to produce disk/spheroid/peculiar classifications, whereby we determine 

how the relative number of these morphologies evolves since the Universe's first billion years. 

Additionally, we explore structural and quantitative morphology measurements … and show that 

galaxies at z>3 are not dominated by irregular and peculiar structures, either visually or 

quantitatively, as previously thought. We find a strong dominance of morphologically selected disk 

galaxies up to z=8, a far higher redshift than previously thought possible. We also find that the stellar 

mass and star formation rate densities are dominated by disk galaxies up to z∼6, demonstrating that 

most stars in the universe were likely formed in a disk galaxy. We compare our results to theory to 

show that … the Hubble Sequence was already in place as early as one billion years after the Big Bang. 

This is a major contradiction of the standard model. In thousands of simulations of different scenarios, it has 

not previously produced this behaviour! Will cosmologists be able to get the standard models to produce this 

behaviour, now they know what the results are supposed to be? Perhaps not, because the behaviour is too 

extreme, but they will try. However, it is hardly robust if its predictions can be adjusted to match any new 

behaviours that unexpectedly arise.  

The cardioid model, by contrast, naturally predicts such behaviour, with a mechanism intrinsic to the theory. It 

predicts this as a major difference with the standard model, but it must be taken as a qualitative prediction, as 

we cannot yet check it with detailed simulations.  
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Test 7. Guo 2022. Early-Middle period observed in detail.  

The surprises continue in the early-middle period, at around 2-5 By or red shift of 1-3. This is the major period 

of modern galaxy formation, and it has been studied before, but now they find that structured barred spiral 

galaxies are well developed much earlier than they thought.  

 

Figure 45. (Guo 2022). “Montage of JWST images showing six example barred galaxies, two of which represent 

the highest lookback times quantitatively identified and characterized to date. The labels in the top left of each 

figure show the lookback time of each galaxy, ranging from 8.4 to 11 billion years ago (Gyr), when the universe 

was a mere 40% to 20% of its present age. Credit: NASA/CEERS/University of Texas at Austin.” 

James Webb telescope reveals Milky Way–like galaxies in young universe (phys.org) 

Previous data, mainly from the HST data, was 

limited to around z = 1, and there is little data on 

the earlier period.   

Guo 2022.  

 

The match between red-shift and age is about 10% different to the Cardioid model.  

 

Figure 46. Cardioid model of z by age, T, from z = 1 to 3.   
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C.f. Guo, et al. 2022. Their red shifts for 8 – 10 By 

ago should be 9 – 11 By ago on the Cardioid 

model. The two highest red shifts of 2.14 – 2.31 

should be a little over 11 By ago (not 10 By?). 

The red shift of  z = 1 should be 9 By ago (not 8.4 

By?).  

But note our Cardioid model fits for the present 

value of H0 = 72 (cephids) while their model fits: 

H0 = 67.36 (CMBR), the Hubble tension, and 

already a difference of 7.5%. Both models have 

at least a few percent error, and this is 

consistent. The interesting points are that bars 

are “already fairly strong and well-developed at 

… early cosmic times”, the suggestion that the 

bars form early in “massive dynamically cold 

disks”, and the question whether bars survive to 

the present epoch.  

In any case, this supports the Cardioid model, 

with its predictions of early structure.  

 

 

Test 7. Star chemistry and luminosity.    

‘Astronomers had thought that the process of chemical enrichment — in which stars fuse hydrogen 
and helium to form heavier elements — took a while, but the finding that it is under way in early 
galaxies “will make us rethink the speed at which star formation occurs”, Kirkpatrick says.’ 

E.g. Trump (2022) report signs of oxygen at red-shifts of 5. Studies are also done on metallicity of stars and 

other features. The question here is about the first generation of stars, which originally combined only 

hydrogen and helium, fusing it in their nuclear cores, and subsequently exploding, creating heavy elements, 

such as planets are made from.  

• The Cardioid model makes gravity stronger, and stellar nuclear fusion reactions that depend upon 

gravitational pressure must be expected to be faster for stars of similar mass.  

• This speeds up star formation and is consistent with the new observations.  

The processes of nucleosynthesis within stars should not change very much, as they are quantum mechanical 

processes, based on the standard particle model, and QM remains very similar until the very early period. But 

all these processes run faster and need to be remodelled in the new model.  
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Test 8. Star luminosity, period and distance. 

 Researchers have begun looking at luminosities with JWST.  

“We compared the resultant Period-Luminosity relations to that of 49 Cepheids in the full period range 

including 38 in the longer period range observed with WFC3/IR on HST and transformed to the JWST 

photometric system (F200W, Vega). We find good consistency between this first JWST measurement and HST, 

and no evidence that HST Cepheid photometry is "biased bright" at the ~0.2 mag level that would be needed 

to mitigate the Hubble Tension…” . (Yuan 2022). 

Cephid variable stars are central to distance 

measurements required to estimate the Hubble 

parameter from red shift data.  

Figure 47. WIKIPEDIA. Period-luminosity relation.  

(Yuan 2022) is mainly concerned to analyse the match 

between the HST and JWST, and confirms the data is 

reliable and consistent. This is what we expect, as the 

methods for measuring luminosity are effectively the 

same, and it is largely a matter of accounting for various 

factors, like dust. On the cardioid model however, the 

luminosities, periods and masses in the early universe 

are different, and this means we have to reinterpret 

distance calculations.  

This is a key point of key interest to go forward, although we have not analysed it properly yet. We expect 

frequency to increase for Cephid variables in the early universe, by 1/√a or a similar factor. We do not know 

what happens to the luminosity. But the differences may cancel leaving current distance calculations 

unchanged. That would help explain why the standard and cardioid models match so well, without needing 

further interpretation of distance. This is a key question for analysing distance measurements required for the 

Hubble parameter on the Cephid variable method.  

Until this and similar details are analysed properly, the Cardioid model cannot be confirmed. But we may take 

the various lines of evidence so far to be a strong case for taking it seriously enough to check. If consistency of 

the theory is verified it has a strong case to be considered as a realistic unified theory.     
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Discussion.   

If the Cardioid model is physically wrong, the empirical matches illustrated here are just a mathematical 

coincidence. This is quite possible. There are coincidences in the data, such as the fact that the present Hubble 

time (1/H) is very close to the measured age (T), and the time A’T’ is very close to 1 radian, and: tan(A’T’) ≈ 

(/2). It may be that the model fit is a coincidence. This is the point: both the Cardioid model match and the 

standard model match may be coincidences. Can we really tell between them on the basis of the data? Or 

more exactly, can we really verify the standard model, in preference to the Cardioid model, on the basis of the 

data? The answer here is No. This means there is a viable alternative cosmology with completely different 

behaviour to the standard model! It removes dark energy, the Big Bang singularity, and the accelerating 

expansion.  

But how can these questions remain so uncertain? After decades assuring us of their theory, has modern 

cosmology been telling us fairy tales all along? Well yes, it has, for the general reason that the theoretical 

models they are representing as scientific fact are under-determined by data and not verified as facts at all.  

The main reason so far has been limited empirical observations, which only cover limited periods in the past. 

