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THE RIEMANN HYPOTHESIS IS TRUE: THE END OF THE
MYSTERY -V6-

ABDELMAJID BEN HADJ SALEM

Abstract
In 1859, Georg Friedrich Bernhard Riemann had announced the following conjecture, called Riemann
Hypothesis : The nontrivial roots (zeros) s = o + it of the zeta function, defined by:

+00

L(s) = Z ni for R(s)> 1

n=1

1 1
have real part o = ok In this note, I give the proof that o = 3 using an equivalent statement of the

Riemann Hypothesis concerning the Dirichlet 7 function.
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1. Introduction

In 1859, G.F.B. Riemann had announced the following conjecture [1] known Riemann
Hypothesis:

ConsecTurE 1.1. Let £(s) be the complex function of the complex variable s = o + it
defined by the analytic continuation of the function:

w 1
Qi(s) = Z ;,for R(s) =0 > 1
n=1

over the whole complex plane, with the exception of s = 1. Then the nontrivial zeros
of {(s) = 0 are written as :
§==4it
2

In this paper, our idea is to start from an equivalent statement of the Riemann
Hypothesis, namely the one concerning the Dirichlet i function. The latter is related
to Riemann’s £ function where we do not need to manipulate any expression of {(s) in
the critical band 0 < R(s) < 1. In our calculations, we will use the definition of the

1
limit of real sequences. We arrive to give the proof that o = 3
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1.1. The function zeta(s) We denote s = o + it the complex variable of C. For
R(s) = o > 1, let {1 be the function defined by :

+00

4i(s) = Z % for R(s)=o > 1

n=1

We know that with the previous definition, the function {; is an analytical function of
s. Denote by {(s) the function obtained by the analytic continuation of ;(s) to the
whole complex plane, minus the point s = 1, then we recall the following theorem [2]:

TueorEM 1.2. The function {(s) satisfies the following :
1. {(s) has no zero for R(s) > 1;
2. the only pole of {(s) is at s = 1; it has residue I and is simple;
3. {(s) has trivial zeros at s = =2,-4,...;
4. the nontrivial zeros lie inside the region 0 < R(s) < 1 (called the critical strip)

and are symmetric about both the vertical line R(s) = 3 and the real axis 3(s) = 0

1
The vertical line R(s) = 3 is called the critical line.
In addition to the properties cited by the theorem 1.2 above, the function {(s)

satisfies the functional relation [2] called also the reflection functional equation for
s € C\{0, 1}:

(1= s) = 21_sﬂ_scos%T(s)§(s) (1.1)

where I'(s) is the gamma function defined only for R(s) > 0, given by the formula :

I'(s) = f e dr,  R(s)>0
0

So, instead of using the functional given by (1.1), we will use the one presented by
G.H. Hardy [3] namely Dirichlet eta function [2]:

_1\yn—1
()_Z( ) 21 S)éa(s)

The function eta is convergent for all s € C with R(s) > 0 [2].

We have also the theorem (see page 16, [3]):
TueoreM 1.3. Forallt € R, £(1 +it) # 0.

So, we take the critical strip as the region defined as 0 < R(s) < 1.
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1.2. A Equivalent statement to the Riemann Hypothesis Among the equivalent
statements to the Riemann Hypothesis is that of the Dirichlet eta function which is
stated as follows [2]:

EquivarLence 1.4. The Riemann Hypothesis is equivalent to the statement that all zeros
of the Dirichlet eta function :

I 1yl
n(s):Z( n) =(1-2"9¢(s), o>1 (1.2)

n=1

1
that fall in the critical strip 0 < R(s) < 1 lie on the critical line R(s) = >

The series (1.2) is convergent, and represents (1 — 217%){(s) for R(s) = o > 0 ([3],
pages 20-21). We can rewrite:

_1\yn-1
()—Z( D ~2)(s), R =0 >0 (1.3)

n(s) is a complex number, it can be written as :
n(s) = p.e = p* = 1(s)(s) (1.4)
and n(s) =0 & p =0.
2. Preliminaries of the proof that the zeros of the function eta(s) are on the
critical line R (s) = 1/2

Proor. We denote s = o + it with 0 < o < 1. We consider one zero of n(s) that
falls in critical strip and we write it as s = o + it, then we obtain 0 < o < 1 and
n(s) = 0 & (1 -2'7%)¢(s) = 0. We verify easily the two propositions:

‘ s, is one zero of n(s) that falls in the critical strip, is also one zero of ((s) ‘ 2.1

Conversely, if s is a zero of {(s) in the critical strip, let {(s) = 0 = n(s) =
(1 —2'%){(s) = 0, then s is also one zero of 5(s) in the critical strip. We can write:

s, is one zero of (s) that falls in the critical strip, is also one zero of n(s) ‘ 2.2)

Let us write the function n:

+00

i( 0k 1 Z( 1y 1 p=sLogn _ Z( "~ | p=(o+inLogn _
n=1

n=1

— Z (_ 1 )n— 1 e—o‘Logn .e—itLogn
n=1

+00

= Z(—1)"_le_‘rL”g"(cos(tLogn) — isin(tLogn))

n=1
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The function 7 is convergent for all s € C with R(s) > 0, but not absolutely convergent.
Let s be one zero of the function eta, then :

Z( i

or:

o (!
Ve >0 dng, YN > ny, | Z — I< €

n=1

We definite the sequence of functions ((17,),en+(5)) as:

k=1
Na(s) = Z( D) Z( 1y 1C0S(IL0gk) Z( 1y lsm(;Logk)
k=1

with s = o +itand ¢t # 0.

