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Abstract. In 1859, Georg Friedrich Bernhard Riemann had announced
the following conjecture, called Riemann Hypothesis : The nontrivial
roots (zeros) s = σ + it of the zeta function, defined by:

ζ(s) =

+∞∑
n=1

1

ns
, for ℜ(s) > 1

have real part σ =
1

2
. In this note, I give the proof that σ =

1

2
using an

equivalent statement of the Riemann Hypothesis concerning the Dirichlet
η function.
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1. Introduction

In 1859, G.F.B. Riemann had announced the following conjecture [1]:

Conjecture 1.1. Let ζ(s) be the complex function of the complex variable
s = σ + it defined by the analytic continuation of the function:

ζ1(s) =

+∞∑
n=1

1

ns
, for ℜ(s) = σ > 1

over the whole complex plane, with the exception of s = 1. Then the non-
trivial zeros of ζ(s) = 0 are written as :

s =
1

2
+ it
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In this paper, our idea is to start from an equivalent statement of the
Riemann Hypothesis, namely the one concerning the Dirichlet η function. The
latter is related to Riemann’s ζ function where we do not need to manipulate
any expression of ζ(s) in the critical band 0 < ℜ(s) < 1. In our calculations,
we will use the definition of the limit of real sequences. We arrive to give the

proof that σ =
1

2
.

1.1. The function zeta(s)

We denote s = σ + it the complex variable of C. For ℜ(s) = σ > 1, let ζ1 be
the function defined by :

ζ1(s) =

+∞∑
n=1

1

ns
, for ℜ(s) = σ > 1

We know that with the previous definition, the function ζ1 is an analytical
function of s. Denote by ζ(s) the function obtained by the analytic contin-
uation of ζ1(s) to the whole complex plane, minus the point s = 1, then we
recall the following theorem [2]:

Theorem 1.2. The function ζ(s) satisfies the following :
1. ζ(s) has no zero for ℜ(s) > 1;
2. the only pole of ζ(s) is at s = 1; it has residue 1 and is simple;
3. ζ(s) has trivial zeros at s = −2,−4, . . .;
4. the nontrivial zeros lie inside the region 0 ≤ ℜ(s) ≤ 1 (called the

critical strip) and are symmetric about both the vertical line ℜ(s) =
1

2
and

the real axis ℑ(s) = 0.

The vertical line ℜ(s) = 1

2
is called the critical line.

The Riemann Hypothesis is formulated as:

Conjecture 1.3. (The Riemann Hypothesis,[2]) All nontrivial zeros of ζ(s) lie

on the critical line ℜ(s) = 1

2
.

In addition to the properties cited by the theorem 1.2 above, the function
ζ(s) satisfies the functional relation [2] called also the reflection functional
equation for s ∈ C\{0, 1} :

ζ(1− s) = 21−sπ−scos
sπ

2
Γ(s)ζ(s) (1.1)

where Γ(s) is the gamma function defined only for ℜ(s) > 0, given by the
formula :

Γ(s) =

∫ ∞

0

e−tts−1dt, ℜ(s) > 0
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So, instead of using the functional given by (1.1), we will use the one
presented by G.H. Hardy [3] namely Dirichlet’s eta function [2]:

η(s) =

+∞∑
n=1

(−1)n−1

ns
= (1− 21−s)ζ(s)

The function eta is convergent for all s ∈ C with ℜ(s) > 0 [2].

We have also the theorem (see page 16, [3]):

Theorem 1.4. For all t ∈ R, ζ(1 + it) ̸= 0.

So, we take the critical strip as the region defined as 0 < ℜ(s) < 1.

1.2. A Equivalent statement to the Riemann Hypothesis

Among the equivalent statements to the Riemann Hypothesis is that of the
Dirichlet function eta which is stated as follows [2]:

Equivalence 1.5. The Riemann Hypothesis is equivalent to the statement that
all zeros of the Dirichlet eta function :

η(s) =

+∞∑
n=1

(−1)n−1

ns
= (1− 21−s)ζ(s), σ > 1 (1.2)

that fall in the critical strip 0 < ℜ(s) < 1 lie on the critical line ℜ(s) = 1

2
.

The series (1.2) is convergent, and represents (1− 21−s)ζ(s) for ℜ(s) =
σ > 0 ([3], pages 20-21). We can rewrite:

η(s) =

+∞∑
n=1

(−1)n−1

ns
= (1− 21−s)ζ(s), ℜ(s) = σ > 0 (1.3)

η(s) is a complex number, it can be written as :

η(s) = ρ.eiα =⇒ ρ2 = η(s).η(s) (1.4)

and η(s) = 0 ⇐⇒ ρ = 0.