But we can now see back as far as 300My, for the earliest visible galaxies or stellar objects so far detected. And 

we can see the CMBR in great detail, which was produced around 380Ky, and contains the earliest images of 

possible structures we can see. This data has improved tremendously over 30 years, with the HST bringing dark 

energy into view twenty years ago, and the JWST bringing early-universe galaxies into view in 2022, and lots of 

other telescopes and measurements of the CMBR,  Hubble constant, Cephid variables, distance ladders, 

populations of galaxies, etc, filling in increasing detail. 

The two models cannot be decided on their “best empirical fit” with astronomical data. Instead it comes down 

to the fundamental theory behind the models. The two different model behaviours ultimately reflect two 

different fundamental theories, which determine relationships in the background. The conventional model 

assumes the Friedmann equation, with mass-energy terms consistent with General Relativity. The different 

Cardioid model for R(T) must reflect a different assumption in the fundamental theory, and we see this 

explicitly. In other words, it is not primarily the mass-energy contents of the universe that is in question, as 

conventional cosmology assumes. It is the fundamental model, a solution to GR, which we determines  

underlying relationships.  

But conventional cosmologists have insisted for decades now that their GR model is the only valid one. They 

can publish almost any kind of speculative proposals for new sources of mass-energy, as long as certain 

“fundamental algebraic properties” are retained in the super-structure of the theory. This refers to the so-

called relativistic covariance of equations, often stated in terms of invariance of form of laws w.r.t. observers or 

coordinate systems. This is interpreted as the great and immutable truth of General Relativity, and it is why 

cosmologists believe their picture of the standard model is much more powerful than any empirical evidence 

they have for it, and more powerful than the alternative model we introduce here. However we will disagree.  

Conventional cosmology has clung obsessively to its comfort blanket of GR, and ignored all alternatives to the 

fundamental theory.  This is a kind of of catch-22. Almost no one has proposed any alternative fundamental 

theory, and theoretical physicists today have no idea what an alternative theory might even look like. All work 

in the field is done trying to fix up the conventional theory. No alternative theories have appeared, and the 

subject is increasingly forbidden, as the vast investment in physics is in the conventional theories.  

But I emphasise that that this choice to stick with conventional GR at all costs has severe implications for the 

larger future of physics. Because the conventional choice forbids a priori any theories that have (i) changing 

fundamental constants, or (ii) physical relationships between local constants and expansion, or (iii) temporal or 

spatial variations in dimensionless ratios, or (iv) transformations of measurement variables to true variables 

for symmetries, or (v) extrinsically curved geometries in more than three dimensions of space.  
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Appendices.  

Appendix 1. Cardioid expansion function and transformations.  

Note the capitalised variables are defined by the general boundary conditions: dT = dt and dT’ = dt’, with the 

special boundary conditions that: T’→ 0 and T → 0 at origin (Big Bang), and T0 → current age (Now).  

Cardioid solution.  

Cardioid solution is defined by this equation, in the model variables (dashed).  

1. 𝑅’(𝑇)’ =  𝑅′𝑀𝐴𝑋𝑠𝑖𝑛2 ((
𝜋

2
) (

𝑇′

𝑇′𝑀𝐴𝑋
)) =  𝑅′𝑀𝐴𝑋𝑠𝑖𝑛2(𝐴′𝑇′)           

A’ is a constant defined to convert time T’ into an angle. A’T’ is dimensionless, in radians:  

2. 𝐴’ =  (
𝜋

2
) (

1

𝑇′𝑀𝐴𝑋
) = Constant. 

Model Hubble Parameter. 

Differentiate (1): 

3. dR’/dT’ = R’MAX 2A’sin(A’T’)cos(A’T’)  

= 2A’R’cos(A’T’)/sin(A’T’)  

= 2A’R’/tan(A’T’)  

H’ is defined in the units of (1/T’):  

4. H’ = (dR’/dT’)/R’  

(3) and (4) mean:  

5. H’ = 2A’/tan(A’T’)  

The inverse Hubble time is the Hubble age: 

6. 
1

𝐻′
= (

𝑇′𝑀𝐴𝑋

𝜋
) 𝑡𝑎𝑛 (

𝜋𝑇′

2𝑇′𝑀𝐴𝑋
) 

So the value at the present time is given by putting in T0’ for T’: 

7. 
1

𝐻′0
= 2𝐴′𝑡𝑎𝑛 (

𝜋𝑇′0

2𝑇′𝑀𝐴𝑋
) 

Conventional Hubble Parameter.  

It is a well-known coincidence that: 1/H0 ≈ T0 ≈ 13.8 By, for the commonly agreed present values.  

A similar coincidence in the Cardioid model is that the current time is close to: 
𝑇′𝑀𝐴𝑋

𝑇′0
≈

𝜋

2
 .   

This appears in the best fit model. It means the current angle in radians is 1:  

𝐴′𝑇′
0 =  

2𝑇′0

𝜋𝑇′𝑀𝐴𝑋

≈
2𝜋

𝜋2
= 1 

 In the numerical model we see: A’T’ = 1.005. And: tan(1) ≈ /2, so: tan(A’T0’) ≈ /2. So from (5):  
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𝐻′
0 =

2A′

tan(𝐴′
0𝑇′

0)
≈ (2) (

2

𝜋T0
′) =

4

𝜋𝑇′
0

 

So we have this predicted empirical relationship for H from our model:  

8. 𝐻′
0 ≈

4

𝜋𝑇′
0
     𝐻0 ≈

2

𝜋𝑇0
 

The measured empirical value for the Hubble parameter is larger by /2.  

With the redshifts and expansion variable, we expect the model variables to correspond quite directly to the 

measured variables. But the Hubble parameter is a combination of measurements, and we cannot expect the 

model H to match immediately without some additional scaling factor. It is bound to be needed, because there 

has been no account of the measurement of luminosity and distance mentioned yet. But what should it be? It 

may be a little difficult to analyse. But we know what its present value is: the factor /2.  

To keep the concepts distinct, we define the empirical measurement as H*, and we have the measurement 

observation:  

H* ≈ 1/T0 = 1/13.8 By ≈ 72 (m/s)/MPSec Empirical measured value of H0. 

And we have: 

9. 𝐻0
∗  ≈

𝜋

2
𝐻0 Model interpretation of H0* 

This is true for the present time, we generalise it to all times in a functional way:  

10. 𝐻∗(𝑡)  =  tan (𝐴′𝑇′)𝐻(𝑡)  Postulate: model interpretation of H*. 

This means we multiply the direct model H by the extra factor tan(A’T’) to predict the observed H*.  

• This fits with the standard model data-driven models very closely from the early past to the present. 

 

Bakground. LNC relationship. 

Note there is a primary relationship in the background, which is what enables us to connect quantum 

mechanics to the cosmology, and have a changing value of G in the first place. This is a “large number 

coincidence”, which predicts the age of the universe from the constants in the general theory.  

 

Extract. Holster 2014. The first equation states the measured age, the second equation states the 

value of a special combination of fundamental constants. This is the precise version in our model of 

one of Dirac’s large number coincidences.  

