
NEWTON’S SECOND LAW AND RELATIVISTIC HAMILTONIAN.

PART I. THEORETICAL

Yu. E. Zevatskiy

The relativistic kinematics and particle dynamics in the four-dimensional

Euclidean space with real reference axes have been studied using the Lor-

entz transformations. Five types of relativistic Hamiltonians of particles

moving in the field of potential forces are calculated, depending on the re-

cording form of the Newton’s second law. The results obtained can be ap-

plicable to introduce relativistic corrections while solving a wide variety of

problems in mechanics.

Lorentz transformations underlie the special theory of relativity and they

can historically be considered as the basis for the other relativistic theories.

The covariance property of physical models under Lorentz transformations is a

key criterion for their applicability in practice [1, 2]. The concept “local time”,

introduced by Lorentz, has changed the essence of basic physical concepts such

as impulse, force and led to quantitative changes in the wording of laws associ-

ated therewith. Despite the fact that the first works of Lorentz on the theory of

relativity date back to the end of the 19th century, they are still relevant today.

In this study, we will derive the relativistic Hamiltonian of a particle from the

expression for the range of its proper (local) time, invariant under Lorentz trans-

formations.

It is known that a value is

   2 22 2 2c x y z c t         (1)

invariant under arbitrary nonhomogeneous Lorentz transformations [3].
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x = x2 – x1,y = y2 – y1, z = z2 – z1,t = t2 – t1, = 2 - 1. The following

notations are introduced: x1, y1, z1, t1  – coordinates and occurrence time 1 in the

frame of reference selected, x2, y2, z2, t2 – coordinates and occurrence time 2 in

the frame of reference selected. If event 1 is the position of the body preceding

the position of the body in event 2, then 1 is an instant of time of event 1,

measured against the clock associated with this body, and 2 – is an instant of

time of event 2, measured against the same clock. It is no wonder that interval

 will be the same with regard to any inertial reference frames as it is meas-

ured, using the same clock. Shall we transform expression (1), passing from in-

tervals to differentials:

2 2 2ds dw d  r , (2)
where the following notations are introduced:

ds = cdt, dw = cd, dr = idx + jdy + kdz, i, j, k are unit axes of spatial reference

system. Under expression (2) it follows that:

2 2 2
2

2
1 1 1

dw d

ds ds c
           

   
r v , (3)

where the notation of the squared velocity of the body in the selected system is

introduced

2 2 2 2
2 2 2 d dx dy dz

c
dt dt dt dt

                     
       

r
v v v . (4)

Under equation (2) it also follows that

2 2

1
ds d

dw dw
       
   

r (5)

or in selected notations, using equation (3):

2

2 2

1
1

1 1


 

 
 

. (5а)

Shall we multiply the left and right part of equation (5а) by the product of

the squared invariant body mass m0 and squared light velocity, and we get

2 2 2 2
2 20 0
02 21 1

m c m
m c

 
 

 
v , (6)
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what is the basic relativistic expression [4, 5] within a constant multiplier. In-

troducing the traditional concept of the observable (relativistic) mass

0

21

m
m





, (7)

expression (6) can be rewritten as follows:

     2 2 2

0mc m c m  v , (6а)

which can be interpreted as the addition law of orthogonal spatial (explicit)

momentum

r mP v (8)
and own (hidden) momentum directed along the local time coordinate w

0 0m cP , (9)
with the formation of resultant (total) body momentum

0  ;     r P mc  P P P . (10)

Thus, the relativistic kinematics can be considered in four-dimensional

Euclidean space, i.e. local (proper) time. All coordinate axes are real. All bod-

ies, inert and moving relative to the selected coordinate system in this tetrameric

space, make constant movements with a speed equal to the lightspeed.

To consider the relativistic dynamics of the motion of bodies, the form of

Newton’s second law of motion needs to be defined. There are four levels of

Newton’s second law. The classical one:

2 2
2

0 0 0 0 02 2

d d d d
m m c m c m

dt ds ds dt
   

r v r v
F , (11a)

Traditional relativistic one:

20
1 0 021

r md d d d d d d
m m c

dt dt dt dt d ds dw

                  

P r r r
F , (11b)

proposed by Lorentz and confirmed in experiments with β-rays at the beginning

of 20th century [4].

Theoretically inverse relativistic one:
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20
2 0 021

md d d d d
m m c

d dt dt dw ds 
        
   

r v r
F (11c)

and local one:

2 2
2 0

3 0 02 2 21
r md d d d

m m c
d d dw d   

 
    
  

vP r r
F . (11d)

In all cases, the differential of the potential energy of the potential-field

forces is equal to:

dU d F r . (12)
To obtain relativistic motion integrals, shall we differentiate expressions (3)

or (5) in order to obtain the total differential of the form:

2
2

0 ( )
( )

H H
dU df

U f

 
 
 

v
v

, (13)

where H is a function of two independent variables U and v2

2( , )H U constv . (14)