2. Preliminaries of the proof that the zeros of the function
eta(s) are on the critical line ℜ(s) = 1/2

We begin by recalling some definitions:
- Let an be a sequence of real or complex numbers. A necessary and

sufficient condition for the sequence to converge is that for any ϵ > 0 there
exists an integer n0 > 0 such that:

| ap − aq |< ϵ

holds for all integers p and q greater than n0. This is the Cauchy criterion.
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- An infinite series

+∞∑
n=1

an converges if and only if for any ϵ > 0 there

exists an integer n0 > 0 satisfying | aq + . . .+ ap |< ϵ for all integers p and q
greater than n0. The last condition can also be written as :

|
n=q−1∑
n=1

an |< ϵ

- An infinite series

+∞∑
n=1

an is said to converge absolutely if

+∞∑
n=1

| an |

converges.

Proof. . We denote s = σ + it with 0 < σ < 1. We consider one zero of
η(s) that falls in critical strip and we write it as s = σ + it, then we obtain
0 < σ < 1 and η(s) = 0 ⇐⇒ (1 − 21−s)ζ(s) = 0. We verify easily the two
propositions:

s, is one zero of η(s) that falls in the critical strip, is also one zero of ζ(s)

(2.1)
Conversely, if s is a zero of ζ(s) in the critical strip, let ζ(s) = 0 =⇒ η(s) =
(1−21−s)ζ(s) = 0, then s is also one zero of η(s) in the critical strip. We can
write:

s, is one zero of ζ(s) that falls in the critical strip, is also one zero of η(s)

(2.2)
Let us write the function η:

η(s) =

+∞∑
n=1

(−1)n−1

ns
=

+∞∑
n=1

(−1)n−1e−sLogn =

+∞∑
n=1

(−1)n−1e−(σ+it)Logn =

=

+∞∑
n=1

(−1)n−1e−σLogn.e−itLogn

=

+∞∑
n=1

(−1)n−1e−σLogn(cos(tLogn)− isin(tLogn))

The function η is convergent for all s ∈ C with ℜ(s) > 0, but not absolutely
convergent. Let s be one zero of the function eta, then :

+∞∑
n=1

(−1)n−1

ns
= 0

or:

∀ϵ′ > 0 ∃n0,∀N > n0, |
N∑

n=1

(−1)n−1

ns
|< ϵ′
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We definite the sequence of functions ((ηn)n∈N∗(s)) as:

ηn(s) =

n∑
k=1

(−1)k−1

ks
=

n∑
k=1

(−1)k−1 cos(tLogk)

kσ
− i

n∑
k=1

(−1)k−1 sin(tLogk)

kσ

with s = σ + it and t ̸= 0.

Let s be one zero of η that lies in the critical strip, then η(s) = 0, with
0 < σ < 1. It follows that we can write limn−→+∞ηn(s) = 0 = η(s). We
obtain:

limn−→+∞

n∑
k=1

(−1)k−1 cos(tLogk)

kσ
= 0

limn−→+∞

n∑
k=1

(−1)k−1 sin(tLogk)

kσ
= 0

Using the definition of the limit of a sequence, we can write:

∀ϵ1 > 0 ∃nr,∀N > nr, | ℜ(η(s)N ) |< ϵ1 =⇒ ℜ(η(s)N )2 < ϵ1
2 (2.3)

∀ϵ2 > 0 ∃ni,∀N > ni, | ℑ(η(s)N ) |< ϵ2 =⇒ ℑ(η(s)N )2 < ϵ2
2 (2.4)

Then:

0 <

N∑
k=1

cos2(tLogk)

k2σ
+ 2

N∑
k,k′=1;k<k′

(−1)k+k′
cos(tLogk).cos(tLogk′)

kσk′σ
< ϵ21

0 <

N∑
k=1

sin2(tLogk)

k2σ
+ 2

N∑
k,k′=1;k<k′

(−1)k+k′
sin(tLogk).sin(tLogk′)

kσk′σ
< ϵ22

Taking ϵ = ϵ1 = ϵ2 and N > max(nr, ni), we get by making the sum member
to member of the last two inequalities:

0 <

N∑
k=1

1

k2σ
+ 2

N∑
k,k′=1;k<k′

(−1)k+k′ cos(tLog(k/k′))

kσk′σ
< 2ϵ2 (2.5)

We can write the above equation as :

0 < ρ2N < 2ϵ2 (2.6)

or ρ(s) = 0.

3. Case ℜ(s) = 1/2

We suppose that σ =
1

2
. Let’s start by recalling Hardy’s theorem (1914) ([2],

page 24):

Theorem 3.1. There are infinitely many zeros of ζ(s) on the critical line.