In the larger theory, the radius of the universe R equals the large dimensionless constant: 𝐷 =
2ℏ𝑐

𝐺𝑚2 times the 

tiny QM particle-mass radius: 𝑟 =
ℏ

𝑚𝑐
. We normally write it as the ratio: R/r = D. This uses the special value for 

the fundamental mass: 𝑚3 =  𝑚𝑒𝑚𝑝
2 .  The relationships should be written in dashed variables, but they hold at 

the present time for the constants in normal variables.  
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So:  𝑅 =  𝐷𝑟 =
2ℏ2

𝐺𝑚3 =  
ℎ2

2𝜋2𝐺𝑚3 = 13.823 𝐵𝑙𝑦 TAU relationship. 

Or the corresponding present time: 

  𝑇0 = 𝑐𝑅0 =
2ℏ2

𝐺𝑚𝑒𝑚𝑝
2𝑐

 = 13.823 𝐵𝑦  TAU relationship. 

This gives the measured age of the universe, about 13.8 By, to a very close approximation. This is a genuine 

large number coincidence. Why does this special combination of fundamental constants, combining QM and 

GR, give precisely the measured cosmological age of the universe? It appears as purely coincidence in standard 

cosmology. We only note it in passing here, but it is this “coincidence” that makes the theory possible in the 

first place. Note a second independent coincidence, involving only electric-QM constants and not G, is the 

close equivalence of the fine structure constant:  = q2/40hc = 1/137, and the electron mass, in our natural 

units of m, i.e. me/m = me/(mp
2me)1/3 = (me/mp)2/3 = 1/150. As a fundamental relationship, this requires that the 

elementary electric charge is determined by the particle mass-ratio:  

q = 2(0hc) 1/2(me/mp)1/3. 

The relation is stated with h-bar (which corresponds to using a radius variable). Replace h-bars with h to get a 

circumference variable: 

(
2

𝜋
)

ℎ2

𝐺𝑚𝑒𝑚𝑝
2𝑐

= 𝑇0
′ =  2𝜋𝑇0 = 2𝜋 𝑥 13.823 𝐵𝑦 = 86.7 𝐵𝑦 

Or:   
ℎ2

𝐺𝑚𝑒𝑚𝑝
2𝑐

= (
𝜋

2
) 𝑇0′.  

So we get our present value as:  𝑇0 =
𝑇′0

2𝜋
=  13.8 𝐵𝑦 in the Cardioid solution.  

Model interpretation of H*.   

We make the assumption (10) here as the basis of interpreting empirical results for the model. It fits perfectly 

well, and it is the only physical interpretation that can be taken for the model to work. So in general discussion 

we refer to H* as the model prediction of the Hubble parameter. But we must still justify our interpretation of 

H*, in terms of measurement processes, which we need to reanalyse in the new model. Briefly, we conclude 

that: 

• The: dR/dT term in: H = (dR/dT)/R is being correctly determined from red shift data.  

• But the distance term R is not being correctly estimated from stellar luminosity measurements. 

• In the past, G was greater by 1/a, and on the simplest assumption, if this causes luminosities of stellar 

processes to increase by 1/a, then distances are greater by: 1/√a than estimated. 

In any case this requires a detailed analysis of the distance measurements inferred from luminosities of stars. 

This is analysed further in Appendices.  

As the main conundrum for the theory, several options have been considered. 

• Have we got the correct best-fit model?  

• Can’t we just match H* = H by varying the model parameters?  

• Do we have any analytic errors of /2 in our calculations? 

• Does the geometric interpretation require a constant factor?   
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We then need to turn to the physical interpretation of the measurement process, from the production of the 

light in distant stars to its subsequent measurement on Earth billions of years later.   

• Are red-shifts being interpreted accurately in our theory?  

• Are distance measurements using distance ladders being measured accurately?  

• Do distance estimates for the CMBR estimates have the same problem as cephid and other methods? 

Exercise. Set HT = 1. 

• Can we set: T0’ to give: T0’H0’ = 1?   

• Suppose:  H0T0 = 1, then: H0’T0’ = 2.  

• Then:    
1

𝐻′0
= (

𝑇′𝑀𝐴𝑋

2𝜋
) 𝑡𝑎𝑛 (

𝜋𝑇′0

2𝑇′𝑀𝐴𝑋
) =  𝑇′0.  

• Or:   
𝐴′

𝐻′0
= 𝑡𝑎𝑛(𝐴′𝑇0′) =  𝐴′𝑇′0 

• But the only solution for: tan() =   is at:   = 0, which is not physical.  

Exercise. Set HT = 2/. 

• Suppose: H0T0 = 2/, so: H0’T0’ = 2/ , and: 1/H’ = tan(A’T’)/2A’. 

• So:  
2𝐴′

𝐻′0
= 𝑡𝑎𝑛(𝐴′𝑇0′) = 𝜋𝐴′𝑇′0 

• Solution: (𝐴′𝑇′0) ≈  1.005 radians. 

Scale function a(t). 

We define a scale function a’(T’), which is analogous to a(t) in the Friedmann equation.  

We define a’(T’) as the ratio of the universe radius at time T’ divided by the radius at the current time T0’. 

11. 𝑎′(𝑇′) =  
𝑅’(𝑇′)

𝑅′0 
          

From (1): 

12. 𝑎′(𝑇′) =
𝑅′𝑀𝐴𝑋

𝑅′0
𝑠𝑖𝑛2 ((

𝜋

2
) (

𝑇′

𝑇′𝑀𝐴𝑋
)) 

Note that by the same coincidence in A’T’, we have: 
𝑅′𝑀𝐴𝑋

𝑅′0
≈

𝜋

2
.  So:  

𝑎′(𝑇′) ≈ (
𝜋

2
) 𝑠𝑖𝑛2 ((

𝜋

2
) (

𝑇′

𝑇′𝑀𝐴𝑋

)) 

Along with the further coincidence that: H0 ≈ 1/T0, we see how easy it is to get the factors of   mixed up.  

Transformations in a(t). 

In terms of the scale function: a’(T’) = R’(T’)/R’0 = R’(T’)/R’(T0’), the general transformations are:  

13. dr = a’dr’, dt = a’2dt’, dm = a’dm’ Differential transformations  

14. c’ = a’c0 and: h’ = h0/a’ and: m’ = m0/a’ and: G’ = G0. Dynamics of constants. 

This means the values of constants are dynamic in the dashed system, except for G’, where: G’ = G0. The latter 

variables are used when we introduce mass and rest-mass.  

• The essential requirement for our transformations to make physical sense is that: c = c0 and: h = h0 

and: m = m0, so these appear constant in ordinary variables, as usually defined instrumentally.  
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• But note this does not transform all the differences between the two models away.  

• The Cardioid model contradicts the standard model by implying a changing value of G.  

• But it means that locally the space-time metric matches SR for QMs.  

Now R has the general solution: 

15. R = R’2/2R’0 

But T can only be determined by integration, when we have a solution for a’(t’): 

16. T = ∫0+, T1 dt =  ∫0+,T’ a’2 dt’ 

The Cardioid solution allows us to solve this.  

Hubble parameter.  

The normal Hubble parameter, H is defined in units of (1/T):  

17. H = (dR/dT)/R  

To get dR/dT differentiate (11) by T. 

