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Clifford algebra CI(0,6) approach to beyond the
standard model and naturalness problems

Wei Lu

ABSTRACT: Is there more to Dirac’s gamma matrices than meets the eye? It turns out that
the gamma zero operator can be split into three components. This revelation facilitates
the expansion of Dirac’s space-time algebra to Clifford algebra C1(0,6). The resultant rich
geometric structure can be leveraged to establish a combined framework of gravity and
beyond the standard model, wherein a gravi-weak interaction between the vierbein field
and the extended weak gauge field is allowed. Inspired by the composite Higgs model,
we examine the vierbein field as an effective description of the fermion-antifermion con-
densation. The compositeness of space-time manifests itself at an energy scale which is
different from the Planck scale. We propose that the regular Lagrangian terms including
the cosmological constant are of quantum condensation origin, thus possibly addressing the
naturalness problem. The Clifford algebra approach also permits a weaker form of charge
conjugation without particle-antiparticle interchange, which leads to a Majorana-type mass
that conserves lepton number. Additionally, in the context of spontaneous breaking of two
global U(1) symmetries, we explore a three-Higgs-doublet model which could explain the
fermion mass hierarchies.
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1 Introduction

The mathematical imaginary number ¢ is ubiquitous in physics theories. In the case of quan-
tum mechanics, the imaginary number makes its appearance in the commutation relation
of position operator X and momentum operator p

(X, P] = ih, (1.1)

where /i is the Planck constant. Consequently, the quantum wave function is complex-
valued. On the other hand, the imaginary number also shows up in the gauge transformation
of a classical complex field

¥ — et (1.2)

which is essential in determining the electric charge property of .



We customarily treat the imaginary number ¢ for both examples as the same. It may
come as a surprise that the imaginary number in the second case is different from the first
one. The latter is actually a unit psendoscalar in disguise

I = ~y9717273, (1.3)

where 7, are no other than the celebrated gamma operators stumbled upon by Paul Dirac
in 1928. The Dirac gamma operators satisfy the Clifford algebra Ci(1,3) anticommutation
relations

{Vas 1} = Ya W + VoYa = 2Nab (1.4)

where 14, = diag(1, —1,—1, —1). In view that I? = —1, the pseudoscalar I can be regarded
as a surrogate for the imaginary number ¢. As we will learn later in this paper, replacing
imaginary number i with pseudoscalar I in eq. (1.2) leads to a novel definition of charge
conjugation without particle-antiparticle interchange.

Historically, the Dirac operators «, are represented as gamma matrices. Due to the di-
chotomy between fermiom states as columns and operators as matrices in the conventional
formalism of quantum field theory (QFT), the aforementioned association of pseudoscalar
with imaginary number would run into inconsistencies. This identification can only be
achieved in an unconventional way by forgoing the traditional matrix representation and en-
listing the aid of the Clifford algebra approach,’>2345:7,8,9,10,11,12,13,14,15,16,17,18

both the algebraic spinor states and Dirac’s gamma operators can be expressed in the same

whereby

algebraic space.

The Clifford algebra, also known as the geometric algebra or the space-time algebra for
the specific case of CI(1,3), is a potent mathematical tool that finds extensive applications
in the physics arena. Remarkably, there is one more application of Clifford algebra Ci(1,3)
unbeknownst to Dirac. We know that gravity can be formulated as a Lorentz gauge the-

19:20 i terms of the vierbein (or tetrad) and the spin connection. The gauge approach

ory
to gravity is also known as Einstein-Cartan gravity. The spin connection, associated with
the local Lorentz group SO(1,3) (or Spin(1,3) when fermions are involved), plays the role
of the gauge fields in Yang-Mills theory.

In the Clifford algebra CI(1,3) formulation of Einstein-Cartan gravity,2!:22:23 the vier-

bein €, and spin connection Lorentz gauge field @, take values in the Clifford algebraic

space
€ = €, Ya (1.5a)
B = J9 M (1.5)
where a,b,u = 0,1, 2, 3,wfjb = —wza. Throughout this paper the summation convention for

repeated indices is adopted. The four distinct {v,} and six distinct {7,7; @ < b} are called
vectors and bi-vectors of Clifford algebra. We denote vierbein as €, and spin connection
as w, rather than e, and w, to accentuate the fact that they are Clifford-valued. The
space-time metric g, is derived from the vierbein

uv = ezegnab‘ (16)



Thus the vierbein €, can be deemed as the “square root” of metric.

Given that the gravity-related fields €, and w,, are vector-valued and bi-vector-valued
respectively in the Clifford algebraic space of Cl(1,3), it’s tempting to wonder whether the
other interactions in nature such as the electroweak and strong gauge fields can take values
in the Clifford algebraic space as well. The answer is a resounding yes, provided that one
has to go beyond the confines of the familiar Clifford algebra Ci(1,3). Learning from the
above experience that we arrived at CI(1,3) via splitting the imaginary number into four
operators, we may go one step further by decomposing Dirac’s gamma zero operator into
its underlying components'?

v =T11T2ls, (1.7)

where the additional trio of gamma operators {I';, Iy, I's} satisfy the anticommutation
relations

{I';, T} = —26y5, (1.8)
and anticommute with the original trio {71, 72, 73}

{3.T} = 0. (1.9)
Collectively, these six elements

F17F27F37717’727737 (110)

constitute the orthonormal vector basis of the real Clifford algebra C1(0,6), which is some-
times labeled as Clyg or Clpg(R) in the literature.

Thanks to the recognition of vy as a composite tri-vector, we are able to extend Dirac’s
Clifford algebra from C1(1,3) to C1(0,6). With it, we can define an algebraic spinor as a
linear combination of all 26 = 64 basis elements of C1(0,6). Considering that there are 16
Weyl fermions with 16 x 2 = 32 complex components (i.e. 64 real components) within each
of the three fermion families including right-handed neutrinos, an algebraic spinor of the
real C1(0,6) with 64 degrees of freedom is a perfect match for representing one generation of
fermions. The geometrical wealth of Clifford algebra C1(0,6) can be exploited to establish
a theory covering both the standard model and gravity.!31516 The Yang-Mills gauge fields
and the spin connection Lorentz gauge field which governs gravity are associated with
beyond the standard model (BSM) local gauge groups

Spin(LS)L X Spin(l,S)R X Spin(l,B)WL X Spin(l, 1>WR X U(l)WR X SU(3)C X U(l)B_L,
(1.11)

where Spin(1,3)r and Spin(1,3)g are left- and right-handed local Lorentz gauge groups,
and Spin(1,3)w subsumes the left-handed weak gauge group SU(2)w .

It’s worth mentioning that Clifford algebra C1(0,6) is capable of accommodating some
enveloping groups. For example, the real symplectic group Sp(8, R), which encompasses
the Pati-Salam?* SU(4), is embedded in the C1(0,6) geometric structure. The Pati-Salam



SU(4), which contains SU(3)c x U(1)p_r, is isomorphic to the six-dimensional rotation
group Spin(6) generated by all the 15 bi-vectors of CI(0,6). We settled for a parsimonious
set, of subgroups due to lack of experimental evidence supporting any larger unification
groups such as SU(4), whereas there are various clues suggestive of the BSM symmetries
(1.11).

We propose that all the regular Lagrangian terms, be it the fermion kinetic term or the
cosmological constant term, are of quantum condensation origin. The cosmological constant
problem can thus be evaded if we take abundant precaution in the renormalization procedure
that entails multiplications of divergent integrals. We regard the vierbein field é, as an
composite entity emerging from the fermion-antifermion quantum condensation. Hence the
fermion fields are the origin of space-time metric. Since the vierbein can be viewed as the
“square root” of metric, fermions can be considered as the “quarter root” of metric. Because
of the chirality of the vierbein-related condensations and the chirality of spin connection
fields, there are left- and right-handed gravitational interactions. Additionally, a new kind
of interaction is permitted between the extended vierbeins and the extended weak gauge
fields, which may have cosmological implications.

There is a cascade of spontaneous symmetry breaking (SSB) processes, resulted from
nonzero vacuum expectation values (VEV) acquired by the Clifford-valued vierbeins and
Higgs fields. The first stage of SSB starts with the vierbein acquiring nonzero VEVs. As a
result, the local Lorentz and pseudo-weak symmetries are lost and we are left with a global
Lorentz symmetry.

The next step of SSB is triggered by the Majorana Higgs field, which is a Higgs-like
field in addition to the standard model Higgs field. At this stage, the Majorana Higgs
field assumes a nonzero VEV and breaks the local gauge symmetries down to the standard
model symmetries. Consequently, the neutrino is endowed with a lepton number-conserving
Majorana mass which is much heavier than the Dirac mass. A very small effective mass
can thus be derived for the neutrino via the seesaw mechanism.?%

At the last stage of SSB, the electroweak Higgs fields acquire nonzero VEVs and break
the standard model symmetries down to SU(3)c x U(1)gar, where U(1)gas is the elec-
tromagnetic gauge symmetry. The fermion Dirac mass hierarchies can be explained by a
three-Higgs-doublet model with the help from two additional global U(1)s (U(1)pg) and
U(1)g symmetries involving right-handed fermions.