From the propositions (2.1-2.2), it follows the proposition :

Proposition 3.2. There are infinitely many zeros of η(s) on the critical line.
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Let sj =
1
2 + itj one of the zeros of the function η(s) on the critical line,

so η(sj) = 0. The equation (2.5) is written for sj :

0 <

N∑
k=1

1

k
+ 2

N∑
k,k′=1;k<k′

(−1)k+k′ cos(tjLog(k/k
′))√

k
√
k′

< 2ϵ2

or:
N∑

k=1

1

k
< 2ϵ2 − 2

N∑
k,k′=1;k<k′

(−1)k+k′ cos(tjLog(k/k
′))√

k
√
k′

If N −→ +∞, the series

N∑
k=1

1

k
is divergent and becomes infinite. then:

+∞∑
k=1

1

k
≤ 2ϵ2 − 2

+∞∑
k,k′=1;k<k′

(−1)k+k′ cos(tjLog(k/k
′))√

k
√
k′

Hence, we obtain the following result:

limN−→+∞

N∑
k,k′=1;k<k′

(−1)k+k′ cos(tjLog(k/k
′))√

k
√
k′

= −∞ (3.1)

if not, we will have a contradiction with the fact that :

limN−→+∞

N∑
k=1

(−1)k−1 1

ksj
= 0 ⇐⇒ η(s) is convergent for sj =

1

2
+ itj

4. Case 0 < ℜ(s) < 1/2

4.1. Case where there are zeros of η(s) with s = σ + it and 0 < σ <
1

2
.

Suppose that there exists s = σ+it one zero of η(s) or η(s) = 0 =⇒ ρ2(s) = 0
with 0 < σ < 1

2 =⇒ s lies inside the critical band. We write the equation
(2.5):

0 <

N∑
k=1

1

k2σ
+ 2

N∑
k,k′=1;k<k′

(−1)k+k′ cos(tLog(k/k′))

kσk′σ
< 2ϵ2

or:
N∑

k=1

1

k2σ
< 2ϵ2 − 2

N∑
k,k′=1;k<k′

(−1)k+k′ cos(tLog(k/k′))

kσk′σ

But 2σ < 1, it follows that limN−→+∞

N∑
k=1

1

k2σ
−→ +∞ and then, we obtain

:
+∞∑

k,k′=1;k<k′

(−1)k+k′ cos(tLog(k/k′))

kσk′σ
= −∞ (4.1)
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5. Case 1/2 < Re(s) < 1

Let s = σ + it be the zero of η(s) in 0 < ℜ(s) < 1
2 , object of the previous

paragraph. From the proposition (2.1), ζ(s) = 0. According to point 4 of
theorem 1.2, the complex number s′ = 1− σ + it = σ′ + it′ with σ′ = 1− σ,
t′ = t and 1

2 < σ′ < 1 verifies ζ(s′) = 0, so s′ is also a zero of the function

ζ(s) in the band 1
2 < ℜ(s) < 1, it follows from the proposition (2.2) that

η(s′) = 0 =⇒ ρ(s′) = 0. By applying (2.5), we get:

0 <

N∑
k=1

1

k2σ′ + 2

N∑
k,k′=1;k<k′

(−1)k+k′ cos(t′Log(k/k′))

kσ′k′σ′ < 2ϵ2 (5.1)

As 0 < σ < 1
2 =⇒ 2 > 2σ′ = 2(1 − σ) > 1, then the series

∑N
k=1

1

k2σ′ is

convergent to a positive constant not null C(σ′). As 1/k2 < 1/k2σ
′
for all

k > 0, then :

0 < ζ(2) =
π2

6
=

+∞∑
k=1

1

k2
<

+∞∑
k=1

1

k2σ′ = C(σ′) = ζ1(2σ
′) = ζ(2σ′)

From the equation (5.1), it follows that :

+∞∑
k,k′=1;k<k′

(−1)k+k′ cos(t′Log(k/k′))

kσ′k′σ′ = −C(σ′)

2
= −ζ(2σ′)

2
> −∞ (5.2)

5.0.1. Case t = 0. We suppose that t = 0 =⇒ t′ = 0. The equation (5.2)
becomes:

+∞∑
k,k′=1;k<k′

(−1)k+k′ 1

kσ′k′σ′ = −C(σ′)

2
= −ζ(2σ′)

2
> −∞ (5.3)

Then s′ = σ′ > 1/2 is a zero of η(s), we obtain :

η(s′) =

+∞∑
n=1

(−1)n−1

ns′
= 0 (5.4)

Let us define the sequence Sm as:

Sm(s′) =

m∑
n=1

(−1)n−1

ns′
=

m∑
n=1

(−1)n−1

nσ′ = Sm(σ′) (5.5)

From the definition of Sm, we obtain :

limm−→+∞Sm(s′) = η(s′) = η(σ′) (5.6)

We have also:

S1(σ
′) = 1 > 0 (5.7)

S2(σ
′) = 1− 1

2σ′ > 0 because 2σ
′
> 1 (5.8)

S3(σ
′) = S2(σ

′) +
1

3σ′ > 0 (5.9)
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We proceed by recurrence, we suppose that Sm(σ′) > 0.

