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ABSTRACT. In 1859, Georg Friedrich Bernhard Riemann had announced the
following conjecture, called Riemann Hypothesis : The nontrivial roots (zeros)
s = o + it of the zeta function, defined by:

+oo

¢(s) = Z %, for R(s)>1

n=1
1
have real part o = 3"

1
We give the proof that ¢ = — using an equivalent statement of the Rie-

mann Hypothesis concerning the Dirichlet n function.

keywords: zeta function, non trivial zeros of eta function, equivalence
statements, definition of limits of real sequences.

1. INTRODUCTION

In 1859, G.F.B. Riemann had announced the following conjecture [1]:

Conjecture 1.1. Let ((s) be the complex function of the complex variable s =
o + it defined by the analytic continuation of the function:

+o0 1
Ci(s) = Z vt for R(s) =0 >1
n=1
over the whole complex plane, with the exception of s = 1. Then the nontrivial
zeros of ((s) =0 are written as :

1 .

s = 2 +1
In this paper, our idea is to start from an equivalent statement of the Riemann
Hypothesis, namely the one concerning the Dirichlet n function. The latter is
related to Riemann’s ¢ function where we do not need to manipulate any expression
of ((s) in the critical band 0 < R(s) < 1. In our calculations, we will use the

1
definition of the limit of real sequences. We arrive to give the proof that o = 3
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1.1. The function (. We denote s = ¢ + it the complex variable of C. For
R(s) = o > 1, let (1 be the function defined by :

+o0 1
Ci(s) = Z el for R(s) =0 >1

n=1
We know that with the previous definition, the function (; is an analytical function
of s. Denote by ((s) the function obtained by the analytic continuation of (;(s)
to the whole complex plane, minus the point s = 1, then we recall the following
theorem [2]:

Theorem 1.2. The function ((s) satisfies the following :
1. {(s) has no zero for R(s) > 1;
2. the only pole of ((s) is at s = 1; it has residue 1 and is simple;
3. C(s) has trivial zeros at s = —=2,—4,...;
4. the nontrivial zeros lie inside the region 0 < R(s) < 1 (called the critical strip)

1
and are symmetric about both the vertical line R(s) = 3 and the real azis 3(s) = 0.

1
The vertical line R(s) = 3 is called the critical line.

The Riemann Hypothesis is formulated as:

Conjecture 1.3. (The Riemann Hypothesis,[2]) All nontrivial zeros of {(s) lie on

1
the critical line R(s) = 3

In addition to the properties cited by the theorem above, the function ((s)
satisfies the functional relation [2] called also the reflection functional equation for
s € C\{0,1} :

(1.1) C(1—-s)= 21757T75608%F(8)C(8)
where I'(s) is the gamma function defined only for R(s) > 0, given by the formula :

r(s)z/ et dt, R(s) >0
0

So, instead of using the functional given by (1.1), we will use the one presented
by G.H. Hardy [3] namely Dirichlet’s eta function [2]:

+oo  \n—1
ns) =3 T~

The function eta is convergent for all s € C with R(s) > 0 [2].

We have also the theorem (see page 16, [3]):
Theorem 1.4. For allt € R, ((1+it) # 0.

So, we take the critical strip as the region defined as 0 < R(s) < 1.
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1.2. A Equivalent statement to the Riemann Hypothesis. Among the equiv-
alent statements to the Riemann Hypothesis is that of the Dirichlet function eta
which is stated as follows [2]:

Equivalence 1.5. The Riemann Hypothesis is equivalent to the statement that
all zeros of the Dirichlet eta function :

(1)1
(1.2) n(s) = e = (1-217)(s), o >1
n=1

that fall in the critical strip 0 < R(s) < 1 lie on the critical line R(s) =

The series (1.2) is convergent, and represents (1 — 217%)((s) for R(s
(3], pages 20-21). We can rewrite:

= (=) s
(1.3) n(s) =D =1-27)((s), R(s)=0>0

7(s) is a complex number, it can be written as :

(1.4) n(s) = p.e* = p* = n(s).n(s)
and n(s) =0<=p=0.