One point we want to highlight is that all the ingredients of our model, such as fermions,
gauge fields, vierbein, and Higgs fields, share the same Clifford algebraic space of C1(0,6).
For instance, the electromagnetic gauge field Au is pseudoscalar-valued

A

A, =qA,l, (1.12)

where we include charge ¢ (such as ¢ = —1 for electron) into the definition of flu. The pseu-
doscalar I is the 6-vector of CI(0,6) after expanding the tri-vector -y into its constituents

I= F1P2F3’yl’yg’yg. (113)

The electromagnetic gauge field flu as shown above and the gravity-related fields w,, /¢,
in eq. (1.5) take values in various Clifford algebraic subspaces with the same six gamma



operators in (1.10) as the unifying building blocks. By virtue of the shared Clifford algebraic
space, the gauge field of gravity and the Yang-Mills fields are connected with each other
through their interactions with the common fermion fields and Higgs fields.

Therefore, the theory outlined in this paper is a cohesive fusion of the standard model
and gravity. Note that the Clifford algebra approach differs from the conventional way
of postulating upfront a grand unified symmetry which demands that the gauge coupling
constants are unified. The Clifford algebra approach proposes a fixed Clifford algebra at the
first step, which means that the fermion contents of the model are essentially predetermined
by the Clifford space. At the second step, one explores the allowable symmetries that
preserve the invariance properties of spinor bilinears. Hence the symmetries of the model
are in a sense derived instead of postulated. The permitted symmetries usually involve
a direct product of different groups, which suggests that the individual gauge coupling
constants are not necessarily related to each other. As such, the fusion delineated in this
paper is more of a union via spinors and less of a union via symmetry groups.

This paper is structured as follows: In Section 2, we introduce the algebraic spinors
of C1(0,6) and explore beyond the standard model gauge symmetries. In Section 3, we
investigate spontaneous symmetry breaking due to the non-degenerate vacuum expectation
values of various bosonic fields, and study the fermion mass hierarchies and the lepton
number-conserving Majorana mass. In Section 4, with the goal of addressing the Higgs
mass naturalness problem and the cosmological constant problem, we propose that all the
symmetry-breaking bosonic fields including the Higgs and vierbein fields are the effective
representations of multi-fermionic condensations. In the last section we draw our conclu-
sions. Throughout this paper, we adopt the units c=h = 1.

2 Clifford algebra C1(0,6) and symmetries

2.1 The algebraic spinor representation of fermions

As mentioned in the introduction section, one generation of the standard model fermions
can be represented by the algebraic spinor of Clifford algebra C1(0,6).1%1%16 The goal
of this section is to demonstrate how individual fermions, such as electrons, neutrinos,
and quarks, are linked to the algebraic spinor without resorting to the traditional column
representation of fermions.

For C1(0,6), there are (2) independent k-vectors. To wit, there are one single scalar
1 which is a O-vector, 6 vectors (e.g. ~1), 15 bi-vectors (e.g. ~172), 20 tri-vectors (e.g.
vo = I'1ols), 15 4-vectors (e.g. 172l), 6 5-vectors (e.g. 7 I), and finally one single
pseudoscalar I which is a 6-vector. In total, there are 26 = 64 independent basis elements
given by the set of all k-vectors. The algebraic spinor ¢ is a multivector which can be
expressed as a linear combination of all the 64 basis elements

W =11 + pol'y + Y300 + Yyl's + P51 + - -+ + 1bead, (2.1)



where the 64 linear combination coefficients {¢,,;n = 1,2, -+ ,64} are super-real Grassmann
numbers, which satisfy the complex conjugation relation

U =Un. (2.2)

A few comments are in order at this point regarding the super-real Grassmann numbers
¥p. First of all, due to the fermion nature of the algebraic spinor v, it’s mandatory that
1, should be Grassmann-odd. This requirement is not obvious when we write down the
Dirac equation for ¢, where there is no multiplication between spinors. However, the
Grassmann-odd characteristic of ¢ becomes essential when it comes to the Lagrangian
involving multiplication between spinors. As we will learn later in this paper, the Majorana
mass Lagrangian term is allowed only if the algebraic spinor is Grassmann-odd, or otherwise
the Majorana mass Lagrangian term is identically zero.

Secondly, it’s customary to adopt complex Grassmann numbers in the conventional
QFT where super-real condition (2.2) does not hold. One way to make contact with the

conventional complex Grassmann numbers is to reorganize 1, in pairs, such as

Yo + Yeal, (2.3)

where the pseudoscalar I can be a proxy for the imaginary number i. Therefore, g + ¥gql
is tantamount to the conventional complex Grassmann number.

It’s also worth noting that there is an interesting connection between the complex
Clifford algebra Clg(C) and the octonions via the left-action maps.?¢ Nevertheless, in our
approach we will stick to the real C1(0,6).

The algebraic spinor v of the real CI(0,6) with 25 = 64 components corresponds to the
union of all 16 Weyl fermions in one fermion generation of the standard model (plus right-
handed neutrino) endowed with 16 x 2 = 32 complex components (i.e. 64 real components).
For most part of this paper, our discussion is restricted to one generation /family of fermions.
The Clifford algebraic structure of the fermions as well as the gauge symmetries are the same
for the three generations. In other words, the three families are three replicas. Section 3.4 on
fermion mass hierarchy is the only exception where we propose three electroweak symmetry-
breaking Higgs fields that couple to the three generations of fermions in different patterns.

How do we connect one generation of fermions, such as electrons, neutrinos, and quarks,
with ¥7 First of all, let’s distinguish between the left-handed and right-handed fermions
in the setting of Clifford algebra. We propose that fermions with left (right) chirality
correspond to Clifford-odd (even) portion of v

1
Yo = 50+ 10D, (24)
1
Yr =50 = V1), (25)
That is to say, the left-handed vy, is composed of

Y, = Yo'y + Ysla + - - + Ye3731, (2.6)



whilst the right-handed g is composed of

Yr =1 +Yslila + - + Yeal. (2.7)

The above projection of Clifford-odd (even) portion of v leverages the property that the
pseudoscalar I anticommutes with Clifford-odd elements, and commutes with Clifford-even

elements

Inpy, = =Y,
Ipgp = YRl.

The operation of —II as in eq. (2.5) can be mapped to the traditional v°1) operation,
where —1I as in —I1) plays the role of the conventional pseudoscalar (more discussion will
be provided on the minus sign of —I in Section 3.1), while I as in I plays the role
of the conventional imaginary number i. Note that the positioning of I relative to the
algebraic spinor 1 does matter. This speaks to the fact that the electromagnetic field, as
a pseudoscalar in eq. (1.12), should always be applied to the right side of a spinor so that
1 is equivalent to the imaginary number 7 in the traditional setting. And for that matter,
when we attempt to link the traditional complex Grassmann numbers with the super-real
Grassmann numbers as in eq. (2.3), we ought to make sure that they appear to the right
side of any Clifford elements.

Now we are ready to identify ¢ with electrons, neutrinos, and quarks. Specifically, the
projection operators for the three colors of red, green, and blue quarks are given by

1

P = 1(1 + Iﬂyﬂ“l — I’)/QFQ — 173F3>, (28&)
1

Py =7 (1 = ImT1+ InTs — I73Ts), (2.8b)
1

P, = Z(l — 1711“1 — I’ygrz + 1731“3), (28C)

while the lepton projection operator is defined as

1
P = Z(l 4+ Iy Ty + Iyl + 1731“3). (28(1)

In the context of SU(4), the lepton projection operator P, can be regarded as the projection
to the fourth color.?* The four color projections P, P,, P,, P, are orthogonal to each other
and satisfy

P +P +P,+ P =1. (2.9)

Note that the bi-vectors v;I'; appearing in the color projectors suggest an interesting in-
terplay between the trialities of {v1, 72, v3}/{I'1, I'2, I's} and three colors of quarks.
Figuratively speaking, the three colors of quarks are tied to the three space dimensions,
whilst the lepton as the fourth color is tied to the time dimension. In Section 2.2, we will
further explore the significance of these color projectors in terms of carving out the color
group SU(3)c from Pati-Salam’s SU(4).



For the purpose of differentiating between weak isospin up-type and down-type fermions,
we introduce another set of orthogonal projection operators

Py — %(1 +IT\T), (2.10)
which sum up to
P +P_ =1 (2.11)
We identify projections of the algebraic spinor v
=1 +vp=(Py + P )L +Yr) (P + P + Py + By), (2.12)

with left-handed neutrino, electron, and quarks

vy = Py B,

ury = PrirPry upg= PPy, upp = P By, (2.13)
e, = P_YLB,

dry = PP, dpg=P_9Y1P;,, dppy=P_9Y1B,

and right-handed neutrino, electron, and quarks

vr = P_YRrh,

ugy = P_YrP:., urgy= P YrP;, urpy= P Yrb, (2.14)
er = Pyyrh,

dry = PrrP:, drg= PiYrPy, dgpy= PiYrb.

Note that the definition of isospin I3 for a given standard model fermion v is given by

1
Yp(I31) = 5Tl (2.15)
With the help from the property that
D'h\ToPytpy = FIP i)y, (2.16)

it can thus be verified that the isospin values of the fermions in eq. (2.13) and eq. (2.14)
are consistent with those of the standard model. When the I in eq. (2.16) appearing on
the left side of 1)y is moved to the right side of 1 as in eq. (2.15), its sign is changed
for Clifford-odd left-handed fermions. This is the underlying reason why there is a flip of
sign in Py between the left- and right-handed fermions when P, is assigned to the isospin
up-type and down-type fermions respectively in eq. (2.13) and eq. (2.14).