18. dR/dT = R’(dR’/dT)/R’0 

Substituting (11) and (14) in (13): 

19. H = (R’(dR’/dT)/R’0)(2R’0/R’2)= 2(dR’/dT)/R’ 

Using the identity:  dR’/dT = (dR’/dT’)(dT’/dT):  

20. H = (dR/dT)/R = 2H’(dT’/dT) 

At the present time,  

21. dT’/dT = 1, so: H0 = 2H0’ 

T is solved in terms of T’ our model by: 

22. T =(R’MAX/R’0)2(3T’/8 - (T’MAX/) Sin(A’T’)Cos(A’T’) + (T’MAX/8) Sin(2A’T’)Cos(2A’T’)) 

Note: (R’MAX/R’0)2 = 1/sin(A’0T’0) 4. And the sin-cos terms are zero are T’MAX. So: 

23. TMAX = (R’MAX/R’0)2(3TMAX’/8). 

Then: 

24. 𝐻0 =  2𝐻′0 = (
2𝜋

𝑇′𝑀𝐴𝑋𝑡𝑎𝑛(𝐴’𝑇’0)
) 

Acceleration of H. 

We obtain the acceleration of H in the Cardioid model.  

Differentiating:  a’ = (Rmax/R0) sin2(A’T’), and: A’ = (/2Tmax) gives: 

 da’/dt’    = 2A’(Rmax/R0) sin(A’T’) cos(A’T’)  

 = (/Tmax)(Rmax/R0) sin(A’T’) cos(A’T’)  

 = (/Tmax)a’/tan(A’T’) 

or: 
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25.  da’/dt’ = 2A’a’/tan(A’T’) Rate of change of expansion 

Differentiating again: 

 d2a’/dt2 = 2A’/tan(A’T’) + 2A’a’d/dt’(1/tan(A’T’))  

 = 2A’/tan(A’T’) -(2A’2/tan2)(1+sin2/cos2)  

 = 2A’/tan(A’T’) - 2A’2/sin2(A’T’)    

So: 
𝑑2𝑎′(𝑡′)

𝑑𝑡2   =  
2𝐴′2

𝑠𝑖𝑛2(𝐴’𝑇’)
(

sin2(𝐴′𝑇′)

tan(𝐴′𝑇′)𝐴′
− 1)     

Use:   
2𝐴′2

𝑠𝑖𝑛2(𝐴’𝑇’)
  =  (

𝑅′𝑚𝑎𝑥

𝑅′0
) (

2𝐴’2

𝑎  
)   

So:  H’ = (dR’/dt’)/R’ = (R’0da’/dt’)/(R’0a’) = (da’/dt’)/a’)  

26.   𝐻’ =  
2𝐴’

𝑡𝑎𝑛(𝐴’𝑇’)
 =  

𝜋

𝑇′
𝑀𝐴𝑋

1

𝑡𝑎𝑛(𝐴’𝑇’)
 

27.   dH’/dt’ = -2A’2/sin2  

28.   
𝑑2𝐻′(𝑡′)

𝑑𝑡2   =  −
2𝐴’2

𝑠𝑖𝑛2(𝐴’𝑇’)
  =  − (

𝑅′𝑚𝑎𝑥

𝑅′0
) (

2𝐴’2

𝑎′  
)    

We might define a complex version using real and complex parts for two lengths:  

 𝑎’ =
𝑅𝑚𝑎𝑥

𝑅0
𝑒2𝑖𝐴′𝑇′ =  

𝑅𝑚𝑎𝑥

𝑅0
(cos(2𝐴’𝑇’) + 𝑖 sin (2𝐴’𝑇’)) 

 

Metric equations quick summary. 

This is the metric for theories in different arrangements for comparison.   

FLRW equation. (1) is the FLRW equation. (2)-(4) are different arrangements.  

1  c2d2 = c2dt2 – a(t) 2dr2  FLRW metric 

2 d/dt = √(1-a2v2/c2) FLRW time dilation 

3 ds2 = dw2 + a(t) 2dr 2 = c2dt2  FLRW space-proper-time 

4 √(dw2 + a(t) 2dr2)/dt = c  FLRW Speed version 

TAU equations. (1’-8’) are the primary equations. 

1’ ds’ = √(dw’2+dr’2) TAU metric postulate  

2’ ds’/dt’ = a’(t’)c0 TAU speed postulate 

3’ dw’dr’ = dL0 2= constant TAU volume conservation 

4’ dr’ = dr0/a’ TAU space postulate  

5’ dw’ = dw0a’ TAU proper time postulate  

6’  dt’ =  dt0/a’2 TAU time postulate 

7’ dm’ = dm0/a’ TAU mass postulate  

8’ c’ = (dr’/dt’) = a’c0  
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(1’-8’) are in alternative variables, which transform to standard variables, (1-4). 

• In conventional time, T, all QM constants, including c, h, m, 0, q, are invariant and G changes by 1/a.  

• In true time, T’, all QM constants change, by simple powers of a, and G’ is constant.   

• In the Cardioid or TAU model variables, G’ is invariant, and QM processes speed up as the universe 

expands, and c’ = ac0, h’ = h0/a, m’ = m0/a, f’ = a2f0.  

• This ensures conservation of relativistic momentum: m’c’ = (m0/a)(ac0) = m0c0.  

• Note mass-energy is not conserved in the particle evolution: m’c’2 = a(m0c0
2) alone.  

• The extra energy required for the particle mass is extracted from the velocity in R, the expansion slows, 

and the energy: m’((dR’/dt’)2+(dr’/dt’)2) = m’((dR’/dt’)2+ c’2) is conserved.  

• This exchange between the manifold and particle retains some energy in the manifold which appears as 

dark matter, because it is a localisation of the spatial energy.   

Friedmann and cardioid metrics quick summary.  

This compares the TAU metric to the FLRW.  

SR c2d2 = c2dt2 – dr2  Minkowski metric. 

GR c2d2 = c2dt2/k(r) 2 – (dy2 + dx2) –  k(r)2dr2) Schwarzschild. 
1

𝑘2 =  1 −
2𝑀𝐺

𝑐2𝑟
 

FLRW  c2d2 = c2dt2 – a(t) 2dr2  Friedmann solution. 

TAU  c2d2 = c2dt2/a(t) – a(t)dr2  In conventional variables, a. 

Equivalent:  a(t)c2d2 = c2dt2 – a(t)2dr2 In conventional variables, a.  

TAU’  c2d2 = a’(t’) 2c2dt’2 – a’(t’)4dr’2  In model variables, a’. 

This requires: c2dt2/a – adr2 = a’ 2c2dt’2 – a’4dr’2  

The solution is:  dt = dt’a’2   and  dr = dr’a’   and  a = a’2  Transformations.  

This is general in TAU. The Cardioid solution is a solution for a in TAU.  

 

FLRW Case 1. Light.   c2d2 = 0.  So: dr/dt = c/a.   (Red shift.) 

FLRW Case 2. Stationary mass.   dr/dt = 0.  So: d/dt = 1.   (SR limit.)  

FLRW Case 3. Moving mass.  dr/dt = v <<c.  So: d/dt = √(1 – a 2v2/c2).  SR + expansion.  