2. PRELIMINARIES OF THE PROOF THAT THE ZEROS OF THE FUNCTION 77(8) ARE

1
ON THE CRITICAL LINE R(s) = 3

Proof. . We denote s = o + it with 0 < ¢ < 1. We consider one zero of 7(s) that
falls in critical strip and we write it as s = o + it, then we obtain 0 < ¢ < 1 and
n(s) =0 <= (1 —217%)((s) = 0. We verifies easily the two propositions:

(2.1)

’s, is one zero of 1/(s) that falls in the critical strip, is also one zero of ((s)‘

Conversely, if s is a zero of ((s) in the critical strip, let ((s) = 0 = n(s) =
(1—217%)((s) = 0, then s is also one zero of 7(s) in the critical strip. We can write:
(2.2)

s, is one zero of ((s) that falls in the critical strip, is also one zero of 1(s) ‘

Let us write the function 7:

+oo (_1)n—1 +o0 +oo 4
7’](8) — Z e — Z(_1>n—1e—sLogn _ Z(_l)n—le—(a+zt)Logn _
n=1 n=1 n=1

—+o0
:§ (_1)n—16—aLogn.e—itLogn
n=1

+oo
= z(71)”7167”“9”(cos(tLogn) —isin(tLogn))
n=1

The function 7 is convergent for all s € C with R(s) > 0, but not absolutely
convergent. Let s be one zero of the function eta, then :

too ( l)nfl

=

n=1
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or:

N
Ve >0 Tng, VN > no, ’Z =

n=1

We definite the sequence of functions ((9,)nen=(s)) as:

"L (—1)kt - _,cos(tLogk - _18tn(tLogk
Z ( k)g — Z(_l)k 1 (ko ) _ ’LZ(—l)k 1 (ka )
k=1 k=1 k=1

with s = o + it and t # 0.

Nn(s) =

Let s be one zero of 7 that lies in the critical strip, then n(s) =0, with 0 < o < 1.
It follows that we can write lim,,— 1+ oonn(s) = 0 = n(s). We obtain:

cos(tLogk
limy, 4 oo Z k 179) =0

0'

(tLogk
hmn_,mz ye-rsinttlogh) _

O'

Using the definition of the hmlt of a sequence, we can write:
(2.3) Yer > 03n,, YN > n,, |R(n(s)n)| < e1 = R(n(s)n)* < 12
(2.4) Vey > 030, YN >y, [S(n(s)n)| < e2 = S(n(s)n)? < e

Then:

iv: (—=1)¥** cos(tLogk).cos(tLogk!) e

ko ko 1

Y. cos? (tLogk)
k20 +2

k=1 kk'=1:k<k’

0<

0< Z sin th(Ljogk 49 XN: (1)k+k'gin(tk[;(;jf).sin(tl/ogk’) - e%
kk'=1;k<k’

Taking € = ¢; = e and N > maz(n,,n;), we get by making the sum member to
member of the last two inequalities:

N N ,
(2.5) o<y k% +2 Y (e —Cos(tififf/k ) (g2
k=1 ke, k! =15k <k’

We can write the above equation as :
(2.6) 0< p% <26
or p(s) = 0.

1
3. CASE 0 = —.
773

1
We suppose that o = 3 Let’s start by recalling Hardy’s theorem (1914) ([2],
page 24):
Theorem 3.1. There are infinitely many zeros of ((s) on the critical line.

From the propositions (2.142.2)), it follows the proposition :

Proposition 3.2. There are infinitely many zeros of 7(s) on the critical line.
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Let s; = 3 + it; one of the zeros of the function n(s) on the critical line, so
n(s;) = 0. The equation ({2.5) is written for s;:

N N
1 rcos(tjLog(k/k")) 9
0<> =+2 Y (-k* J < 2
pus LAV w VEVE
or:
N N
1 2 ki cos(t;Log(k/K'))
> L <2 -2 (1) ,
k=1 ke, k! =15k <k’ VEVE

N
1
If N — 400, the series Z z is divergent and becomes infinite. then:

+oo
% S 262 _ 2 Z (_1)k+k¢/ COS(thOg(If/k/))
k=1 kk'=1;k<k’ VEVE

Hence, we obtain the following result:

N
) rcos(t;Log(k/k'))
(3.1) limy_— 400 Z (—1)kFF J = —00
ko k! =1;k <k’ VEVE
if not, we will have a contradiction with the fact that :
al 1 1
limN— 100 ;Fl)k_lﬁ = 0 <= n(s) is convergent for s; = B + it

4. Case 0 < R(s) <

N =

1
4.1. Case where there are zeros of 7n(s) with s = o +it and 0 < 0 < 7

Suppose that there exists s = o + it one zero of 7(s) or 7(s) = 0 = p*(s) = 0 with
0 < o < 2 = s lies inside the critical band. We write the equation (2.5):

N N
1 Ktk coS(tLog(k/k")) 2
k=1 k' =1k <k’
or:
N N
1 2 ki coS(tLog(k/k"))
Zﬁ <2 -2 Z (=1) ko ko
k=1 k' =1k <k’
N
But 20 < 1, it follows that limy_ 1 z 720 — +o0 and then, we obtain :
k=1
“+o0 /
\kk Cos(tLog(k/K"))
(4.1) Z (=1) ko Jlo -
k' =1;k <k’
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5. CASE é <R(s) < L.