It’s also worth mentioning that attempts have been made to associate species of fermions

with (minimal) left ideals of the Clifford algebraic spinor!%!!

where projection operators
are restricted to acting on the right-hand side of an algebraic spinor. Obviously, our fermion
assignment scheme above departs from the (minimal) left ideal approach.

In summary, we have identified individual fermions with the projections of the C1(0,6)
algebraic spinor without any reference to the column representation. The mappings between
the CI(0, 6) formulation and the conventional matrix/column representation can be worked

out,'® which will not be detailed in this paper.



2.2 Beyond the standard model symmetries

As explained in the introduction section, we strive to walk a careful line between being
too ambitious and being too conservative when it comes to choosing the suitable gauge
symmetries for our model. The aim of this subsection is to give an account of our thought
process in selecting the BSM symmetry groups employed in this paper.

The conventional way of model building is to postulate the symmetry group upfront,
and then proceed to find the fermion representation. In the case of Clifford algebra ap-
proach, it’s the other way around. We choose the Clifford algebra C1(0,6) as the first step
which is tantamount to staking out the fermion space. The allowable symmetry groups
are thus tightly constrained by the spinor space. This is a desirable feature of the Clifford
algebra approach, since the symmetry groups are in a sense derived, rather than postulated.

So how do we determine the allowable symmetries? It hinges on the spinor bilinear

(¥), (2.17)

where (...); ; stands for the Clifford-scalar and -pseudoscalar parts of the enclosed ex-
pression. It is the Clifford algebraic counterpart of the conventional Dirac inner product
Y1) between the column spinors. For the rest of the paper, we will exclusively use (...)
which stands for the Clifford-scalar part of the enclosed expression, since we can get the
pseudoscalar part via (I...) if needed. The Dirac conjugate 1 in eq. (2.17) is defined as

b = ho, (2.18)
and the Hermitian conjugate satisfies
(AB)T = BT AT, (2.19)

for any A and B valued in Clifford algebraic space, regardless of A and B being Grassmann-
even or Grassmann-odd. With the six C1(0,6) basis vectors defined as anti-Hermitian, the
Hermitian conjugate of any Clifford element can thus be determined by recursively applying
(2.19). For example,

7 = (IiTals)f = TIIrT = —T3rry = 0. (2.20)

Since the fermion Lagrangian comprises the Dirac inner product <1/;1/1> or some variants
thereof, the allowable symmetry transformations are the ones under which these sorts of
Dirac inner products are invariant. Let’s start with the general gauge transformation

v = VYU, (2.21)

where the Clifford-valued V and U are two independent gauge transformations. As an
example, the following Dirac inner product transforms as

@rory = (OWIVhI(venn) = (Vi vieviewith),  (222)



which is invariant if

VinIV = ol (2.23)
Urvt =1, (2.24)

where we have used the property (AB) = (BA) provided that A and B are Grassmann-even.
If we restrict our discussion to gauge transformations continuously connected to identity,
the general solution of the above equations are

V =@ (2.25)
U = e @kn (2.26)

where {T);;n =1,---,28} are the generators of the Spin group Spin(4,4) (double cover of
the rotation group SO(4,4)) which consist of

'7&77a'7byrarbyjri>'7i7jr‘ka (227)

and {K,;n = 1,---,36} are the generators of the real symplectic group Sp(8, R), which
comprise all 15 bi-vectors, all 20 tri-vectors, and the pseudoscalar

Yivs, Ll %Lk, v0, Loy viyiLis Tl v, 1, (2.28)

where i, j, k=1,23,a, b =0,1,23,1 > j, a > b. The tri-vector I'g is defined as 'y = 17273,
thus the basis {I'g;a = 0,--- ,3} parallels {y4;a = 0,---,3}. Note that the transformation
parameters 0" (z) and €"(z) are space-time dependent, since we are dealing with local gauge
transformations. For brevity sake, we will omit the x label hereafter with the understanding
that the space-time dependency is implied.

A few comments are in order. First of all, in the literature the usual candidates for
gauge transformations are bi-vector-related rotations. The above T}, and K, involve non-bi-
vector Clifford elements such as 7g (tri-vector), v; (i=1,2,3, vector) and the Lorentz boosts
~oi (4-vector) in T,,, which go beyond the confines of bi-vectors. While the traditional
rotation transforms a vector into another vector, the generalized “rotation” via the non-
bi-vector-valued Clifford elements could potentially transform vectors into multivectors.
Secondly, the two gauge transformations V and U are independent of each other. They are
applied to the left side and right side of the algebraic spinor v, respectively. The availability
of the double-sided gauge transformations is one of the advantages of the Clifford algebra
approach compared with the conventional column fermion formalism, which has historically
been leveraged in Clifford algebraic models.'?

One interesting observation is that 71, contains the 10 generators of de Sitter group
SO(1,4), namely

Ya> YaVb- (2.29)

We know that there is another flavor of gauge gravity theory which is based on the (anti-)
de Sitter group.?” It enjoys the advantage that the vierbein €, and spin connection W,
in eq. (1.5) jointly constitute the gauge fields of de Sitter group. As a comparison, in the

~10 -



Lorentz gauge gravity theory,'®>20 the vierbein é, is not a bona fide gauge field, albeit
the spin connection w,, is indeed the gauge field of Lorentz group. The vierbein is instead
regarded as an add-on to the spin connection. This incentivized us to adopt the (anti-) de
Sitter gauge theory of gravity in our first paper'® on Clifford algebra C1(0,6). However,
there is a downside with this approach: given that the de Sitter group generators v, are
Clifford-odd, the associated transformations mix the left- and right-handed spinors which
are Clifford-odd and -even, respectively. Consequently, the left- and right-handed spinors
have to transform in sync, which disagrees with the chirality of weak interaction. This is a
major shortcoming of our first paper.

One way of circumventing the above limitation is to demand that only the Clifford-even
sub-algebras of T;, and K, are permitted, which enables us to accommodate the chirality of
weak interaction by virtue of decoupling the gauge transformations of the left- and right-
handed spinors. The trade off is that we have to settle for the Lorentz gauge gravity
theory where vierbein €, is an add-on transforming as a vector of the Lorentz symmetry.
It is seemingly a disadvantage compared with the (anti-) de Sitter gauge gravity theory.
However, in Sections 4.3 and 4.4 we will learn that it is a blessing in disguise, since the
vierbein is never meant to be a gauge field. It’s actually an emergent quantity arising from
the quantum condensation of a fermion-antifermion pair.

With the restriction to the Clifford-even sub-algebras of T, and K,,, we are left with

the following symmetries!'®
Y —  ViyoUr, (2.30)
Yr —  VeYRUR, (2.31)
where
V= iTh, U = B, (2.32)
Vg =e'5n, Up = Rl (2.33)

The Clifford-even {T,,;;n = 1,--- ,12} comprise the generators of Spin(1,3)xSpin(1, 3)weak

YaVo;  Tal's, (2'34)

where a,b =0,1,2,3,a > b, and the Clifford-even {K,;n =1,---,17} comprise the gener-
ators of Spin(G)pati_galam X U](l)

Yivs Ll vil'es 1, (2.35)

where 7,7,k =1,2,3,7 > j. Note that the gauge transformation parameters such as 67 (€7)
and 0% (€}) are independent of each other. Therefore the left- and right-handed spinors
Y1 and Yp transform independently. Considering that the same copies of the symmetry
groups T,, and K, are employed for the left- and right-handed spinors, the model is left-right
symmetric.

Since the vierbein ¢, transforms as a vector under the Lorentz gauge transformation

1 pab 1 pabdb
5 107 5 o= 79%°VaV
ey — ei’ Al g emal A (2.36)
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a spinor bilinear term such as

(Veéut), (2.37)

can be verified to be gauge invariant under the above gauge transformations restricted to the
Clifford-even sub-space. This invariance is of paramount importance, give that the kinetic
part of the fermion Lagrangian is of similar form and should respect these symmetries.

The above gauge symmetry groups, with (12 + 17) x 2 = 58 group generators, are
the largest ones permissible by a chiral algebraic spinor of C1(0,6). The spin group
Spin(6) pati—Saiam 1S generated by all the 15 bi-vectors of CI(0,6). It is isomorphic to
Pati-Salem’s SU(4),24 which encompasses SU(3)c x U(1)p_r. The Spin(1,3)weqr group
comprises the regular weak group generated by {I';';} as well as the weak boosts gener-
ated by {I'oI';}. These are the counterparts of the spacial rotations generated by {~;v;}
and the Lorentz boosts generated by {yov:}. Given that there are two copies of symmetry
groups, there could be two different spin connections acting on the left- and right-handed
spinors, respectively. In other words, there could be two separate left- and right-handed
gravitational interactions.

The BSM symmetry bonanza noted above are tantalizing. From a practical point of
view, do we have any inkling of symmetries beyond the local Lorentz and standard model

28,29,30 provided an interesting

gauge symmetries? The observation of neutrino oscillations
clue. It implies that neutrinos have nonzero masses beyond the plain vanilla standard model.
Curiously, the neutrino masses are much smaller than that of the other standard model
fermions. The seesaw mechanism is hence proposed as an explanation,?® which invokes the
right-handed neutrinos endowed with large Majorana masses. In light of these suggestive
evidences, we whittle down to a minimum subset of groups which could accommodate a
Higgs-like mechanism to generate the Majorana masses.