Let s be one zero of 7 that lies in the critical strip, then n(s) = 0, with 0 < o < 1.
It follows that we can write lim,_, ;1,(s) = 0 = n(s). We obtain:

- tLogk
limy s Y (-1} D
k=1

C in(tLogk
limy e Y (-1 08D g
k=1

Using the definition of the limit of a sequence, we can write:

Ver > 03n,, YN > n,, | R((s)y) I< & = R@(s)v)* < & (2.3)
Ve > 03n, YN > ny, | S(m(s)n) < & = I(q(s)n)* < & (2.4)
Then:
N 2 N k+k' ’
L -1 Logk).cos(tLogk
0< Z cos~(tLogk) L9 (=1)** cos(tLogk).cos(tLogk") < 612
k=1 k20’ kk'=1;k<k’ ki

al sin*(tLogk) 49 al (=1)¥ sin(tLogk).sin(tLogk’) 2
—_— €

20 oo 2
k=1 k kk'=1;k<k’ kok

Taking € = €, = & and N > max(n,, n;), we get by making the sum member to member
of the last two inequalities:

N N
1 o Cos(tLog(k/k')) )
O<Zk2_0'+2 Z (-1 T<2E (2.5
k= ko =Tsk<k
We can write the above equation as :
0< py <26 (2.6)

or p(s) =
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3. Case R(s) =1/2
1
We suppose that o = 7 Let’s start by recalling Hardy’s theorem (1914) ([2], page
24):
TueoreMm 3.1. There are infinitely many zeros of {(s) on the critical line.
From the propositions (2.1-2.2), it follows the proposition :

Prorosttion 3.2. There are infinitely many zeros of n(s) on the critical line.

Lets; = %+ itj one of the zeros of the function 7(s) on the critical line, so (s ;) = 0.
The equation (2.5) is written for s;:

N N
1 ,cos(tjLog(k/k")) 2
0<> —+2 (=) e < 26

or:
N N )
Sl g Y pprcostiiloshii)
k=1 k k' =1:k<k’ \/z\/P

N
. | . .
If N — +oo, the series Z z is divergent and becomes infinite. then:

k=1
+Z°° % <2 -2 +Z'° (_1)k+k, cos(tjLog(k/k"))
k=1 kok'=T;k<k’ ViV
Hence, we obtain the following result:
N
,cos(tiLog(k/k'
limy— soo -1y COXLOSTIEN 3.1
k' =Tsk<k Vi Vi

if not, we will have a contradiction with the fact that :

N
1 1
limy_— oo Z:(—l)"’l o =0 < n(s) is convergent for s; = 3 +it;
k=1

4. Case 0 < R(s) <1/2

1
4.1. Case where there are zeros of 7(s) with s = o +itand 0 < o < -.

Suppose that there exists s = o + it one zero of 7(s) or n(s) = 0 = p*(s) = 0
1

with 0 < o < 5 = s lies inside the critical band. We write the equation (2.5):

N N
1 ccos(tLog(k/k"))
0< — +2 B ) (i - R AP P
; k2 kk’;c<k’( ) k7 ‘
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or:
N N
1 / tLog(k/k’
Z <289 Z (_1)k+k cos(tLog(k/k"))
k20— kok'o
k=1 kk'=1;k<k’

But 20- < 1, it follows that limy_—, ;0 Z o — +o00 and then, we obtain :
k=1

Z (1)“"’6“(%:]5(1‘/"/)) e @1

kk'=1;k<k’

5. Case1/2 < ‘R(s) <1

Let s = o +it be the zero of (s) in 0 < R(s) < 5 object of the previous paragraph.
From the proposition (2.1), {(s) = 0. According to pomt 4 of theorem 1.2, the complex
number s’ =1 —-oc+it=0"+it' witho' =1-0,¢ = tand% < o’ < 1 verifies
£(s") =0, so s’ is also a zero of the function {(s) in the band % < R(s) < 1, it follows
from the proposition (2.2) that n(s’) = 0 = p(s’) = 0. By applying (2.5), we get:

N N
1 ep cos(’ Log(k/k’))
k=1 k.k'=1:k<k’

2
a positive constant not null C(c”). As 1/k* < 1/k*” for all k > 0, then :

1
AsO <o <41 =2>20" =2(1-0)> I, then the series 3| 2 is convergent to

2 +00 1 +00 1
0<i@) =% = 55 < D 5w = C@) = 4Q0) = {20)
k=1 k=1

From the equation (5.1), it follows that :

+00

o COSCLOKIKY) __ Cl’) _ {20
ko k' 2 2

(=1

k&' =1:k<k’

(5.2)

5.0.1. Caset =0 We suppose thatt =0 = 1’ = 0. The equation (5.2) becomes:

Sy L G ey 53)
kk'=1;k<k’ ke ke 2 2 '

Then s’ = 0’ > 1/2 is a zero of 1(s), we obtain :

+00 _1 n—1
n(s')=z( " o (5.4)
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Let us define the sequence S, as:

oyl I !