Let s = o + it be the zero of 7(s) in 0 < R(s) < 1, object of the previous
paragraph. From the proposition , ¢(s) = 0. According to point 4 of theorem
the complex number s’ = 1 — o + it = ¢’ +it’ with ¢/’ =1 -0, t =t and
2 < o’ <1 verifies ((s') = 0, so s’ is also a zero of the function ((s) in the band
1 < R(s) < 1, it follows from the proposition that n(s’) = 0 = p(s’) = 0.
By applying , we get:

N N
) 1 3 rcos(t' Log(k/k'
k=1 kk'=1;k<k’

1
AsO0<o <3 =>2>20"=2(1-0) > 1, then the series Zszl =ra is convergent
to a positive constant not null C(0”). As 1/k2 < 1/k2°" for all k > 0, then :

s

2 +o0 1 +00 1
0<¢(2)= i Zﬁ < ZW =C(0') = 1(20") = ((20")
k=1 k=1

From the equation (5.1, it follows that :

(5.2) JFZOO (_1)k+k/ cos(t' Log(k/k")) _ _C’(J’) _ _C(2U’) .

ko' ko’ 2 2

ko k' =1;k<k’
5.0.1. Case t = 0. We suppose that t =0 = t' = 0. The equation (5.2) becomes:

(5.3) f (71)k+k’ 1 _ 7C(o'/) _ 4(201) s

ko ko’ 2 2
kyk' =13k <k’

Then s’ = 0’ > 1/2 is a zero of n(s), we obtain :

(5.4) a) =3 EUT
n=1 n*

Let us define the sequence Sy, as:

mo(_1yn—1 mo_qyn—1
(5.5) Sn(s) = ; ( n) = ; ( nz, = Spu(0’)
From the definition of .S,,, we obtain :
(5.6) liman— 400 Sm(s") = n(s") = n(o’)
We have also:
(5.7) Si(c")=1>0
(5.8) Sy(0’)=1- % >0 because 2° > 1
(5.9) 53(0') = Sa(0") + 57 > 0

We proceed by recurrence, we suppose that Sy, (c’) > 0.
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m+1 (_1)71—1 (_1)m+1—1
1. =2 N = —_— = ! it gives:
m = 2q = Spmy1(0’) nEZI v Sm(c’) + mt1)7 it gives
/ ’ (*1)2(1 ’ !
Sm+1(0' ) = Sm(O' ) + 7(m T 1)0_, = Sm(O' ) + 7(m T 1)0_, >0= Sm+1(0' ) >0

2. m =2q+ 1, we can write S,,1(c’) as:

(71)m71 (71)m+171
me (m+ 1)

Sm+1(‘7/) = SM—l(U/) +

e
— + m+ 07

We have S,,—1(0’) > 0, let T = , we obtain:

mO’

I G VN B
(5.10) T= 2q+1)7 + (2¢+2)°"  (2¢+ 1) (2¢+2) =0

and S,,4+1(c’) > 0.

Then all the terms S,,(0’) of the sequence S, are great then 0, it follows that
limum—s+009m (8) = n(s’) = n(o’) > 0 and n(c’) < +o00 because R(s') = o’ > 0
and 7n(s") is convergent. We deduce the contradiction with the hypothesis s’ is a
zero of 7(s) and:

(5.11) ’The equation ([5.3)) is false for the case t' = ¢ = 0. ‘

5.0.2. Caset # 0. We suppose that ¢ # 0. For each s’ = ¢’ +it' = 1 — 0 + it a zero
of n(s), we have:

Jio (—1)FH¥ cos(t'Log(k/K')) _ C(o') _ ¢(207) .