Therefore, our choice of symmetry groups are
Spin(l,S) X SU(B)C X SU(?)WL X U(l)WR X U(l)B,L. (238)

Note that in Section 4.4 on emergent chiral vierbeins, we will expand the above groups to
accommodate the extended vierbeins and the extended weak interaction sector. But for
now, we will stay with the above unextended symmetry groups. These symmetry groups
are the direct product of the spin connection’s Spin(1,3) with six distinct generators (as
in ¢ — ef"Tny))

1

S (239)

where a,b = 0,1,2,3,a > b, and the left-handed weak interaction’s SU(2)y 1 with three
generators (as in ¢y — e%ZTn)r)

1 1 1
—I'oI —I'sI Il 2.4
gr2ts Shaln glhily, (2.40)
and the right-handed weak interaction’s U (1) g with one generator (as in g — e/"Tne)R)
1
§F1F2, (2.41)
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and the strong interaction’s SU(3)c with eight generators (as in 1) — e Kn)

)
12 + 7I'),
)

i 1C02 +7172),  3(Cim — Taya),
%(711“3 + 73l'), %(FIFZS +7173), (2.42)
1(el's +93l2),  7(T2I'3 +9273),
75T+ Taye — 20393),
and the BL interaction’s U(1)p_1, with one generator (as in 1) — e Kn)
1 1
57 = gnl't+72l2 +93ls). (2.43)

Note that some multipliers are applied to the generators to facilitate the gauge field defini-
tions in Section 2.4. Due to the chirality of the weak interaction, the gauge transformation
parameters for the left- and right-handed spinors (07 and 6%) are kept independent for
SU(2)wr and U(1)wr, whereas the other gauge transformation parameters of Spin(1,3),
SU(3)¢, and U(1)p_r are synchronized between the left- and right-handed spinors.

Three Clifford elements are pivotal in the symmetry determination. The first element
7o is hard-wired into the definition of Dirac inner product <1E1/1> = <¢T’yoz/1>. It facilitates
pinning down the Lorentz group Spin(1,3). The second element I''T'y is embedded in
the definition of isospin (2.15), thus it picks out the isospin direction. The third critical
Clifford element is the BL interaction’s J. It is instrumental in separating out U(3) =
SU(3)cxU(1)p—r, from the encompassing Spin(6) pati—Salam Which is isomorphic to SU(4).
Mathematically speaking, this is a specific case of a general procedure®"?
U(n) from Spin(2n).

When J is applied to the four color projection operators (2.8), it has the nice property
that

of separating out

PJ=-PI, (2.44a)
P.J= éPTI, P,J= éPgI, PJ = %Pbl, (2.44b)

which means that J is tantamount to
J=(B-L)I, (2.45)

where B and L are baryon and lepton numbers, respectively. Therefore, J indeed corre-
sponds to the BL interaction. The definition of the four color projection operators (2.8)
as well as the definition of the color algebra (2.42) are both predicated on how J is struc-
tured. The ansatz ensures that applying any generator in the color algebra to the lepton
projector P, is identical to zero, hence leptons are invariant (singlets) under the color gauge
transformations.

If there were grand unification symmetries, the three Clifford elements -y, I'1I's, and
J could have emerged from vacuum expectation values (VEVs) of some hitherto unknown
symmetry-breaking fields. That said, if we start from our choice of symmetries as a given

Spin(1,3) X SU(3)C X SU(Q)WL X U(l)WR X U(l)B_L, (2.46)
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the symmetry breaking patterns can be readily worked out and will be elaborated in Sec-
tion 3.

In a nutshell, the cascade of spontaneous symmetry breaking (SSB) begins with the
vierbein acquiring a nonzero VEV, which breaks the gauge symmetries down to

SUB)e x SUR2)wr xU)wrxU(1)p—_r. (2.47)

As a result, the local Lorentz gauge symmetry is lost and we are left with a global Lorentz
symmetry. The next step of symmetry breaking is triggered by the Majorana Higgs field,
which is a Higgs-like field in addition to the standard model Higgs field. At this stage, the
Majorana Higgs field assumes a nonzero VEV and breaks the local gauge symmetries down
to the standard model symmetries

SUB)e x SUR2)wr x U(1)y, (2.48)

where U(1)y is the hypercharge gauge symmetry specified by the synchronized double-sided
gauge transformations

b — prez’, (2.49)
Yr — e2 T2y gz, (2.50)
where a shared rotation angle ey synchronizes the double-sided hypercharge gauge trans-

formations. At the third stage of SSB, the electroweak Higgs fields acquire nonzero VEVs
and break the standard model symmetries down to

SU3)e x U(1) g, (2.51)

where U(1)gys is the electromagnetic gauge symmetry characterized by the synchronized
double-sided gauge transformation

1 1
b — egEE]\/IrlrzwegEE]vIJ’ (2.52)

where a shared rotation angle egjs synchronizes the double-sided gauge transformation.
With the definition of the pseudoscalar-valued electromagnetic gauge field /l# in eq. (1.12),
the electric charge ¢ of a given standard model fermion )y can thus be obtained from

e%GEAdrlpzwfe%EEle — wfquEMI' (2.53)

Thanks to the properties of I'1T's in eq. (2.16) and J in eq. (2.44), the electric charges can

2
)3
quarks according to the definitions in eq. (2.13) and eq. (2.14), which are perfectly aligned

be readily calculated as ¢ = 0, —1 and —% for neutrino, electron, up quarks, and down
with the standard model electric charge assignments.

We shall underscore the fact that all the gauge group generators are valued in the
real Clifford space, while the algebraic spinors are valued in the super-real Clifford space.
Any reference of the imagine number 7 in the conventional formalism with regard to gauge
transformations (and gauge fields) and spinors can be replaced by the pseudoscalar I acting
on the right side of the spinor, as illustrated in the definition of electric charge above.
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2.3 Charge conjugation without particle-antiparticle interchange

The charge conjugation C' changes the sign of charges. In the conventional matrix formalism,
the C conjugation of a fermion v in the Weyl basis is expressed as

C: = P = —iyoth, (2.54)

where 1* is the complex conjugate of ¢. Because of the complex conjugate operation, C
converts a particle into its corresponding antiparticle.

Can we decouple charge conjugation from complex conjugate and thus evade particle-
antiparticle interchange? Such a decoupling is indeed possible in the Clifford algebra ap-
proach, thanks to the identification of the imaginary number ¢ with the pseudoscalar I
acting on the right side of a spinor. Considering the definition of electric charge ¢ in
eq. (2.53), we can define a weaker form of charge conjugation

C": ¢ = 1he = (IT203)Y0. (2.55)

Note that IT'1T's and v in the above definition could be replaced with the general ITTgefTal

and yoe!, where 0 and € are two arbitrary phase factors. The weaker form of charge conju-
gation satisfies the property (1) = 1. It does not involve complex conjugate, hence there
is no particle-antiparticle switching. In Section 3.2, this property of C’ will be leveraged to
construct a Majorana mass term that conserves lepton number.

According to eq. (2.53), it can be easily checked that 1. transforms as

Yo — poe” 1M (2.56)

under the electromagnetic gauge transformation. Therefore, the sign of electric charge is
changed. It’s driven by the fact that vy in the definition of C’ anticommutes with the unit
pseudoscalar [

6QEEMI,m — ,Yoe—lﬁEMf_ (2.57)

This sort of mathematical acrobatics is otherwise impossible in the conventional formalism
where the electromagnetic gauge transformation is associated with the imaginary number ¢
as in eq. (1.2). Since ¢ commutes with any operator, the only way to change sign of i is to
invoke complex conjugate. Consequently, charge conjugation in the conventional formalism
is inextricably linked to particle-antiparticle interchange.

It can be verified that C” does not change isospin (2.15) or color (2.8) of any standard
model fermion. Since IT9I'3 commutes with the Lorentz transformation generators v,7vs,
the Lorentz transformation properties of 1~ remain the same as ¥. Hence, ¥ is indeed the
charge conjugation counterpart of the corresponding 1. Note that C’ changes the chirality
of 1, since C’ involves the multiplication of the Clifford-odd tri-vector +¢ and it turns a
left-handed fermion into a right-handed one, and vice versa.

The charge conjugation C’ of the gauge transformation parameters (and thus gauge
fields) can be defined as

C’ : QnTn — Q?/Tn = Hn(IFQFE})Tn([FQFE}), (258)
C': €K, — K, ="K, (2.59)
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with the understanding that the left side-type 7™ include the generators of Spin(1,3) x
SU(2)wrxU(1)wr and the right side-type K" include the generators of SU(3)cxU(1)p—_1.
Some notable examples are that the electromagnetic gauge field /1“ is C'-odd, while the
gravity-related spin connection Lorentz gauge field &, is C’-even.

2.4 Lagrangian of the world

Having established the fermion representation and the symmetry structure, we are now well-
positioned to investigate the Lagrangians and actions. With a view toward writing down the
diffeomorphism-invariant actions, we are going to make extensive use of differential forms.
We define gauge field as 1-forms and gauge forces as curvature 2-forms. Diffeomorphism-
invariance can be assured if the action is expressed as an integration of 4-forms on the
4-dimensional space-time manifold.