 

Cardioid Case 1’. Light.  c2d2 = 0.  So:  dr/dt = c/a’2 = c/a (Red shift). 

Cardioid Case 2’. Mass particle.   dr/dt = 0. So: d/dt= 1/√a  (Changing-SR limit.) 

Cardioid Case 3’. Mass particle.   dr/dt = v << c. So: d/dt = (1/√a) √(1– a2v2/c2)  

≈ (1/√a)(1– a2v2/2c2)  
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Appendix 2. Physical effects.  

Red Shift. 

The red shift of light from earlier times measures the scale factor of expansion, a’(T’), and as we have a model 

for the expansion with time, it lets us infer the time. We assume that at the present time: T0’, light is produced 

at a natural frequency and wavelength, by a natural chemical process, with a distinctive wavelength: 

0’ = c0’/f0’ 

At the earlier time T’, light is produced with frequency f’, wave-length ’, and wave speed c’, so:  

’ = c’/f’ 

The Cardioid model provides the key relationships: 

c’ = a’c0  

f’ = a’2f0 

So:  

’ = c’/f’ = c’0f0’/a’ = 0’/a’ 

• This is the true wave-length of the original light when it is produced at its origin at T’.  

• It means the true wavelengths were longer in the past, when: 1/a’ > 1. 

But the wavelength also stretches as space expands.  

• Space stretches by the factor: a’(T’) going from: T’0 to T’.  

• Space stretches inversely by: 1/a’(T’), going from T’ to T’0.  

So when the light reaches us from T’ in the past, its wavelength is further increased:  

0* = ’/a’ = 0’/a’(T’)2 

Constants match at the present moment: 0’ = 0. And there is a general solution for a:  

a’(T’) = √a(T). 

So the change in wavelength in conventional terms is determined by: 

* = 0/a(T) 

The red shift is defined as the normalised change in wave-length: z = (*-0)/0 , or: 

z = (*/0 – 1) = 1/a(T) – 1 

This is the model prediction for the observed wavelength of the light from T when we measure it now.  

This takes into account both the difference in process speeds and the stretching of space over time.  

This is the same result as in the standard model. In normal variables, the light is produced at T with the same 

speed c = c0, frequency f = f0, and wavelength  = 0, in the same process as when it is produced now. Over 

time, from T to T0, space stretches by: 1/a(t), so the wavelength also stretches by: * = 0/a(T).  

So the two models have a consistent interpretation of the red-shift.   
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Stellar luminosity as a measure of distance. 

We need to know the difference TAU makes to the standard model luminosity and distance.  

• If a certain type of star has a standard luminosity (total power output) L, then its brightness at distance d is 

approximately related by: B = L/d2, or: d =√(L/B). (Note this is true at smaller distances, at large distances 

we must take the curvature into account.)  

• This is used with Cephid variable stars, by measuring the brightness B directly (and adjusting for effects 

like dust to get true brightness); and estimating the luminosity by measuring the period directly, and using 

the almost-linear relation between period and luminosity.   

Now in stellar processes where luminosity is positively related to G, similar stars would have greater luminosity 

in the past than they do today. So this may cause us to overestimate distances. But for the key example of 

Cephids, the luminosity is calibrated to the period, which also changes. These changes tend to cancel. E.g. 

• If true luminosity is given by: L* ≈ L/√a, and true period is given by: P* ≈ P/√a, the effect on distance 

measurements cancels, because of the approximately linear relation between P and L. 

If only the luminosity changed, the true distance might have to be modified something like: d* = d/a1/4. This 

significant, but not very large for observations within z = 1. E.g. for z = ½ the distance should be about 10% 

less. This is the main realm of observations used to determine the Hubble constant. For this: H = (dR/dt)/R, the 

first term is from the red shift and appears correct, but the distance term: 1/R is measured by luminosity 

distance, d, and: d →  d/ a1/4 would give: H → (dR/dt)/(R/√a) = Ha1/4 

Effects may vary for different star types, depending on how their processes are affected by greater 

gravitational pressures with the same matter density. Stellar and galactic dynamics may be affected in complex 

ways. A similar question arises for gravitational waves. E.g.  

 

(“Gravitational waves as a measure of distance”, Wikipedia, Hubble Constant.) This equation for the rate of 

change in frequency has a term in G5/3, but how do we calculate the effect in our model? How generalisable 

are the rules for treating time and distance estimates for different observational methods?  
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Kepler’s Law. Period and radius.  

Gravity is stronger in the early universe in our model. This suggests that stars and galaxies will form faster and 

rotate faster, with altered radii.  We can generally work in our normal variables with these rules: 

• The gravitational constant is inverse to the expansion: G = G0/a.  

• m and r and other terms are invariant, as in ordinary physics. 

• The laws of gravity and quantum mechanics are almost the same in conventional variables.  

Since gravitational energy or force is normally proportional to G as in: E = mMG/r, and: F = mMG/r2 we may 

expect they change proportionally to 1/a. But if we apply slowly changing G to a rotating galaxy or orbiting 

planet, it can form a new stable orbit by changing the rotation speed and orbital radius.  

Kepler’s 3rd law for the period of a circular orbit of radius R around a large central mass M is:  

 P0 = 2√(R0
3/M0G0) Kepler’s Law Static 

This is for a system now. The Cardioid model means we can normally rewrite equations in conventional 

variables the same as usual, for all the terms: c, h, me, mp, ,  , q, except G, which is dynamic: 

 G(t) = G0/a(t) G dynamic 

So Kepler’s law changes to:  

 P(t) = 2 √(aR3/M0G0) =  P0 √a   Kepler’s Law, Dynamic G 

We calculate it in in the model variables to make sure they match. 

 P’ = 2√(R’3/M’G’) Kepler’s Law, Model Variables 

In model variables, G’ is constant, and the other quantities change.  

 G’ = G0   Model dynamics for G’. 

Also: M’ = M/a’ Model transformation for mass 

Also:  R’ = R/a’ Model transformation for space 

And:  P’  = P/a’2 Model transformation for period 

So: P’ = 2√(a’R’3/MG0) Replace M’  

So:    P’ = 2 √(R3/a’2M0G0) = (1/a’)2 √(R3/M0G0) Replace R’ 

So: P = 2 a’√(R3/M0G0) = P0√a Replace P’ 

Use: a’ = a1/2 to get Kepler’s law/  

 P(t) = 2 a1/2 √(R(t)3/M0G0)    Kepler’s Law, Dynamic G 

If: R = R0:  P = P0 a1/2      For fixed R, periods increase by a1/2 

 R(t) = P(t)2/3a-1/3(M0G0/42)1/3  Kepler’s Law, rearranged for Radius 

If: P = P0:  R = R0 /a1/3    For fixed P, radius decreases by a1/3  

Squaring and dividing:  

 P2/R3 = a(4/M0G0) Kepler equation.  

If we assume there are solutions:  P = P0aX  and: R = R0aY  then:  

 P2/R3 = a2X-3Y P0
2/R0

3 = a2X-3Y(4/M0G0)   For X, Y solutions.  

So: 2X – 3Y = 1 Kepler Solution.   

And:  X = (1+3Y)/2  Y = 0, X = 1/2 

And:  Y =  (2X-1)/3   X = 0, Y = -1/3 
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Gravitational orbits. Special cases. 