For instance, the differential of equation (3), using the form (11а) of New-

ton’s second law,

2 2

02
0

2
0 2

dw d d dw d
d d d m d

ds ds ds ds m c dt
             
     

r r r
v (15)

can be rearranged into a differential equation:

 2
2

0

2
0 1

dU
d

m c
   . (15а)

By integrating we obtain an expression for the classical Hamiltonian up to a

constant of integration:

 
2 2 2

20 0 0
0 1

2 2 2

m c m m c
H U U     

v . (15b)

The differential of equation (5), using the traditional relativistic form (11b)

of  Newton’s second law

2

0
02

0 0

2
2 2

mds d d d ds d ds d d
d d d d m

dw dw dw dw m ds cd m c dw dt d 
                
       

r r r r r
r (16)

can be rearranged into a differential equation:
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12 2 22 2
0 0

1 2 1 2 1

1 1 1
d d dU

m c m c  

 
      

rF . (16a)

By separating the variables and integrating we obtain an expression for the

relativistic Hamiltonian:

2
1 0 2

1
1

1
H U m c



 
   
  

. (16b)

Using the law (11c), the differential (3):

   
2 2

2 20
02

0 0

1
0 2 1 2 1 2

m dwdw d d d d d
d d d d d m

ds ds ds m dw ds c m c d


 


             

   
r r r v v

r (17)

can be rearranged into (17а)

     22 2
2 2

22 2 22
0 0 0

11 1
1 2 1 2 0 2

1

d dU
d d d dU

m c m c m c

 
 



 
       


rF . (17а)

The integration of the second equation (17а) provides an expression similar

to the relativistic Lagrangian [5, 6]. The difference is expressed in marks:

2 2
0 1m c U const   . (17b)

To correspond (17b) to the classical Hamiltonian in the classical limit  → 0,

the constant should be given the value m0c
2 – H. Thus:

 2 2
2 0 1 1H U m c     . (17c)

The differentiating of the equation (3) gives

2 2

02
0

2
2

ds d d d d d
d d d m d

dw dw dw dw m c d d 
                
       

r r r r r . (18)

Using the Newton’s law in the form (11d), the equation can be rearranged as

follows:

32 2 2
0 0

1 2 2

1

dU
d d

m c m c
 

    
F r . (18а)

By integrating and removing the constants, we obtain:

 
2 2

0 0
3 2 2

1
1

2 1 2 1

m c m
H U U

 
 

       

v . (18b)
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The case when Fdr = 0 should be considered separately. The values of U

and β are kept constant during this movement.

Using the classical level of Newton’s second law (11a) the expression for

Hamiltonian H0 will not be changed.

The Lorenz traditional relativistic (11b) and inverse relativistic (11c) levels

of Newton’s second law will coincide:

2
0 0

12 2 21 1

m m cd d d

dt ds ds 
    
  

v r
F . (19)

Thus, the differentiating of the equation (3) using the form (19)

 
2

2 2
2

0

2
0 2 1 1

dw d d dU
d d d

ds ds ds m c
            

   
r r (20)

gives the differential equation:

 2

22
0

1 2
0

1

d dU

m c






 


. (21)

By integrating , the form of the Hamiltonian coincides with the expression

(17c)

12 2H H . (22)

The local level of Newton’s second law under the condition  = const will

be changed:

2
0 0

3 2 21 1

m m cd d d

dt ds ds 
        

v r
F , (23)

which, by substituting into the differential of equality (3) gives

     
2

2 2 2
32 2

0 0

2 2
0 1 1 1

dw dU
d d

ds m c m c
           

 
F . (24)

By integrating (24) we obtain the following expression

 
2

20
3 ln 1

2

m c
H U     . (25)
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The results obtained are summarized in the table:

Type of HamiltonianRecording form of the

Newton’s second law Fdr ≠ 0 Fdr = 0

0 0

d
m

dt


v
F                                          

2
0

0 2

m
H U 

v
                         (26)

1
rd

dt


P
F

2
20

1 021

m c
H U m c


  



2 0

d
m

d


v
F  2 2

2 0 1 1H U m c    

 2 2
12 0 1 1H U m c    

3
rd

d


P
F  

2
0

3 22 1

m
H U


 


v  

2
20

3 ln 1
2

m c
H U    

The second summands in equations (16b), (17c), (18b), (25) and (26) can be

interpreted as an expression of the kinetic energy of a particle in the field of

potential forces at the value of its potential energy U.

On expanding the logarithm in a power series , these summands give the

series in which only the first term coincides (m0v
2/2). The difference in values

of the kinetic energy, calculated, for example, by expressions (16b) and (25), at

= 0.1 equals 0.3 %, and at  = 0.5 reaches 7.5%.

The applicability of the considered formulas for calculating the Hamiltonian

should be evaluated in a variety of experiments. Numerical calculations of rela-

tivistic effects in determining the spectra or ionization potentials of atoms and

ions may suit this purpose. Apparently, for processes involving electrons, the

most accurate expression will be (16b), obtained from Newton's second law, in

the form proposed by Lorentz. This may not be the case in other processes.
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