The vierbein 1-from é and spin connection 1-form @ of the Lorentz gauge theory of
gravity are

>

= é,dz", (2.60)
W = wydzt, (2.61)
where = 0,1,2,3, and the Clifford-valued é, and @&, are given in eq. (1.5). The Clifford-
valued forms are also called Clifforms in the literature.?!»22
In an similar fashion, the other gauge field 1-forms related to the gauge symmetries
SUB)e x SUR2)wr x U(1)wr x U(1)p—r, can be defined as

G = G dat, (2.62)
Wy, = Wy, dz", (2.63)
Wr = Wg,dz", (2.64)
Apy, = Agp,dat, (2.65)

where the strong interaction gauge field G’M, the left-handed weak interaction gauge field
WLW the right-handed weak interaction gauge field WRN, and the BL interaction gauge
field ABL” are valued in the gauge generator space of SU(3)c, SU(2)wr, U(l)wr, and
U(1)p—r, respectively. As an example, the left-handed weak interaction gauge field WL#
can be defined as

- 1
Wi, = i(wiurzrg + WE, sy + Wi, T), (2.66)
(2.67)

The other gauge fields Gu: Wg, and ABL” can be defined in a similar manner using the
corresponding gauge group generators specified in Section 2.2. We adopt the notation
convention (e.g. G rather than @) to highlight the fact that these gauge fields are Clifford-
valued 1-forms.

The chiral gauge-covariant derivatives of the chiral spinor fields are defined as

D, = (d+ &+ Wi)vr +9r(G + App), (2.68)
Dripg = (d+ & + Wr)pr + ¥r(G + App), (2.69)
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where d is the exterior derivative. It is essential that the gauge fields should appear on the
proper side of the spinor, which is dictated by how the gauge symmetries are defined in
Section 2.2. Note that we follow the convention of putting the gauge coupling constant in
the coefficient of the Yang-Mills Lagrangian, rather than in the gauge-covariant derivatives
above.

The spin connection @, as the gauge field of the Lorentz gauge group, is crucial in
maintaining the local Lorentz gauge covariance of Dy and Dryr. On the other hand,
given that the vierbein € is not a gauge field, € is conspicuously absent in the gauge-covariant
derivatives of the spinor fields ¢, r(x). Nonetheless, as we will learn below, é shows up in
other parts of the Lagrangian and it plays a pivotal role in the model building.

The gauge interactions are formulated as curvature 2-forms, namely f?, Fg, Fy L, Fy R,
and Fgr. For instance, the spin connection curvature 2-form R and the left-handed weak
interaction curvature 2-form FW 1 are expressed as

R=do+0AQ, (2.70)

R R R R 1 .

Fyr,=dWr,+Wr, AW = §FWLIde“d$V (2.71)
1

= Z(fnguyrgrg—%l%%Luyrgrl—%f%%Luyrlrb)dxudxy, (2.72)

where A stands for outer product between differential forms. For later usage we have
expanded FWL in more details. The other curvature 2-forms FWR, Fg, and F 'B1, can be
defined in a similar way. Note that the outer product term vanishes for abelian interactions
such as FWR and FBL.

Now we are ready to write down the local gauge- and diffeomorphism-invariant La-
grangian of the world

2.73
2.7
2.75
2.76

['World :'CFermion
+£G7“avity + ECC

(2.73)

(2.74)

+Ly M—Cotor + Ly M—Weak—Left + LY M—Weak—Right + LY M—BL (2.75)

+£Higgs—Majorana + EHiggstlectroweak) ( )
where the fermion Lagrangian is of the form

Lpermion ~i{Ie Né Née N Drapr) +i(Ié NéNéNYRDRrYR), (2.77)

and the gravity plus cosmological constant Lagrangian terms are of the form

1 oA N
,CGram‘ty—FLCC:87_[_(;<I(6/\€/\R+4!6/\6/\6/\6)>, (2.78)

where R is the spin connection curvature 2-form (2.70) and A is the cosmological constant.
The left-handed weak interaction Yang-Mills Lagrangian term is of the form

<UéAéAFWQUéAéAFWQ>

2.79
(IENENENE) (2.79)

Ly M—-Weak—Left ~
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The Yang-Mills-type Lagrangian terms for the other gauge interactions take a similar form.
Here we adopted the generic “Yang-Mills-type” label, albeit historically the term Yang-Mills
is reserved for non-abelian gauge fields only. Note that (...) denotes the Clifford-scalar part
of the enclosed expression, as we defined earlier. The Higgs field-related Lagrangian terms
LHiggs—Majorana and Liriggs— Electroweak Will be outlined in Sections 3.2 and 3.3 when we
discuss the Higgs mechanism. Upon SSB, the Majorana and Dirac mass terms will emerge
from Lpiggs—Majorana ad Liggs—Eiectroweak Via the Higgs mechanism. For later references,
we write down the Dirac mass term in curved space-time as

ﬁDirac—Mass ~im <Ié NeNEN é¢11/;> ) (280)

where m is the Dirac mass.

It shall be reminded that in the Yang-Mills Lagrangian term, the 4-form factor d*z =
dz® A dxt A dz® A da® from one of the Ié A é A FWL should be canceled out by the similar
4-form factor from the denominator Ié A é A é A\ é before multiplication with the other
Ié Né A Fyp. As such, the Yang-Mills Lagrangian terms, along with the other Lagrangian
terms of the world, are diffeomorphism-invariant 4-forms on the 4-dimensional space-time
manifold.

Also note that the Clifford algebra elements of the vierbein é and the curvature 2-forms
such as Fg formally commute with each other in the Yang-Mills Lagrangian, since they
transform under commuting gauge groups. Since the vierbein é transforms as a vector under
Lorentz gauge transformation (2.36) and is invariant under the other gauge transformations,
all the terms of the Lagrangian of the world can be proved to be local gauge-invariant under
Spm(l,3) X SU(3)C X SU(Q)WL X U(l)WR X U(I)B_L.

The action of the world is

Sworld = /EWOTlda (281)

where the integration over d*z = dzAdz' Adx?Adx? is already embedded in the definition of
the Lagrangian. We know that the space-time metric g, can be derived from the vierbein.
Thus the metric tensor g, and the Hodge star in the conventional metric gravity can be
constructed using various combinations/transformations of the vierbein. For instance, the
4-form %Ié A €A é A é plays the role of the metric volume form \/@d‘lx.

We subscribe to the general notion of effective field theory,3? 3234 which states that all
the terms allowed by the symmetry requirements should be included in the Lagrangian of
the world. Since one goal of this paper is to treat gravity and Yang-Mills interactions on
an equal footing, we should consider Lagrangian terms that is linear in Yang-Mills fields as
well, such as

<Ié/\éAFWL>. (2.82)

It is analogs to the gravity Lagrangian (2.78) which is linear in the spin connection curvature
2-form R. However, it can be verified that such linear terms for the Yang-Mills fields are
identically zero. The only allowable linear term other than the gravity Lagrangian is the
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Holst term3®
<éAé/\R>, (2.83)

which differs from the gravity Lagrangian (2.78) by removing the pseudoscalar I.

When it comes to the Lagrangian terms with two or more gauge curvature 2-forms, there
is a plethora of allowable forms besides the Yang-Mills-type Lagrangian. Some examples are
the topological CP-violating terms for the Yang-Mills interactions, the topological Gauss-
Bonnet term and Nieh-Yan term,3® and the higher-derivative gravity terms.?33% While
all these higher-order terms should in principle be included in the Lagrangian, the key for
model building is to recognize that the practical predictions of any model must be made
within the context of separation of energy scales. The gravity and Yang-Mills Lagrangian
terms happen to be amongst the first few order terms that are relevant at the energy scale
accessible to experiments.

The astute reader may have noticed the presence of the imaginary number ¢ in the
fermion kinetic Lagrangian (2.77) and Dirac mass Lagrangian (2.80). As explained in the
introduction section, there are two kinds of imaginary numbers. One is the genuine ¢, and
the other can be replaced by the pseudoscalar I. We have demonstrated that the gauge
group generators are valued in the real Clifford space, and the algebraic spinors are valued
in the super-real Clifford space. Hence we have managed to stay away from the imaginary
number ¢. So why do we need ¢ in the fermion Lagrangian terms? It has to do with the
requirement that the classical action of the world should be (super-)real

Z)orld = Sworld- (2.84)
We know that (...) is employed in each Lagrangian term. By definition, it is the Clifford-
scalar part of the expression, which means (...) is real as long as the related fields in the
expression is valued in the real Clifford space. Since the bosonic fields (gauge fields, vierbein,
and Higgs fields) are valued in the real Clifford space, the reality condition is automatically
satisfied for all the bosonic field-related Lagrangian terms, such as the gravity and Yang-
mills Lagrangian terms.

On the other hand, since spinors are valued in the super-real Clifford space, the fermion
action can essentially be reduced to a sum/integral of terms like itp,1,. Given that the
Grassmann-odd coeflicients of the spinors are defined to be super-real ¢ = v and ¢y = 1y,
the complex conjugate of i1),1), can be calculated as

(“/]xwy)* = Z*¢Z¢; = _iwyw:c = Z%% (285)

Hence the super-reality condition is satisfied, which is otherwise violated if ¢ in the ex-
pression is removed. Note that the complex conjugate of the multiplication of Grassmann
numbers obeys

(Vathy)™ = yiy, (2.86)

with no extra minus sign, even though both 1, and v, are Grassmann-odd.
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In summary, we are compelled to include the imaginary number ¢ in the definition of
fermion Lagrangian to enforce the super-reality condition. That said, as mentioned earlier,
the imaginary number ¢ is intimately related to the quantum theory. It will be shown later
in this paper that the appearance of ¢ in the fermion Lagrangian is the tip of the iceberg
of quantum essence of almost everything.