The Kepler law: P2/R3 = a(4/M0G0) applies to a central mass orbit, of a small mass m around a large mass M, 

e.g. a planet around a star. It is similar for other rotating gravitating systems, within approximations.   

• Similar laws apply for stars in rotating disk or spiral galaxies.  

• Similar laws apply for two stars rotating around each other. 

• We take the objects to rotate around the center-of-mass of the whole system.  

• We take the system center-of-mass to be stationary and non-accelerating.  

Kepler’s law allows stable periodic orbits at different radii, reflecting the kinetic energy-potential energy. How 

will stable orbits at one time in our universe evolve with expansion as G grows weaker?  

Note the period and radius are what we need to consider, as mass is essentially irrelevant to the orbits.  

• Two planets of different masses could have the same orbit around the sun.  

• Two planets of the same mass can have different orbits.  

• Gravity works equivalently on all masses (Equivalence principle).   

This means it is open how the relationship between R and P might alter in the future. First we illustrate three 

simple cases. We mention the trivial solution of a fixed radius to start, but it is not applicable to a system of 

free gravitating rotating bodies if they are connected by a rigid radius that transmits forces. 

 2X – (0) = 1 Kepler condition.  

  X = ½ , Y = 0  

 P = P0√a    and:  R = R0  

Case (1): X = Y.  

 2X – 3Y = -X = 1 Kepler condition.  

So:  X = Y = -1.  

 P = P0/a    and:  R = R0/a  

This preserves linear momentum in the conventional variables, because  

 R/P = (R0/a)/(P0/a) = R0/P0 = V0 = constant  

Then the linear momentum: p = Vm is constant for each element of orbiting mass. 

But angular momentum now has a factor in a.   

 L = VmR = L0/a Angular momentum not invariant. 

The kinetic energy is constant since V is constant (for each element and for the whole system):  

 Ek = ½ mV2 = ½ mV0 
2 = EK0  Kinetic energy constant. 

The gravitational PE is constant as the change in G and R cancel:  

 EG = -MmG/R = -MmG/R = EG0 Gravitational PE changes 

So that:  EK + EG = 0 Conservation of energy   

Case (2): X = 2Y   

This appears to be the realistic case.  

 2X – 3Y = Y = 1 Kepler condition.  
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So:  Y = 1, X = 2  

 P = P0a2    and:  R = R0a  

This preserves angular momentum (for each element of orbiting mass), because  

 V = R/P = (R0a)/(P0a2) = R0/P0a = V0/a  Speed decreases. 

So: mVR = m(V0/a)(R0a) = mV0R0  Angular momentum is preserved. 

But the linear momentum is decreasing for each element of orbiting mass.  

 mV =  mV0/a Linear momentum decreases. 

However change in total linear momentum of the system is zero. Changes cancel out across the system. The 

underlying mechanics reconciles the process with a local transfer of momentum through space.  

What does vary over time is the kinetic energy, for each mass-element and for the system total:  

 Ek = ½ mV2 = ½ mV0 
2/a2 = EK0/a2  Kinetic energy reduces 

The gravitational potential energy varies by the same amount in the negative:  

 EG = -MmG/R = -MmG/Ra2 = EG0/a2 Gravitational PE changes 

Remembering that now both G and R change (because R is a gravitational radius in this case), so that in total: 

  EK + EG = 0 Conservation of energy  

Special case 3: X = -Y. 

 2X + 3X = 1 Kepler condition   

so:  X = 1/5,  Y = -1/5 Period and radius by a0.2 

 P = P0a1/5    and:  R = R0a-1/5     Solution 

 V = 2R/P = V0/a2/5  Speed decreases  

 L = L0/a1/2 Angular momentum decreases 

This makes the speed and momentum decrease.   

The second case (2): R = R0a and P = P0a2, is of most interest. It matches the metric expansion of space and 

time in our model, with no other forces applied to the gravitating system to change its properties or 

dimensions. It conserves angular momentum. It conserves total linear momentum. But it does not conserve 

absolute kinetic energy. This phenomenon is like “disappearing kinetic energy”.  

• The energy equations in conventional variables appear to remain in balance at any moment, and 

there appears to be zero net change of energy.  

• But kinetic energy is nonetheless disappearing from the system! Where is it going?  

• Somehow it must be going in the energy of space because that it all there is!  

• Is this related to dark matter? 

How is the kinetic energy of the mass particle being transferred into potential energy? It is stored in the strain 

of the space manifold. The expansion therefore transfers a proportion of kinetic mass-energy, mc2, into elastic 

strain. Linear momentum of the elementary particles is not invariant, as there is a force or acceleration being 

applied to them, through the stretching of space. Linear kinetic and potential energy are being exchanged 

between particles and space. But we want to keep angular momentum invariant, because there is no torque 

applied in the process, as the forces are radially symmetric.  
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Galactic rotation and dark matter. 

We can see that the Cardioid model offers potential to explain some anomalous phenomenon of early 

galaxies. But for the main era of development of present galaxies, beginning about 1-2 By, dark matter has to 

play a central role in the evolution, as it does in the standard theory.  

Figure 48. Wikipedia. The orbital speed of stars in the arms of spiral 

galaxies is one of the most famous anomalies in physics. The speeds 

are much faster than would be expected from the central mass of 

the stars and other visible matter alone. Stars have “flat” speed 

curves, instead of the speed decreasing with radius. 

What keeps the stars in orbit at such high speeds? How did they get 

into these high-speed orbits? The standard theory now is that halos 

of dark matter surround most galaxies, and does most of the work 

of holding them together.  

Dark matter is needed to provide about 85% of the mass and 

gravitational forces for most galaxies. But it is undetectable and no 

one knows what it is. It is dispersed like a thin invisible fog. It forms giant halos around galaxies. It does not 

concentrate at the centre like ordinary matter. It is a central mystery of cosmology.  

 

Figure 49. Left. The expected distance-speed relationship from galactic center for stable orbits. Scaled 

to make V = 1 at r = 1. Right. Evolution of the curve over time in the expanding Cardioid model 

universe. As a increases, the curve does not change shape, although it may look flatter to the eye.  

If we model a conventional galaxy with stars rotating a central mass, obeying Kepler’s law for a stable orbit, we 

get the (blue) radius-speed graph. The shape does not change in the expansion, and this does not explain the 

flat speed curves of galaxies today.  

For this graph, we simply take: V = R/P and P = R3/2 so: V = (R/R3/2) = 1/R1/2.  When: R → Ra and P → Pa2, we 

have: V = 1/aR1/2. 
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I emphasise that the effect cannot be achieved simply by the transformation for the expansion. 

 

Figure 50. Right shows the two curves at the bottom of the graph on the left. The shape does not 

change shape over time, it is simply being scaled by a.  

This assures us our model is consistent is Kepler’s law. But we cannot explain the flat speed curve with a 

conservative time transformation. We know from cosmology that it requires dark matter.  

 

Figure 51. Wikipedia. Almost everything about dark matter is 

inferred from computer simulations! Only the speed of stars is 

observed, from their red-shifts. Estimates of DM are only within a 

factor of about two, e.g. the DM in our Milky Way galaxy is 

estimated to have an estimated mass of 7 to 15 times the mass of 

visible matter.  