(5.12) o o7 5 5

kk/=1;k<k’

the left member of the equation (5.12) above is finite and depends of ¢’ and t', but
the right member is a function only of ¢’ equal to —((20”)/2. But for all ¢” so that
20" > 1, we have ((20”) :

+oo

1
€(20”) =(1(207) = Z 5 < 400

k=1

It depends only of ¢”, then in particular for all ¢” with 2 > 20”7 > 1, ((20”)
depends only of ¢”. Let A > 0 be an arbitrary real number very infinitesimal so
that o’/ + X €]1/2, 1] is not the real part of a zero of n(s), that we write Vr > 0,v =
o’ + A+ it verifies n(v) # 0. Let g(¢”) be the function ((2¢”), the first derivative
of g is given by:

= Logk
1207
k=2

(5.13) g (07)=-2 > —00
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because we will choose @ > 0 so that 0”7 > 1/2 4+ a = 2(¢” — a) > 1 and we
obtain:

X Logk X Logk®>* 1
:_22 k20”7 :_72 k2o E2(0”—a) -
1< X Logk®* 1
10 =
(5.14)  |g'(e")l < s e R a) = Z k2(o”—a)

Let 09 €]1/2,1] so that 0” > 0g > % + a, it follows:

+oo
o< 33 e < ¢ (20— )~ < oo

!
that justifies the operation (Z gn(a”)> = Z(gk(a”))’. We will use it for the

calculation of ¢”(¢”). Now, Let us calculate the second derivative of the function
g(0”). We obtain:

o) Logk
=2 Z k2o’
then:
(5.15)

([, » (Lng‘ 2 Lng’
g (U ) = 2; k207" Ol2 Z k2(a7’—a — a2 Z k2(o”—a)

2

Finally, |¢’(¢”)| and g”(0”) are bounded, then g(¢”) is a function of C* on |1/2 +
a, 1[. We take ¢” = o’ and we can write:

79 9
(5.16) g(o’ + ) =g(o") + g (o) + gT(')AQ with some suitable 0 €]o’, 0’ + A
We can re-write the above equation as:
(5.17)
9 9
C(20" +2X) = ((20") + 22X (207) + g ))\2 with some suitable 0 €]o’, 0’ + A

we have two cases to study:

case a): the term (’(20”) is independent of ¢, the equation can we written
as:
(5.18)

C(20" +2X) — 2X{'(207) = (20" J 2('9) A with some suitable 6 €]o’, 0" + \[

As o/ + X\ and (/(20’) are independent of ¢, numerically, the left member of the
above equation is independent of ¢, but the right member depends of ¢’ using the
equation (5.12)), then the contradiction.

case b): the term ¢’(20”) depends of ', we rewrite the equation ((5.17)):

9 0
C(20" 4 2)) = ¢(207) + 2X\¢'(207) + 92—(')V with some suitable 0 €]o’, 0’ + \[

There too, the left member of the above equation is independent of ¢/, but the
right member depends of ¢ using the equation (5.12)), then the contradiction and
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we conclude that the result giving by the equation (5.12) is false.

(5.19) ’It follows that the equation (5.12) is false for the case ¢’ # 0. ‘

From (5.11}5.19), we conclude that the function 7(s) has no zeros for all s’ = o'+
it’ with o’ €]1/2,1], it follows that the case of the paragraph above concerning

1
the case 0 < R(s) < 3 is false too. Then, the function 7n(s) has all its zeros on

1
the critical line o = 3 From the equivalent statement li it follows that the

Riemann hypothesis is verified. O

From the calculations above, we can verify easily the following known proposi-
tion:

Proposition 5.1. For all s = ¢ real with 0 < o < 1, n(s) > 0 and {(s) < 0.

6. CONCLUSION

In summary: for our proofs, we made use of Dirichlet’s n(s) function:

too n—1
n(s)=> % =(1-2"7°)(s), s=o+it
n=1

on the critical band 0 < R(s) < 1, in obtaining:

- n(s) vanishes for 0 < o = R(s) = 3

1 1
- n(s) does not vanish for 0 < o = R(s) < 3 and 3<0= R(s) < 1.

Consequently, all the zeros of n(s) inside the critical band 0 < R(s) < 1 are on

the critical line R(s) = 3 Applying the equivalent proposition to the Riemann
Hypothesis ([1.5]), we conclude that the Riemann hypothesis is verified and all

1
the nontrivial zeros of the function ¢(s) lie on the critical line £(s) = 3 The proof

of the Riemann Hypothesis is thus completed.

We therefore announce the important theorem as follows:

Theorem 6.1. The Riemann Hypothesis is true:
All nontrivial zeros of the function ((s) with s = o + it lie on the vertical line
1
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