1. m = 2q =⇒ Sm+1(σ
′) =

m+1∑
n=1

(−1)n−1

ns′
= Sm(σ′) +

(−1)m+1−1

(m+ 1)σ′ , it gives:

Sm+1(σ
′) = Sm(σ′) +

(−1)2q

(m+ 1)σ′ = Sm(σ′) +
1

(m+ 1)σ′ > 0 ⇒ Sm+1(σ
′) > 0

2. m = 2q + 1, we can write Sm+1(σ
′) as:

Sm+1(σ
′) = Sm−1(σ

′) +
(−1)m−1

mσ′ +
(−1)m+1−1

(m+ 1)σ′

We have Sm−1(σ
′) > 0, let T =

(−1)m−1

mσ′ +
(−1)m

(m+ 1)σ′ , we obtain:

T =
(−1)2q

(2q + 1)σ′ +
(−1)2q+1

(2q + 2)σ′ =
1

(2q + 1)σ′ −
1

(2q + 2)σ′ > 0 (5.10)

and Sm+1(σ
′) > 0.

Then all the terms Sm(σ′) of the sequence Sm are great then 0, it follows
that limm−→+∞Sm(s′) = η(s′) = η(σ′) > 0 and η(σ′) < +∞ because
ℜ(s′) = σ′ > 0 and η(s′) is convergent. We deduce the contradiction with the
hypothesis s′ is a zero of η(s) and:

The equation (5.3) is false for the case t′ = t = 0. (5.11)

5.0.2. Case t ̸= 0. Great effort has been put to find regions inside the critical
strip where there are no zeros of the function ζ(s). The classical zero-free
region is of the form σ > 1 − 1/(R0log|t|), where R0 is a positive constant.
The best known result of this form is due to H. Kadiri [4]:

Theorem 5.1. (Kadiri, 2005) ζ(s) does not vanish in the region:

ℜ(s) ≥ 1− 1

R0log|ℑ(s)|
, |ℑ(s)| ≥ 2 with R0 = 5.69693 (5.12)

In the equation (5.2), we have used s′ = σ′ + it′ where we can consider
that t′ > 2, with 2 > 2σ′ > 1 and σ′ ∈]1/2, 1[. The same equation expresses
that η(s′) = 0 =⇒ ζ(s′) = 0, but it does not give any obstruction that
s′ = σ′ + it′ could be in the zero-free region of the function ζ defined by the
last theorem above so that:

σ′ ≥ 1− 1

R0log|t′|
> 1− 1

R0log2
≈ 0.74 =⇒ 2 > 2σ′ > 1, t′ > 2

Then the contradiction, it follows that the equation (5.2) is false and η(s′)
does not vanish for σ′ ∈]1/2, 1[ and:

The equation (5.2) is false for the case t′ = t ̸= 0. (5.13)

From (5.11) and the equation above, we conclude that the function η(s) has
no zeros for all s′ = σ′ + it′ with σ′ ∈]1/2, 1[, it follows that the case of the
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paragraph (4) above concerning the case 0 < ℜ(s) < 1

2
is false too. Then, the

function η(s) has all its zeros on the critical line σ =
1

2
. From the equivalent

statement (1.5), it follows that the Riemann hypothesis is verified. □

From the calculations above, we can verify easily the following known
proposition:

Proposition 5.2. For all s = σ real with 0 < σ < 1, η(s) > 0 and ζ(s) < 0.

6. Conclusion

In summary: for our proofs, we made use of Dirichlet’s η(s) function:

η(s) =

+∞∑
n=1

(−1)n−1

ns
= (1− 21−s)ζ(s), s = σ + it

on the critical band 0 < ℜ(s) < 1, in obtaining:

- η(s) vanishes for 0 < σ = ℜ(s) = 1

2
;

- η(s) does not vanish for 0 < σ = ℜ(s) < 1

2
and

1

2
< σ = ℜ(s) < 1.

Consequently, all the zeros of η(s) inside the critical band 0 < ℜ(s) < 1

are on the critical line ℜ(s) = 1

2
. Applying the equivalent proposition to the

Riemann Hypothesis (1.5), we conclude that the Riemann hypothesis is ver-
ified and all the nontrivial zeros of the function ζ(s) lie on the critical line

ℜ(s) = 1

2
. The proof of the Riemann Hypothesis is thus completed.

We therefore announce the important theorem as follows:

Theorem 6.1. The Riemann Hypothesis is true:
All nontrivial zeros of the function ζ(s) with s = σ+ it lie on the vertical line

ℜ(s) = 1

2
.
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