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Abstract 

This work presents a model to treat the relativistic quantum dynamics of massless and massive 

particles in a 2D Minkowski spacetime.   Using a set of three independent 2x2 real-value matrices 

to represent a time-shift operator 𝐸, a space-shift operator 𝑃, and a mass operator 𝑀, we derive 

operator equations for massless particles which can be classified into two types of topological 

preons, the symmetric type-I with commutative 𝐸 and 𝑃, representing  a bosonic preon, and anti-

symmetric type-II with {𝑬,𝑷} = 0, representing the fermionic preon.  We illustrate their 

topological differences and show that the wave of the fermionic preon exhibits a twist during 

propagation like a Möbius strip. In contrast, the type-I bosonic preon behaves like a simple loop 

strip without a twist. The massless bosonic preon in our model resembles a 2D  photon or a Higgs 

boson before symmetry-breaking, while the fermionic preon resembles a massless  2D Majorana 

particle. Unlike conventional string theories involving 1D strings, in this work, we use a Möbius 

strip and a simple loop in 2D, representing fermionic and bosonic preons, respectively. The 

extension of this model to 4D spacetime as potential building blocks to construct elementary 

particles deserves further studies.  

 

  



Introduction 

Relativity and quantum mechanics have been the two major pillars for modern physics since the 

dawn of the last century1,2. They are the most successful physics theories in human history and 

their predictions have been put to test with unprecedented accuracy. However, there remain many 

puzzling mysteries, including some counter-intuitive quantum phenomena such as quantum 

entanglement3,4, double-slit self-interference of single particles5,6, the collapse of a wave function 

during measurements7 absence of right-hand neutrinos8, the mass oscillations of neutrinos9,10, the 

causes of three generations of quarks and leptons11, the physical origin of the Standard Model12, 

dark matter13, dark energy14, and quantization of gravity15, etc. In this work, we aim to improve 

our understanding of the spacetime fabric, its topological structures, and their effects on relativistic 

quantum fields and particles. We provide a topological analysis of structural deformations as 

represented by excited quantum fields and particles in a 2D Minkowski spacetime16,17. Our 

analysis is in 2D instead of the actual 4D case, to increase mathematical simplicity while still 

retaining the core concepts of physics. We present a dual-component model to describe the 

relativistic quantum dynamics of elementary particles. We will show how this model will naturally 

lead to the existence of only two kinds of elementary field excitations: fermions with a Mobius 

strip structure, and bosons with a simple loop structure. We will also elucidate the concepts behind 

Pauli’s exclusion principle, fermionic statistics, and bosonic statistics. a Möbius strip. 

 

Theory 

In Newtonian mechanics or Einstein’s special relativity, the dynamics of a particle are vastly 

different from the motion of electromagnetic waves or other types of waves governed by 

( ) ( ) 0,22222 =+− xtfxtc . To unite the realms of particles and waves, a model with a dual-

component real-value wave function is necessary to describe the quantum behavior of particles. 

The model is based on de Broglie’s particle-wave duality and Einstein’s mass-energy relation 

( )222
0

22 pcmcE +=  for a particle with a rest mass 0m . For a massless particle18, we first consider a 



wave function of a dual-component wave function ( )xt,  consisting of two real-value functions 

( )xtf ,  and  ( )xtg ,  which is governed by the following wave equation:  
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or equivalently after Fourier transform,  
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where a natural unit of 1==c is used in this work. A Fourier transform of the above equation leads 

to
22 k= , a relation between the frequency   and the wave vector k .  This dispersion relation is 

equivalent to
22 K= , according to KPE  == , , or KPE == , , expressed in natural units, of 

Einstein’s energy relation to momentum for a massless particle14, and de Broglie’s particle-wave 

duality postulate.  Eq. (1A) can be expressed in an operator form as 

 ( ) .022 =+− PE          (1C) 

Here we use Dirac’s ket-vector notation   to represent a 2x1 column vector of the Fourier-

transformed wave function ( )xt, . Eq. (1B) can be met if ., 2222 == KPE    

 After close examination of Eq. (1C) and the requirement of its Lorentz invariance, we have 

found exactly two types of solutions exist.  For the type-I solution of ( ) 022 =− PE one has a 

commutative relation   0, =PE  and 

 ,, 2222 −=−= KPE         (2A) 

or 



 ., 2222 == KPE         (2B) 

For the type-II solution of ( ) 022 =−PE one has a non-commutative relation with   0=PE  and

  

 ( ) ( ) .0,0 =+=− PEPE or        (2C) 

These two types of solutions have different physical properties and distinctive topological 

structures. Because 
22 K=  we can normalize 

22 , PE  to become dimensionless operators and we 

will use this convention for the case of a massless particle.   