3 Spontaneous symmetry breaking

3.1 Vierbein-induced SSB and the residual global Lorentz symmetry

The spontaneous symmetry breaking (SSB) saga of the universe starts with the vierbein
field é acquiring a nonzero vacuum expectation value (VEV). As a consequence, the local
Lorentz gauge symmetry Spin(1,3) and the diffeomorphism symmetry are violated. The
remaining local gauge symmetries are SU(3)c x SU(2)wr X U(1)wr x U(1)p—r plus a
residual global Lorentz symmetry.

The “ground state” of the vierbein é and spin connection @ should satisfy the field
equations, which are obtained by varying the world action Sy.rq with the fields é and w
independently. The resultant Einstein-Cartan equations read

1o A
%(R/\e—i-e/\R—ie/\e/\e)I:T, (3.1)
#(TA/\é—é/\T)I:S, (3.2)

where the energy-momentum current 3-form T and the spin current 3-form S arise from the
matter sector, such as the fermion, Yang-Mills, and Higgs action terms. Note that R is the
spin connection curvature 2-form (2.70), and T is the torsion 2-form

T=dé+ONE+ENGD. (3.3)

When the spin-current S is zero, the second Einstein-Cartan equation (3.2) amounts
to enforcing the zero-torsion condition

A

T =0, (3.4)

which can be used to express the spin connection @ in terms of the vierbein é. In this case,
the remaining (first) Einstein-Cartan equation can be shown to be equivalent to the regular
Einstein field equations for gravity plus a cosmological constant term.

Upon SSB, the vierbein field develops a nonzero VEV

é = 0y yadat = ydat, (3.5)
while the spin connection remains zero
w=0. (3.6)

It can be verified that both the above é and @ satisfy the Einstein-Cartan equations, pro-
vided that A = 0, T = 0, and S = 0. Subsequently, the space-time metric g, = (€,€,)
reduces to

Juv = <’7//YV> = Nuv, (3.7)
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which is the Minkowski flat space-time metric.
With the substitution of é and @ by the above values, the fermion action in the flat
Minkowski space-time reduces to

Sfermion = /Z‘<wL’Y“DLu¢L + &RV“DRM¢R> d4$, (38)

where
Drubr = (0 + Wr)vr + vr(Gu + Apry), (3.9)
Drutor = 0y + Wrp)¥r + ¥r(Gu + Apry). (3.10)

Similarly, the Yang-Mills action(2.79) of the left-handed weak interaction Fyz can be
rewritten as

1
dgwrL

SY M—Weak—Left = /FviVLWFé{/MLVd%? (3.11)
where gy, is the dimensionless coupling constant of the left-handed weak interaction. The
Yang-Mills-type action terms of the right-handed weak, strong, and BL interactions take a
similar form, with coupling constants gwgr, gg, and gpr, respectively. Note that

’7“77;11/ = T (3.12)
Fyf uatlvs = Fiy Lag: (3.13)

where {y#} is the reciprocal frame of {7,}. The reciprocal frame {y*} is the avatar of the
vierbein 3-form Ié A é A é from the original fermion Lagrangian (2.77) when the vierbein
field é acquires the nonzero VEV in eq. (3.5). Therefore, when the fermion action in the flat
Minkowski space-time (3.8) is employed to derive the massless Dirac equation (the Dirac
equation with nonzero mass will be discussed in Section 3.3)

Y*Dppbr =0, (3.14)
YDgr YR =0, (3.15)

what shows up in the Dirac equation is the reciprocal frame. As such, it’s the reciprocal
frame {y"} that corresponds to the gamma matrices used in the conventional formalism.
This fact also explains the minus sign we mentioned earlier: —I plays the role of the
conventional pseudoscalar when it is applied to the left side of a spinor such as —I. The
conventional pseudoscalar is defined using the reciprocal frame {y*}, whereas we define the
pseudoscalar using the original Clifford algebra basis {7,}. Hence there is a minus sign.

It’s worth mentioning that when we derive the flat space-time fermion action from the
curved space-time counterpart, we have also leveraged (*y“)T = 7" and the following
properties

(FG) = — (GF), (3.16a)
<(FG)T> = —(FG), (3.16b)
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where the Grassmann-old F and G are functionals of odd multiples of ¢(z) and t(x). The
minus sign arises from the Grassmann-old nature of 1(z) and ().

Upon SSB induced by the nonzero VEV of the vierbein é, both the local Lorentz
gauge symmetry Spin(1,3) and the diffeomorphism symmetry are violated. That said, it
can be verified that the fermion (3.8) and the Yang-Mills (3.11) actions in flat Minkowski
space-time is invariant under a residual global Lorentz transformation

o = (ATHEY, (3.17)

Wi(@) — (AW, (A ), (3.18)

Plr) —  en?emy (A1), (3.19)

where the Lorentz transformation parameters 8% = —0%® and AY are related via the equa-
tion

eieab%“/b,yue—%wbva% = AHAY. (3.20)

Note that the global Lorentz rotation parameters #%° above are independent of position, as
opposed to the position-dependent 6% (z) for the local Lorentz gauge transformations.

The situation here parallels the Higgs mechanism where there remains a global SU(2)
custodial symmetry37 after the electroweak symmetry breaking. In the case of the vierbein-
induced SSB, the vestigial global Lorentz symmetry is a synchronization (enforced by eq.
(3.20)) of the global portion of the local Lorentz gauge transformation (eieab%%) for spinors
and the global volume-preserving portion of the diffeomorphism transformation (A})) for
space-time coordinates. The local Lorentz gauge transformation involves Clifford algebraic
elements such as 7,7, labeled by Roman indices, while the diffeomorphism transformation
involves coordinates * and gauge fields (e.g. the electromagnetic field A, in eq. (1.12))
labeled by Greek indices. At the nexus is the VEV of the vierbein e}, = d;; which acts as a
solder form gluing together the Roman and Greek propers.

3.2 Majorana mass and absence of neutrinoless double beta decay

The second stage of SSB is triggered by the Majorana Higgs field ¢j; that couples to
the right-handed neutrinos only. It is a Higgs-like bosonic field in addition to the well
known electroweak symmetry-breaking Higgs field ¢ of the standard model. The VEV of
¢ generates Majorana mass for the right-handed neutrinos and that’s why we call it the
Majorana Higgs field. It breaks the gauge symmetries from SU(3)c x SU (2)wr xU(1)wr X
U(1)p—r down to the standard model symmetries. This subsection also presents one major
thesis of our paper: the neutrino Majorana mass preserves lepton number and therefore it
does not lead to the neutrinoless double beta decay.

The Majorana Higgs field ¢y is valued in the real Clifford algebraic subspace spanned
by two multivectors

ov = (b1 + da2l)vo P, (3.21)
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where ¢pr1 and ¢y are two real numbers, and P is the lepton projection operator (2.8).
The Majorana Higgs field obeys gauge transformation rules

by — e—%GWR[_%EBLJ b e%QWRI"F%eBLJ, (3.22)

where Oy i and epr, are the right-handed weak U(1)w g and BL U(1)p_1 gauge transfor-
mation parameters. As such, ¢y is invariant under the Lorentz Spin(1,3) (Lorentz scalar),
left-handed weak SU(2)w [, (weak singlet), and color SU(3)¢ (color singlet) gauge transfor-
mations. Given that JP, = —1 P}, one can replace J with —1 in the above transformation.
We keep J to highlight its relevance to the BL symmetry. Note that ¢y is Clifford-odd,
different from the Clifford-even electroweak Higgs field which will be investigated in Sec-
tion 3.3.
The Majorana Higgs Lagrangian reads

Litiggsasorana = ((D*611) (Dudar) = Var + (yasi)on(ITaTs)vmons ), (3.23)

where vp is the right-handed neutrino, yas is the Majorana Yukawa coupling constant, and
the Majorana Higgs potential Vi is

Vir = — 13,64 001 + Aar (), 000)° (3.24)

The gauge-covariant derivative of ¢ is defined as
1 1 1 1
Doy = (Ou — §WRM~7 — §ABL;¢J)¢M + ¢M(§WRMI + §ABL,uJ)7 (3.25)

which involves the right-handed weak gauge field WRM and the BL gauge field Ap Lu- Note
that the bivector I'sI's in the Yukawa term can be replaced by an arbitrary combination
of I'o's and T'1I's. But it does not change the overall picture. The imaginary number ¢
shows up in the Yukawa term. This is in compliance with the super-real condition for the
Majorana Higgs Lagrangian.

Given that ¢ps is a weak singlet, the Majorana Yukawa term couples with the right-
handed fermions only, as opposed to the electroweak Higgs Yukawa term which couples with
both the left- and right-handed fermions. The Majorana Higgs Lagrangian L;ggs—Majorana
can be verified to be SU(3)c x SU(2)wr X U(1)wr x U(1)p—1, gauge invariant. Due to
the gauge transformation properties of ¢y (3.22), it can be shown that a similar Majorana
Yukawa term for the right-handed electrons is prohibited since such a term violates the
gauge symmetries. Therefore, the Majorana Yukawa term couples to the right-handed
neutrinos exclusively.