Su(s) = Z:; ( nz, = Z:; ( n;, = S0 (5.5)

From the definition of S,,, we obtain :
limy— oS m(s") = 7(s') = (0 (5.6)

We have also:

Si(cH)=1>0 5.7
S0’y =1- 2% >0 because 27 > 1 (5.8)
S3(0’) = Sa2(0") + 3% >0 (5.9)

We proceed by recurrence, we suppose that S ,,(c”) > 0.

m+1
B . (_l)n—l B , (_l)m+1—1 o .
1,m_2q=5m+1(0')—nzgl 5 —Sm(O')-l‘W,ltglVeS.
S (@) = Sulo’) + Vi = S(@) + — 505 S > 0
m+1(0" ) = 3O (m+ 1)0., = om0 (m T 1)0_, m+1(0

2. m =2qg+ 1, we can write S ,,;1(c”) as:

_1ym—1 _1yn+l-1
Sm+l(0—,):Sm7](OJ)+( D +( D

mo’ (m+ 1)
-1 m—1 —1m
We have S,,_1(c’) > 0,let T = D — + D -, we obtain:
me (m+ 1)
(_1)2(1 (_1)2q+l B 1 1

TRg+ D)7 2q+27  2q+ 17 (2q+2)7 >0 (5.10)

and S ,,.1(0”) > 0.

Then all the terms S,,(c’) of the sequence S, are great then 0O, it follows that
limy S wm(s’) = n(s’) = n(o’) > 0 and n(o’) < +oo because R(s’) = o’ > 0
and n(s’) is convergent. We deduce the contradiction with the hypothesis s’ is a zero
of n(s) and:

‘ The equation (5.3) is false for the case ' =t = 0. (5.11)

5.02. Caset =t+0 Wesupposethatt #0. Lets’ =0’ +it' =1 -0 + it azero
of n(s), we have:

+00

N cos(t' Log(k/k")) _ _C() _ _4Q@2a") s —oo

-1
( ko k' 2 2

k' =1:k<k’

(5.12)
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the left member of the equation (5.12) above is finite and depends of ¢ and ¢’, but the
right member is a function only of o equal to —£(207)/2.

We recall the following theorem (see page 140, [3]):

THEOREM 5.1.
. 1 d ') . 2 99 9 1
lzmT_,W,? L +in)"dr =¢Q207) (o7 > 5) (5.13)
1

We fix 0 = ¢”, from the theorem above, {(20”) is independent of any 7 > 1 > 0,
then {(20”") does non depend of ¢ so that s’ = o’ + it’ is a root of 5, it follows the
contradiction with equation (5.12). Then the equation (5.12) is false.

It follows that the equation (5.12) is false for the case ¢ # 0. (5.14)

It follows that the equation (5.2) is false and 7(s’) does not vanish for o €]1/2, 1[.
From (5.11-5.14), we conclude that the function 7(s) has no zeros for all s’ = o’ +it’
with o’ €]1/2, 1[, it follows that the case of the paragraph (4) above concerning the
1
case 0 < R(s) < 7 is false too. Then, the function 5(s) has all its zeros on the
1
critical line o = 5 From the equivalent statement (1.4), it follows that the Riemann
hypothesis is verified. O
From the calculations above, we can verify easily the following known proposition:

ProposiTioN 5.2. Forall s = o real with 0 < o < 1, n(s) > 0 and {(s) < 0.

6. Conclusion

In summary: for our proofs, we made use of Dirichlet n(s) function:

+00

_1\n—1
n(s) = Z ( l)s =(1-2"9¢(s), s=o+it

n

n=1
on the critical band 0 < R(s) < 1, in obtaining:

1
- 17(s) vanishes for 0 < o = R(s) = X
1 1
- n(s) does not vanish for 0 < o = R(s) < 5 and 3 <o =R <.

Consequently, all the zeros of 1(s) inside the critical band 0 < R(s) < 1 are on the

critical line R(s) = 7 Applying the equivalent proposition to the Riemann Hypothe-
sis (1.4), we conclude that the Riemann hypothesis is verified and all the nontrivial
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1
zeros of the function Z(s) lie on the critical line R(s) = 7 The proof of the Riemann

Hypothesis is thus completed.

We therefore announce the important theorem as follows:

THEOREM 6.1. The Riemann Hypothesis is true:

1
All nontrivial zeros of the function {(s) with s = o +it lie on the vertical line R(s) = 7
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