 Before we solve the operator equation in Eq. (1B) and assign these two operators to 2x2 

real-value matrices, or equivalently, converting the 2nd-order differential equation in Eq. (1A) 

involving a dual-component wave function into a set of linearly coupled 1st order differential 

equations, we shall examine the Lorentz transform between a fixed frame and a moving frame. 

According to special relativity theory, the Lorentz boost18,19 for a moving reference frame traveling 

along the x-axis is given in natural units by 
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where ( )xt,  are the coordinates at the fixed frame, and ( )',' xt  are the coordinates at the moving 

frame at a speed .v   Therefore, one has 
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From the above equation, the time-shift and space-shift operators Ê   and P̂  at the moving frame 

become 
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Based on Eq. (3C) one obtains 
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which confirms that 
22

PE −  and  PE,   are Lorentz invariants, but  PE,  are not. Therefore, for 

type-I particles, the wave equation 022 =−PE  and the commutative relation   0, =PE are satisfied 

and invariant under a Lorentz boost.  

 However, for type-II particles with an anti-commutative relation   0, =PE , one has 

  0, PE . In addition, one also has    PEPE ,ˆ,ˆ   which is not Lorentz invariant if one uses 

the Lorentz boost matrix of Eq. (3C). In order for   PE,  to be Lorentz invariant one needs to 

generalize the transformation matrix for the type-II case by 
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From Eq. (4A), one obtains the invariance of the anti-commutator 

   ( )    PEPEPEPE ,,2sinhˆ,ˆ 22 =+−=         (4B) 

because ( ) 022 =−PE
 for type-II particle. Therefore, both ( ) 022 =−PE  and   0ˆ,ˆ =PE   are 

indeed invariant under the Lorentz boost using Eq. (4A). Based on the above analysis, we conclude 

an important finding: the Lorentz boost matrix for type-I particles in Eq. (3C) are different from 

that in Eq. (4A) for type-II particles, which therefore must be different from type-I particles.  One 

can also define time and space operators T  and X  with ( ) ) ( ) )xttxt ,, =T  and 

( ) ) ( ) )xtxxt ,, =X , respectively. According to Einstein’s special relativity, 
22 xt −  is an invariant 



under a Lorentz transform.  Likewise, in the operator formalism,
22

XT −  is also an invariant 

similar to 
22

PE −  .  Therefore, one also has two solutions – a commutative type-I with   0, =XT  

and an anti-commutative type-II with   0, =XT ,  just like E  and P .  Together with our previous 

definition of   ) ( )xtt ,=E  and  ) ( )xtx ,=P ,  we can express these two types of Lorentz 

boosts for the transformation for the ( )PE,  and ( )XT,  pairs using 2x2 real-value matrices.  For 

type-I scalar particles, one has 
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One can show the following commutative relations are invariant under the Lorentz boost BL  

   .0,
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          (5B) 

As a reminder, in this work we only use real-value operators or wave functions, so the appearance 

of these commutators differ slightly from the conventional definition of the operators that involve 

a pure imaginary number. 

For type-II spinor particles, one has 
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The Lorentz boost matrix shown above for type-II particles is different from those for type-I 

particles. The commonly used Lorentz boost matrix in literature is only valid for type-I scalar 

particles where E  and P  commute. Such a notion has not been reported in literature. Using the 



above equation one can show the following commutative relations are invariant under the Lorentz 

boost:    
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It is important to point out that if the traditional Lorentz boost 
1−

FL  were used instead of 
1−

BL  for T  

and X ,  those commutative relations would no longer be Lorentz invariant.  

 Now we discuss specific assignments for the operators in both type-I and type-II cases. For 

the type-I case with   0, =PE and ( ) 022 =−PE , which are proven to follow the Lorentz boost of 

Eq. (3C), we first consider the choice of IPE −== 22
 would lead to flip-flop oscillations of the f 

and g components in spacetime. One can assign these 2x2 real-value matrix operators to  

 .,,
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Using the above operator assignment in the frequency-wave vector domain, or the corresponding 

partial derivatives xt  ,  in the time-space domain, one can express the wave equation 

explicitly as 
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Eq. (3B) exhibits swapping behavior between f and g along both the time and space axes. The 

topological structure of the above coupling scheme is illustrated in Fig. 1A, displaying clockwise 

rotation of f and g (with red and blue arrows) around four quadrants as time evolves. Conversely, 

as space evolves the rotation is counterclockwise originally from the 1st quadrant to the 2nd 

quadrant. The solution of Eq. (3B) with tt  −== PE , corresponds to a spiral wave with a right-

hand chirality along the x-axis. If one assigns tt  =−= PE , with governing equation given by 
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one can show both Eqs. (7B) and (7C)  lead to 