By virtue of the Mexican hat-shaped potential Vjs, the Majorana Higgs field ¢p; ac-
quires a nonzero VEV

1
~ L P 3.26
oM \/QUM'YO ) (3.26)

where vy = % is called the Majorana scale (or the seesaw scale).
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As a result, the gauge symmetry related to the gauge field ZL
Z), = Wrul + Apryd = (Wry — Apru)l, (3.27)

is spontaneously broken. The would-be Nambu-Goldstone boson is "eaten” by the gauge
field ZAL which gains a mass as a consequence. The local gauge symmetries are broken
down to the standard model symmetries SU(3)c x SU(2)wr, x U(1)y, with the the hyper-
charge gauge symmetry U(1)y specified by the synchronized double-sided gauge transfor-
mations (2.49). The U(1)y gauge field Ay remains massless and has an effective coupling

constant of!®

W RYBL
gY = ﬁu
\/9ivr T 9BL

where gy g and gpp, are the right-handed weak and the BL coupling constants, respectively.

(3.28)

After replacement of ¢as with its VEV, the Majorana Yukawa term reduces to the
Majorana mass term of the right-handed neutrino

Mi (Ivp(IT9l's)vrryo) = Mi (Ivr(vR)cr) | (3.29)

where (vg)cr is the weaker form charge conjugation C” (2.55) of v and the Majorana mass
M is
1
M = EyMUM. (3.30)
It can be verified that the Majorana mass term respects all the standard model symmetries.
This kind of mass is allowed for a standard model singlet such as vgr. It can also be shown
that the Majorana mass term is permitted only if v is valued in the Grassmann-odd Clifford
algebraic space. On the other hand, it would be identically zero if v were valued in the
real Grassmann-even Clifford algebraic space.
If we juxtapose the Majorana mass term with a typical Dirac mass term between
neutrinos

myi (Ivv)y = myi (Ivpvg + IDRvL) (3.31)

we can see that the former couples vr with (vgr)cr, while the later couples vp with vy.
We know that the weaker form of charge conjugation C’ (2.55) is a Clifford-odd operation.
It converts the Clifford-even vg to Clifford-odd (vgr)cr. Consequently, (vg)cr is effectively
left-handed and could be coupled to the right-handed vg in a similar fashion as the Dirac
mass term.

28,29,30 indicates that neutrinos have nonzero

The observation of neutrino oscillations
masses which are much smaller than that of the other standard model fermions. If we
assume that the neutrino Majorana mass M is much heavier than the neutrino Dirac mass
m, a very small effective mass of the order of m2 /M can thus be generated for the neutrino.

This appealing explanation for the tiny neutrino mass is historically called the seesaw
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mechanism.?® If we could experimentally detect the Majorana nature of the neutrino mass,
it would lend support to the seesaw mechanism.

Given that the traditional definition of the Majorana mass involves the charge conju-
gation C' (2.54) that converts a particle into its corresponding antiparticle, the traditional
Majorana mass term violates the conservation of lepton number and could be confirmed
by the lepton number-violating process of the neutrinoless double beta decay. Therefore,
it’s widely believed that the observation of the neutrinoless double beta decay could be a
confirmation of the Majorana mass. The lepton number-violating process can also be used
to explain the origin of matter in the universe via a mechanism known as leptogenesis.?®
A slew of experiments have been commissioned to search for the neutrinoless double beta
decay. As of yet, no evidence of such decay has ever been found.3?:4°

On the other hand, the weaker form of charge conjugation C” (2.55) does not invoke
complex conjugate, and thus there is no particle-antiparticle interchange. Consequently, the
Majorana mass term as shown in eq. (3.29) conserves lepton number, which is dissimilar to
the traditional Majorana mass term that invokes the stronger form of charge conjugation C.
This suggests that the absence of the neutrinoless double beta decay does not disapprove
the Majorana mass as defined in eq. (3.29). We shall seek other means of the Majorana
mass detection.

3.3 Scalar and antisymmetric-tensor Higgs fields

The third step of SSB concerns the well known electroweak symmetry-breaking Higgs field
¢ of the standard model which couples with both the left-handed and the right-handed
fermions. The VEV of the scalar ¢ breaks the standard model symmetries down to SU(3)¢ %
U(1)gpp- The SSB pattern outlined in this subsection is in many ways similar to the
the conventional Higgs mechanism, only that it’s transposed onto the Clifford algebraic
landscape. That said, toward the end of this subsection we will touch upon a non-scalar
Higgs field which could have cosmological implications.

The Higgs field ¢ is valued in the real Clifford algebraic subspace spanned by four
Clifford-even multivectors

¢ = (do + ¢112's + @231 + $3'1 ') Py, (3.32)

where P, is the projection operator (2.10) with the property I'yI's P = —I P;. The four real
coefficients {¢q;a = 0,1,2,3} correspond to the 2 complex components (i.e. 4 real degrees
of freedom) of the traditional Higgs doublet. The Higgs field obeys gauge transformation
rules

191 192 T 1p3 1
b — e30wrl2ls+50  Tsli+50y, Il be QeyF1F2’ (3.33)

where {0;,;,0%,,,03,,} and ey are the left-handed weak SU(2)w 1 and the hypercharge
U(1)y gauge transformation parameters. As such, ¢ is a weak doublet and is invariant
under the Lorentz Spin(1,3) (Lorentz scalar) and the color SU(3)c (color singlet) gauge
transformations. Given that P,I'1I's = —P, I, one can replace —%61/1“11“2 with %GyI in the
above transformations and therefore the Higgs field has Hypercharge 1 (or % depending on
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the Hypercharge definition convention). We keep —%q/l“ll“g to highlight its relevance to
the Hypercharge symmetry (2.49).
Note that the Higgs field could take values in a complimentary Clifford-even subspace

¢ = (do + P12l + P31 + @31 ') P, (3.34)

where the projection operator is changed from P, to P_. We call the original ¢ (3.32)
and the complimentary ¢ (3.34) the ¢ -type and ¢_-type Higgs fields, respectively. They
have opposite Hypercharges and thus their coupling patterns with the isospin up-type and
down-type fermions differ from each other. This additional ¢_-type Higgs field can be
exploited in various extensions of the standard model such as the two-Higgs-doublet model
(2HDM)*%42 or the three-Higgs-doublet model (3HDM).*® We will circle back to this point
in Section 3.4. But for now, let’s focus on the ¢ -type Higgs field only.
The standard model gauge-invariant Higgs Lagrangian reads

L:Higgs—Electroweak = <(D#¢)T(Du¢) - V]W + (yeiIZLgbeR + hC)> ) (335)

where l;, = v, + ey, is the left-handed lepton doublet, e is the right-handed electron, y. is
the Yukawa coupling constant, and Higgs potential V is

V= —%0'6 + A(g10)>. (3.36)

The gauge-covariant derivative is defined as
14 1 o 1. 4 1
Du¢ = (9u + Wirplel's + 5 Wi, sl + §WLHF1F2)¢ - ¢(§AYuF1F2)7 (3.37)

which involves the left-handed weak gauge field WL# and the Hypercharge gauge field flyu.
We omit Yukawa terms for non-electron fermions which will be investigated in more detail
in Section 3.4 when we tackle the issue of the fermion mass hierarchies. Note that the
imaginary number ¢ shows up in the Yukawa term. This is in compliance with the super-
real condition.

By virtue of the Mexican hat-shaped potential V', the Higgs field acquires a nonzero
VEV

1
¢ = EUEWPJH (3.38)

where vpw = \% is usually called the electroweak scale. As a result, the gauge fields Wf#

and Zu gain masses. The standard model symmetries are broken down to SU(3)cxU (1) gas-

The electromagnetic U (1) gy, gauge field A remains massless and has an effective coupling

constant of!®

IGWLIWRYIBL (3_ 39)

I = 2 9 2 o
\/gWLgWR T 9wir9BL T 9wrIBL
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where g1, gwr and gpy, are the left-handed weak, the right-handed weak and the BL cou-
pling constants, respectively. The electromagnetic field A-related gauge-covariant derivative
of the algebraic spinor ¢ can be cast into the form

Dyp = (9 + %Aunfz)w + w(%AMJ) = O + qA I, (3.40)

where ¢ is the electric charge.
With replacement of ¢ with its VEV, the Yukawa term reduces to the Dirac mass term
of electron

mei (Iee) = mei(Ierer + Iegrer) , (3.41)

where the electron mass m. is
1
Me = \ﬁyevEW. (3.42)

At this final stage of SSB, we are ready to write down the action of the electron

Selectron = /'C d435‘ = 'L/ <1L’Y'U‘(8/ﬂf) + unwI) =+ mTZJ¢I> d4SU, (343)

where ¢ = —1 and we relabel e as ¥ and m, as m. The Clifford algebraic Dirac equation
can be readily derived

Y (OubI — qAu) —myp = 0. (3.44)

It’s similar to the conventional Dirac equation, provided that ¢ is replaced with I posi-
tioned on the right side of ¢. It can be used to derive the equation for the C’ charge
conjugation (2.55) counterpart 1.

Y (Outbo T + qAutpe) — mipy = 0. (3.45)

The above equation demonstrates that the weaker form of charge conjugation C’ indeed
changes the sign of the electric charge.