It is thought dark matter forms in roughly spherical halos around 

galaxies, and this is required for the peculiar velocity distributions. 

This remains similar in our theory, which is like the standard theory 

on the local scale.  

The changing strength of gravity in our theory does not remove 

the need for dark matter. But it offers a mechanism for dark 

matter, which appears required to balance the massive transfer of 

energy from particles to space that is happening in our model.  

 

  



50 
 

Transfer of energy between mass and space.  

In our model energy is stored in the elasticity of space, which is in tension, and supports elastic waves, 

including EM waves, and gravitational waves, and particle mass-waves, which are de Broglie waves, or QM 

waves. As the universe stretches, the kinetic and potential energy components are exchanged, with an energy 

exchange between particles and space.  

Figure 52. Transfer of energy from space to 

local speed in c’ in the expansion. Expansion 

converts motion in R to motion in c. This 

balances energy. Total mass is: m’ = m0a’ = m0 

+ m0(a’-1). The first term is what we measure, 

the second is invisible.  

This exchange is intrinsic to the process, like 

exchange of potential and kinetic energy in 

ordinary gravity. But potential energy is an 

abstract concept, while we have a physical 

interpretation, an “energy well.” It is kinetic 

energy in the new spatial dimension of expansion. It exchanges energy with particles in moving in the normal 

dimensions.   

• The flat speed curve is not stable without a change in the mass distribution.  

• The conversion of kinetic energy creates dark matter which slows the expansion, transfers energy into 

space locally around galaxies, and flattens the speed curves.  

So dark matter is dynamic. The simplest proposal is to make dark matter proportional to a, since that is the 

mass dilation factor. Then the time when galaxies were 

able to retain their dark matter halos is what determines 

the ratio now. Dark matter and ordinary matter, or their 

equivalent energy and momentum, are conserved as a 

whole, all together, but in the development of the 

universe, they are both localised into structures, 

primarily galaxies. This was presumably under way in the 

very early universe, with the “recombination” era and 

photon decoupling about the earliest definite events, at 

around 380,000 years.  

Figure 53. 

Wikipedia. The 

recombination era is 

long before galaxies 

could form, but in 

our model, dark 

matter creation 

started as soon as 

electrons and 

protons formed.   
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Dark energy and particles.  

“Dark energy” is said to be an invisible substance that uniformly fills space. In fact it has no physical model: it is 

just an additional parameter in the equation governing the expansion. This has four terms for the acceleration 

of the expansion function a, in: A/a2, B/a, Ca2, and D. The first two represent mass and radiation, then dark 

energy and the cosmological constant.  

The standard model (CDM) has a currently decreasing rate of expansion, not an increasing rate of expansion, 

as often stated. But it has a positive acceleration term in the rate, which will eventually make it positive. And it 

is not decreasing by as much as the CDM universe (cold dark matter universe). The lambda term or dark energy 

that acts like a pressure outwards, accelerating the expansion. It is supposed to be uniformly distributed 

throughout space. It is not conserved like energy.  

• The matter-energy breakdown is about: 68-74% Dark energy + (26% Dark matter+ 5% QM matter).  

• Only 5% of the universe mass-energy is ordinary matter, that interacts through the known QM forces, 

the EM, weak and strong nuclear forces.  

• The primary long-lived particles, that make up practically all of the long-lasting interacting matter and 

radiation in our environment, are just five types: the photon, neutrino, electron, proton, neutron.   

• Note neutrons without protons are unstable. Neutrons are unstable outside the nucleus, with a half-

life of about 10 minutes. Now it is also thought that neutrinos are unstable. The photon, electron and 

proton now appear as the only eternal particles in the standard model. 

o Lepton family. The muon and tau are high-energy versions of the electron, they are 

intrinsically unstable, but still essentially long-lived particles. C.f. neutrons.  

o They can have indefinitely long lifetimes at sufficiently high speeds. Muons are produced in 

our atmosphere by cosmic rays, and they travel substantial distances (100m) between 

production and decay. They also all have anti-particle versions.  

o Neutrinos also come in three types, with anti-particles, and these families and anti-particles 

are all considered equally real long-lasting particles.  

o Anti particles are produced in small amounts, but ordinary matter overwhelmingly 

dominates in our environment.   

• Note other particles in the Standard Model, including mesons, are less stable again, and only mediate 

in short-lived processes, involving the weak force or strong forces. These interactions are on the scale 

of the proton radius, about 10-15m, about a thousandth of the EM radius of about 10-12m, for EM 

interactions in the atom.  

• Quarks provide a model for protons and neutrons, but they are not observable as particles. They 

cannot be observed by themselves, only in the stable combinations of protons and neutrons, or in the 

transitory combination of two quarks in mesons.   

• This is the main division between the  five real-world particles and elementary particles.   

• Note that in terms of causality, the weak and strong forces, which are local forces, do not transmit 

causal influences over distances greater than the nuclear radius.  

• Causal influences are transmitted by the EM force, or photons, and gravity.  
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Appendix 4. Standard Model Friedmann equations.   

All extracts here from WIKIPEDIA.  

 

FLRW Extract 2. This definition is given in the negative.   

 

FLRW Extract 3. Gravity and the cosmological constant, , in the equation.  
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FLRW Extract 4. We see the power function in the second equation. C.f. trend-lines in our graphs.  

 

FLRW Extract 5. The form of the standard cosmology solution. The last two equations give a differential 

equation for the expansion rate, with four distinct factors. 

(da/dt)2 = G*A/a + G*B/a2 + G*Ca2 – kc2 

G*= 8G/3 is constant. The four terms correspond to four different types of mass-energy.  

• The first two term, A, is matter (with mass). The second term, B, is radiation.  

• Their contribution to the speed of expansion reduces as the universe expands (a → bigger).  

• The third term, Ca2, also called lambda, increases with time.  

• The last term kc2 is a curvature that does not vary with time.  

The dark energy or lambda term, C, eventually overtakes everything else. It makes the universe expand ever 

faster, and “explode”.  We commonly see this equation in terms of densities parameters and the Hubble 

constant. 

 

Lambda-CDM Extract 1. This appears to have an extra lambda-term compared to the previous, but it is 

combined in the density term.  
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Lambda-CDM Extract 2. The solution that all modern cosmology is based on.  
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Appendix 4. Note on earlier version. 

Cardioid solution graph [Holster 2014/2015].  

 

Figure 54. Holster 2014. The cardioid function is traditionally defined: r = 2a(1 – cos) but it has the 

equivalent form: r = 4a sin2() in half the angular variable. 

Exercise.  cos 𝛼 + cos 𝛽 = 2 cos
1

2
(𝛼 + 𝛽) cos

1

2
(𝛼 − 𝛽) Identity.  

Let  = 0.  cos 𝛼 + 1 = 2 𝑐𝑜𝑠2 (
𝛼

2
) = 2 (1 − 𝑠𝑖𝑛2 (

𝛼

2
)) Substitute. 

 2 𝑠𝑖𝑛2 (
𝛼

2
) =  (1 − cos 𝛼) Rearrange. 