 
( ) ( )

( ) ( )

( ) ( )

( ) ( )
./

,,

,,

,,

,,

2

2

2

2

2

2

2

2

xtgxtg
x

xtfxtf
x

xtgxtg
t

xtfxtf
t

−=




−=
















−=




−=




      (7D) 

Both Eqs. (7B) and (7C) satisfy the conservation of the intensity  ( ) ( ) ( )xtgxtfxtI ,,, 22 +=  in time 

and space    
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According to Eq. (7C), the quadrant rotates counterclockwise along the time axis but clockwise 

along the x axis as shown in Fig. 1B, and the spiral wave propagation has a left-hand chirality. For 

the other choice of IPE == 22
, there exist two possible assignments, i.e., xx  == PE ,  and 

xx  −=−= PE , where 1 =x  is the first Pauli 2x2 matrix where we define 2 it −= to avoid the 

use of an imaginary number, which might cause some confusion.  While there is an isomorphism 

between the algebra of the 2-dimensional vector space and the complex plane, in this work we are 

dealing with purely real-value wave functions and 2x2 matrix operators. One can show that for 

IPE == 22

, the wave equations governed by ( ) ( ) ( ) ( ),,,,,, 2222 xtfxtfxxtfxtft == and

( ) ( ) ( ) ( ),,,,,, 2222 xtgxtgxxtgxtgt ==  lead to either an exponentially expanding or contracting 

amplitude.  The topological representations of these two cases are illustrated in Fig. 1C and Fig. 

1D, respectively.  Therefore, the unphysical choice of IPE == 22
  cannot be used here.   



 Only Eq. (3B) with IPE −== 22

 can describe the flip-flop behavior for f and g across the 

lattice plane, as schematically illustrated in Fig. 1, showing two types of possible flip-flop 

schemes. One can obtain a plane-wave solution of  ( ) ( ) ( ) ( )txAxtgtxAxtf −−=−= sin,,,cos,,  as 

illustrated in Fig. (2a). If one assigns PE −== t instead, its plane-wave solution becomes

( ) ( ),cos,, txAxtf −= ( ) ( )txAxtg −= sin,, . The difference is in the propagation chirality. If one chooses 

PE == 2i  or PE == t , the wave propagates along the reverse direction.   

 For the other type-II solution of Eq. (2B) with PEEP   one has   
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For the above equation to be satisfied, one has −= 22 E  and  = 22 KK .  Because of 

the special case of a massless particle K= , we normalize the operators E  and P to become 

unitless for simplicity.  Therefore, one must have the following constraints: 
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The above anti-commutative property between E  and P  for this type-II case is characteristically 

from the type-I case with commutative E  and P .  Based also on the condition of the wave function 

being real, one has the following assignment 
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Using the above operator assignment, the wave equation for 12,  =−= PE i  is given by 
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and for  zt  == PE ,   
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The coupling scheme can be schematically illustrated in Fig. 4, showing a binary exchange 

between the f and g components along the ctx−  axis. For mode-1, there is an alternate exchange 

between ( )gf ,  and ( )fg,  like a Möbius strip15 between the f and g components. The topological 

representation for these two types of wave propagation is illustrated in Fig. 4. For mode-2, the 

process between ( )gf ,  and ( )fg −− ,  resembles another type of Möbius strip20 twisting. Both 

above equations lead to the wave equation for each of the dual components 
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 According to the analysis in this work, both type-I and type-II massless particles all travel 

at the speed of light. For the type-I particle, which represents a scalar particle, E  and P  are 

commutative; however, for the type-II particle, which has an intrinsic structure, E  and P  are anti-

commutative. In the type-I case, the recursive relation does not involve direct coupling between 

time and space, while in the type-II case, the recursive relation involves an intertwined coupling 

between space and time like a Möbius strip as shown in Fig. 3. The equation of Eq. (4B) with the 

choice of −= PE  in the continuum limit has a plane-wave solution as

( ) ( )( ) ( ) ( )( )txkAxtgtxkAxtf  sin,,cos, ==  which is 90-degrees out of phase as illustrated in Fig. 2a.  

For the other choice of  = PE
, its plane wave solution becomes ( ) ( )( ),cos, ++= ctxkAxtf  



and ( ) ( )( )txkAxtg +−= sin, , indicating a wave propagating along the opposite x-axis or t-axis.  The 

wave propagation for the type-I is shown in Fig. 2a with the f and g components 90-degrees out of 

phase.  In contrast, for the type-II case, the wave propagation is illustrated in Fig. 2b, showing the 

f and g components in phase or 180-degrees out of phase. The plane-wave solutions of Eq. (6B) 

are given by ( ) ( ) ( )( ),sin,, txkAxtgxtf == with the same phase or 180-degrees out of phase.  The 

subplots shown in Fig. 2c and 2d represent type-II wave propagation with f  and g  in-phase or 

180-degrees out of phase. There also exist two modes, called L- and R-chirality depending on the 

relative phase relation between f and g.  The type-II particle described above represents a 2D half-

spin massless particle, which is a 2D analogy of a 4D Majorana particle21. If one uses angular 

momentum operators of spin-1 particles instead of Pauli’s matrices in the treatment, the wave 

propagation of in-phase f and g components appear to be like the electric and magnetic field of a 

photon wave.  

 So far, we have considered type-I and type-II quantum lattice dynamics for massless 

particles. Let us now extend the treatment to particles with a rest mass.  We first consider the rest 

frame, where there exists an internal oscillation with a frequency wcm0  dictated by its rest mass 

energy. 

 The wave equation in Eq. (1A) for a massless particle needs to be replaced by  

 

( ) ( ) ,,,

2
0

2

22

2

2

xt
Cm

xt
xt









=




















+




−


       (11A) 

which is the Klein-Gordon equation in a discrete lattice. The above equation can be expressed in 

an operator form like Eq. (1B) but now with a mass term as 

 ( ) .22
0

2222 += MPE mKE        (12B) 



Eq. (7B) in natural units is equivalent to the de Broglie-Einstein relation of  ( )222
0

22 pcmcE +=   or 
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  to satisfy the Pythagorean theorem for ( )22
0

2 Km += .   

 Here we seek a solution for the type-II case that satisfies ( )22
0

2 Km +=   as an eigenvalue 

result of ( ) ( ) .0
2

0
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2222 =++−=++− mKmK  MPE   One can obtain a solution with 

( ) 00 =++ MPE mK  if these operators satisfy 
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and IMPE ===− 222 .  To satisfy ( ) ,00 =++ MPE mK we can assign these operators to three 

anti-commutative 2x2 matrices as 
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where .,,,222
txztxxtzztzxttxxxt  =−==−==−====− I .  

The wave equation ( ) ,00 =++ MPE mK based on the above assigned operators, can be 

expressed explicitly by 
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A 2nd kind of operator assignment of zt x  −=−== MPE ,,  leads to 
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A 3rd kind of operator assignment of ,,, xzz  −=−== MPE  leads to 
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A 4th kind of operator assignment of xzt  −=== MPE ,,  leads to 
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Both above equations represent a massive half-spin particle, as a 2D analogy of Dirac’s equation 

for an electron in 4D spacetime. According to our analysis, there are four possible coupling 

schemes as illustrated in Fig. 5, showing how the original massless spinor structures are coupled 

to the 2D Higgs fields with an attached spring. Such coupling leads to the spinless fermion 

acquiring its mass, slowing down the wave propagation from the speed of light.  

 The second possible solution, as an extension of the massless particle in the type-I case for 

a boson can be obtained if       IMPEEPEPME =−===== 222,0,,,0,  
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In the above equation we need to use a tensor product of another 2x2 matrix to satisfy the 

constraints of     ,0,, == MPEP  and −=2
M .  



The above equations describe separate oscillations in time and space, unlike Eq. (8) which 

describes an intertwined link between partial differentials with respect to time and space. The third 

possible solution can be obtained if     IMPEMPEMP ====+= 222,0,,0,
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Because in both Eq. (9A) and Eq. (9C), tensor products of two 2x2 matrices are required in order 

to satisfy the Klein-Gordon equation and ( )222
0

22 pcmcE += , these types of wave equations and 

solutions do not meet the constraints of the dual-component model with two real-value functions. 

Strictly speaking, Eq. (8B) with ( ) ,0=++ MPE  is the only qualified wave equation for a particle 

with a rest mass.  