Let: 𝛼 = (
𝜋𝑇

𝑇𝑚𝑎𝑥
) and multiply by Rmax/2.  

 𝑅𝑚𝑎𝑥 𝑠𝑖𝑛2 (
𝜋𝑇

2𝑇𝑚𝑎𝑥
) =  

𝑅𝑚𝑎𝑥

2
 (1 − cos (

𝜋𝑇

𝑇𝑚𝑎𝑥
)) Cardioid model.  

 

Figure 55. WIKIPEDIA. Cardioid.  

There is a substantial Wikipedia article on the cardioid, and 

the third equation gives its traditional definition. A number 

of parametric forms and geometric interpretations are given. 

Oddly, the sin-squared form used here is not given. It is 

useful in our model to view it in this form.  
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TAU Predictions [Holster 2014/15]  

 

Figure 56. From [Holster 2014/15], The model here is almost identical, with parameters slightly revised. 

The earlier model had an inconsistency as follows.  
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Correction to [Holster 2014/15]. 

The [Holster, 2014/2015) preprint “A Geometric Universe with Time Flow” analyses the Cardioid solution in 

sections 25-27. It is obtained from the fundamental theory (TAU). The solution has an incorrect factor of 2 or  

in the relationship proposed in [32.1] and [32.2].   

 

[32.1] appears to be missing a factor of 2, and [32.2] gives TMAX half the value in our model.   

The key quantity however, which fixes the interpretation, is the empirical value of the fundamental constants. 

 

Z0 should probably be defined as twice this value. Note earlier it was stated:  

 

But it seems [12.4*] should not have the factor of pi. 

 

 These are correct calculations of the constants.  

 

We have twice this value in the present model. Getting the factors of 2 and  correct in the equations is a 

challenge. It is made more confusing because of coincidences in the data, including: 1/H0* ≈ T0*,  A’T’ ≈ 1, 

tan(A’T’) ≈ ,  H* ≈ () H. It is essential to test analytic solutions with spreadsheets or numeric simulations.  
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Appendix 5. Counterfactual model for present time.  

Counterfactual reasoning in the new model involves reasoning about the world from a counterfactual present 

time. We choose our present time in the expansion cycle as the key parameter, and that gives us all the 

predictions for our universe. Does it tell us the predictions from the point of view of another present time?  

E.g. we have chosen 0.64, but let us imagine that the time is really only 0.50 through the cycle. What will the 

time and expansion appear like from the point of view of someone at 0.50? Can we tell this from our model? 

Well, we can work it out from our model of course. But it is hard to visualise because variables counterfactually 

change their values. In the standard theory, measurement variables do not change in this way.  

 This comes back to the primary feature: that the laws of model are time translation invariant only in the 

model variables, and not in the conventional variables. We can only logically derive equations in the model 

theory. When we transform them into the conventional variables, they are harder to visualise.  

 

 

 

Figure 57. Top. Best fit model 64, results in this report are based on.  

Figure 58. Middle. Set present time to 50. We set the present time value to 0.50. The time 

parameter, Tmax’, has been left unchanged, and now it predicts T0 incorrectly as 9.83 By.  

Figure 59. Bottom. Best fit model 50. We reset the time parameter Tmax’ to get the correct 

measured age: T = 13.76 By. The maximum R’ adjusts to maintain the (blue) relationships, and 

now: R = 19.32 Bly. The Hubble parameter reduces to: H0 = 51.5.  

The Hubble evolution no longer matches the data. We are constrained to the 0.64 model to get the 

present age and radius to match so that: 1/H = T.  
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Appendix 6. Mainstream approach to modelling.  

This recent preprint in arXiv is representative of how physicists theorise instrumentally. The authors here 

propose a “novel general formalism” for optimising models in the standard theory, to match empirical 

departures of the model from the Hubble constant. This represents “new physics” as small deviations from the 

standard model, with variations of “physics” allowed in the early universe. Their example is a model with a 

varying electron charge and fine structure constant.  

This is a good example of a purely instrumentalist methodological theory, which assumes the business of 

modelling is to optimise a certain statistical measure of fit. They have completely overlooked any 

consideration of a counterfactual model, such as the Cardioid model.  

From our point of view, this is of little if any interest. It is purely about hacking statistics, not making a real 

model. It does not recognise the Cardioid model as an alternative. It does not recognise any need for variable 

transformations between theories. The examples given of testing for variations in the electric charge or fine 

structure constant are theoretically nonsensical. This whole idea of ad hoc “theory creation” without any 

underlying fundamental model is anathema to our realist approach.  

 

 

2212.04494.pdf (arxiv.org)  https://doi.org/10.48550/arXiv.2212.04494 

They propose a general formalism for creating and evaluating cosmological theories.  

 

And they think this “phenomenological framework” should “inspire a model-building effort from the 

cosmology and particle physics communities”.  

 

It is like a throw-back to C19th positivism in chemistry – which all went in the trash bin when they found the 

real theories in the C20th. Positivism wasted a large amount of time and energy. 

https://arxiv.org/pdf/2212.04494.pdf
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But we want to ask: can it deal with the Cardioid model?  

No: it provides no way to compare a non-standard realist theory.    

They start by lauding the standard model, and its “astonishing fit” with data.  

 

The Hubble tension is the main problem they see. They start with the assumption that the general framework 

of the standard model is right, and “new physics” is going to be about adjusting combinations of matter and 

energy, in the evolution of the universe, within “perturbations” or extensions of the standard model.  

 

They conclude that studies have shown that late-time “solutions” are “less effective”, implying that “a 

modification in early-time cosmology is needed to solve the Hubble tension.”   

 

Now comes the big idea: they propose a general formalism to drive the model choice to “find minimal data-

driven extensions to the LCDM model producing desired shifts in cosmological parameters… while not 

worsening the fit to a given data set.”  
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This will apparently give physicists a way to propose any ad hoc “variations” they want, and automatically find 

the optimal model to fit the data. Of course this means that the standard model will never be questioned 

again. They have a concept for automating the process.  

 

These are the primary equations of their theory. They explain how to apply them to “new physics”. 

 

So their assumption is that the data departs from the standard model predictions (of H) by “small amounts”, 

and their process will optimise parameters for a new model, to bring the model predictions back into line with 

the data.  
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And these equations, we are assured, become “tractable” with “simplified expressions…”. 

 

So this is what new physics consists of: finding perturbations of functions from the standard model predictions.  

 

But these proposals, that they consider as empirical variations of the standard model of cosmology, appear as 

theoretically nonsensical as physics. Our approach is that we must work out the implications and predictions 

for a new theory, by reasoning counterfactually in the new theory. Their instrumentalist approach ignores the 

role of models and is blind to theoretical counterfactuals.  
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Appendix 7. Historical measures of H.  

 

https://arxiv.org/abs/2210.07078 

 

This illustrate how shaky the empirical data on the Hubble constant has been over the years. Some 20% of the 

sample of 163 studies of H are classified as outliers at more than 2.8  away from 68.26. There are some large 

sigmas and wild looking numbers in the 1990’s and 2000’s. Note that the two main methods using cephid 

variables and the CMBR converge on different values, about 73 and 68. 

 

https://arxiv.org/abs/2210.07078