  

Conclusions 

In summary, we presented a dual-component model with two real-value wave functions f and g to 

describe the relativistic quantum dynamics of fields/particles in a 2D Minkowski spacetime.  Using 

an operator algebra approach with a time-shift operator E  and a space-shift operator P , together 

with another mass operator represented by three independent 2x2 real-value matrices, we can 

construct linearly coupled 1st-order partial differential equations to describe the excitation and 

propagation of these quantum fields and their associated particles. We systematically analyzed all 

possible excitations of the 2D Minkowski spacetime fabric sheet that satisfy the de Broglie-

Einstein relations between mass energy, frequency, and wave vector. From our analysis of all 

possible structural deformations, we have identified two types of solutions that satisfy the Lorentz 

invariance of ( )− 22
PE . For a type-I massless bosonic preon, one has commutative relations of 

  0, =PE , and for a type-II massless fermionic preon, one has anti-commutative relations of  



  0, =PH .  This model leads naturally to only two kinds of field excitations and their associated 

particles as bosons and fermions.  We shed light on the concepts behind Pauli’s exclusion principle, 

fermionic statistics, and bosonic statistics. We point out that spacetime itself consists of a dual-

component fabric to allow the excitation and propagation of type-I bosonic preons and type-II 

fermionic preons. Unlike the conventional preon modes that encounter the mass paradox22, we 

have only two types of preons – anti-symmetric fermionic and symmetric bosonic preons, both of 

which are massless.  

  The Möbius strip and simple loop structures, which arise naturally from the wave equation 

as prescribed by Einstein’s special relativity and de Broglie’s wave-particle duality, could 

potentially be used as building blocks to construct and investigate the topological properties of 

elementary particles in the Standard Model. The extension of this 2D model to 4D spacetime as 

potential building blocks to construct elementary particles deserves further studies.  
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Fig. 1. Topological 2D spacetime structures of the type-I particles. In subplot (a) for mode-1, 

according to the recursive scheme, the quadrant formed by f  (red arrow) and g  (blue arrow) 

rotates clockwise along the t-axis and counter-clockwise along the x-axis, representing left-hand 

chirality for the rotation viewing along the time axis. The diagonal dot line denotes the wave 

propagation along tcx −  . For mode-2 in the subplot (b) it shows a reverse rotation direction for f 

and g, representing right-hand chirality. In subplots (c) and (d), their specific inversion or reflection 

exchange schemes between f and g lead to either contraction or expansion with exponentially 

decreasing or increasing amplitudes.    
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Fig 2. Two types of wave propagation for the f and g components, each with two modes. (a) The 

wave propagation of the type-I waves with a chirality model L. The wave oscillations for f and g, 

90-degrees out of phase, are along the x-axis.  They are plotted orthogonal to each other for a better 

view, unlike an EM wave with the electric and magnetic fields along x and y.   Depending on the 

recursive scheme, there exists a left-hand chirality and a right-hand chirality mode as shown in 

subplot (b).  The subplots in (c) and (d) represent type-II wave propagation with f  and g  in-phase 

or 180-degrees out of phase. There also exist two modes, called L- and R-chirality depending on 

the relative phase relation between f and g.   
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Fig. 3. | The topological structure representation of the antisymmetric type-II wave for a fermionic 

preon vs. the symmetric type-I bosonic preon.  The fermionic preon has a topological structure 

like a Möbius strip, and possesses a half-spin, whereas the bosonic preon possesses a simple 

closed-loop strip. The operators E  and P  are time-shift and space-shift operators, respectively, 

and subscripts represent anti-symmetry (A) and symmetry (S) for the fermionic preon and bosonic 

preon, which could be used to construct other operators in 4D spacetime.   
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Fig 4. The topological structures for type-II spinor particles and their wave propagation along  

tcx − , exhibiting two modes of the intertwined dynamics like the twisting of a Möbius strip. (a) 

Mode-1 with a swapping between ( )GF , , representing partial derivatives in time and space for the 

top row and the bottom row, and ( )FG, .  (b) Mode-2 with an exchange between ( )GF ,  and ( )FG , , 

meaning an inverse amplitude ( )FG −− , .   (c) Mode-3 with an exchange between ( )GF ,  and ( )FG, . 

(d) Mode-4 with an exchange between ( )GF ,  and ( )FG , . The last two modes correspond to an 

exponentially decreasing or increasing amplitude.  
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Fig. 5. Topological structures of spinor particles with a rest mass. There are four different coupling 

schemes between F and G, representing the dual-component wave function of type-2 particles. f 

and g represent the dual-component wave function of the spacetime fabric. The coupling of type-

2 particles to the adjacent spacetime fabric causes the particles to acquire mass through the Higgs 

mechanism, but in 2D. Such couplings lead to a slower propagation velocity than the speed of 

light, owing to the nonlinear dispersion relation between the frequency and the wave vector. 
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