The electroweak symmetry breaking process delineated above bears close resemblance
to the traditional Higgs mechanism. Curiously, the Clifford algebra framework allows for a
non-scalar Higgs field ¢ 47 which could potentially break both the electroweak and Lorentz
symmetries. The non-scalar Higgs field is valued in the real Clifford algebraic subspace
spanned by 4 x 6 = 24 Clifford-even multivectors'®

YaVbs  YaVol'il'j, (3.46)

where i, j =1, 2, 3,i>j,a, b =0, 1, 2, 3, a>b. We have the flexibility of only considering
the projected portion of it a7+ = ¢par Py with each half having 12 independent Clifford
algebraic components. The non-scalar Higgs field obeys the transformation rules

1 pab 1p1 192 193 1 1 gab
¢AT — €Z9a ’Ya'7b+§9WLF2F3+EGWLF3F1+§6WLF1F2 ¢AT e—ieyr‘lrg—z@a "/a"/b’ (347)
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where §%~,v, represents Lorentz transformations. As such, ¢ 47 is a weak doublet as well as
a Lorentz sextet (an antisymmetric tensor rather than a scalar). If ¢ 47 acquires a nonzero
VEV

1
bar = EUAT"YO'Y& (3.48)

it would break the electroweak and Lorentz symmetries at the same time, since it sin-
gles out a specific space-time direction via 7pvy3. The magnitude of this VEV could be
extremely small compared with the electroweak scale var < vgw, rendering the vap-
related effects unobservable in laboratories. We hypothesize that the ethereal VEV of the
antisymmetric-tensor Higgs field might manifest itself as the large-scale anisotropies of the

universe, 44,45,46,47,48,49

3.4 The 3HDM and the fermion mass hierarchy problem

Dimensionless ratios between physical constants appearing in a physical theory cannot be
accidentally small. The technical naturalness principle is elegantly defined by 't Hooft:?°
a quantity should be small only if the underlying theory becomes more symmetric as that
quantity tends to zero. Weakly broken symmetry ensures that the smallness of a parameter
is preserved against possible large quantum corrections.

For the application of the naturalness principle, let’s examine two global symmetries
related to the vector Uy (1) phase transformation

v — el vr  —  Yre®l (3.49a)
o — eV (3.49b)
¢ — P, (3.490)

and the axial U4 (1) phase transformation

17 N S (3.50a)
o = pueA, (3.50b)
I I (3.50¢)

where vy, is the left-handed spinor, ¥ is the right-handed spinor, ¢;s is the Majorana
Higgs field, and ¢ is the regular Higgs field. The phase transformation rules for ¢;; and ¢
may not seem intuitive. But when we consider ¢y; and ¢ as multi-fermion condensations
in Section 4.2, the reason for these transformation rules will become clear.

For later discussion, let’s also introduce a U, (1) phase transformation for the right-
handed spinors

vy — YL, vp  —  pge™, (3.51a)
ou  — e, (3.51b)
o = g, (3.51c)

which is basically a combination of Uy (1) and Ua(1) .

_ 98 —



It can be checked that, when ¢j; and ¢ are replaced by their VEVs, the Majorana (3.29)
and Dirac (3.41) mass terms violate the Uy (1)/Ua(1)/U,(1) and Ua(1)/Uq(1) symmetries,
respectively. Hence the Majorana and Dirac masses are technically natural, given that these
global symmetries can be restored if the Majorana and Dirac masses were set to zero. In
other words, the smallness of the Majorana and Dirac masses are protected by the global
symmetries against possible large quantum corrections.

Prior to the SSB induced by ¢)s and ¢, these two Higgs fields would transform according
to the aforementioned phase transformation rules. It can be shown that all the terms of the
Lagrangian of the world (2.73) respect the Uy (1), Ua(1), and U, (1) global symmetries, with
only one exception which is the U4 (1)/U,(1)-violating electron Yukawa term in eq. (3.35).
It would be nice if we can tinker with the U4(1)/U,(1) transformation rule for ¢, so that the
whole Lagrangian of the world is invariant. Contrary to our expectation, it’s not achievable.
Within the confines of a single standard model Higgs field ¢, it is impossible to make both
the isospin up-type and down-type fermion Yukawa terms Uy (1)/U,(1)-invariant.

The seemingly worrisome symmetry-violating Yukawa terms can be turned into our
advantage. In the spirit of the technical naturalness principle, we can exploit the global
symmetry properties to explain the vast range of fermion masses which span five orders of
magnitude between the heaviest top quark and the lightest electron. The key for solving the
fermion mass hierarchy problem is to realize that some of the Yukawa coupling constants
are actually not constants at all.'® Embedded in the Yukawa couplings, there are six
Clifford-valued bosonic scalar fields

Dot = Pot1 + Pagal, Ggp = Py + Ppgpol, (3.52)
(I)OWT - (I)ole + q)Oél/TQI7 (I),BVT - (I)Buq—l + q),BI/7—2[7 (353)
Por = Por1 + Paral, (I),BT = (I)BTl + q)BTQIy (354:)

where all the coefficients, such as ®,41 and P49, are real numbers.

The three a-type ® fields are tied to the U(1), symmetry, while the three 5-type ®
fields are tied to a novel U(1)g symmetry (see table 1). The symmetry-violating effective
Yukawa terms are originated from these six ® fields acquiring nonzero VEVs via the SSB
mechanism. Note that these ® fields are gauge singlets, i.e. they are invariant under all
gauge transformations. This is in contrast to the regular electroweak Higgs field which is a
weak SU(2)w doublet.

To account for the masses of the three families of fermions, we adopt three Higgs fields
in our model (a.k.a. 3HDM), namely, the top-quark Higgs field ¢;, the tau-neutrino Higgs
field ¢,_, and the tau-lepton Higgs field ¢,. The naming convention of the three Higgs
fields (and the six ® fields) will become clear when we related them to their corresponding
quantum condensations in Section 4.2. Among these Higgs fields, ¢; and ¢, are ¢ -type
Higgs field (3.32), while ¢, is ¢_-type Higgs field (3.34). All the three Higgs doublets obey
the usual gauge transformation rules for the electroweak Higgs field (3.33).

We introduce one more global symmetry U(1)g which, like U(1),, is related to the
phases of the right-handed fermions. However, the U(1)s charge is not uniformly assigned

to fermions. While U, (1) transforms all the right-handed fermions by the same phase e®/,
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Up(1) transforms the isospin up-type quarks (ug, cgr, tr) and down-type leptons (er, (R,
7r) by the phase ¢®! and it transforms the down-type quarks (dg, sg, br) and up-type
leptons (Ver, VuR, Vrr) by the opposite phase e #1. The U(1),/U(1)s charge assignments
are summarized in table 1

Table 1. The U(1), and U(1)g charge
uRr,CRIR | dr,SR,bR Ot | Pu, | Or | Pat, Pav,s Par | Ppt, Ppu,s Ppr
CR\URYTR | VeR\VuRVTR
Ul | 1 1 1)1 1 ]-2 0
Ul)g |1 -1 1 ]-1 1 10 -2

It will be shown later in this subsection that the two global symmetries U (1), and U(1)3
are instrumental in determining the relative magnitudes of the effective Yukawa coupling
constants, and consequently establishing the fermion mass hierarchies. As the U(1), charge
assignment is analogous to that of the Peccei-Quine U(1)pg symmetry,’! we will use the
term U(1), and U(1)pg interchangeably henceforth.

Now we are ready to write down the Yukawa coupling terms for all three generations
of the standard model fermions (plus right-handed neutrinos)

i (9@} itn + 9u. @Y [T wver + @arlaEdibr + 9.0 ®aullidren) + he.  (3.550)

+1 <gyT Il—%éuf Vrr + QCCI)BVTIQ%(M/T CR + gu(bauf IZ%¢V7— UR + gch)ch (Ijg,j_r ICYE@/T dR> + h.c.
(3.55b)
+1 <gTIl_%Q~STTR + gsq)}j‘,-l(j%qg‘rsR + v, q)aTIZ%QbTVuR + gu@aTq)BTIQ£¢TuR> + h.c., (355C)

where g¢, 9., - are the bare Yukawa coupling constants which are dimensionless parame-
ters of order O(1). The left-handed doublets are

li = VL + €L, qi =ur +dp, (3.56)
3 =vu +purn, 4 =cp+sg, (3.57)
B =vip+7, 4 =tL+bL, (3.58)

where quarks stand for color triplets, such as uy, = u,1, + ugr, + upr. From the Yukawa
coupling pattern we can tell that the ® singlets are of mass dimension zero, different from
the traditional mass dimension-one scalar fields. Alternatively, we can rewrite these singlets
as the conventional mass dimension-one scalar fields, as long as they show up in the Yukawa
terms as ®/M with M being an unknown energy scale.

Note that in the literature, the ¢;-type and ¢_-type Higgs field are called down-type
and up-type Higgs fields, respectively. As we have mentioned before, ¢; is a ¢-type Higgs
field, which means that it can only couple to the isospin down-type fermions such as bgr
and ep, whereas direct coupling to the up-type fermions is prohibited. Only a transformed
form of ¢

-1
o = Z'Yud)t%m (3.59)
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can couple to the up-type fermions such as tg and v.r. Similar logic applies to ¢,, and ¢,
which are ¢-type and ¢_-type, respectively. It’s worth mentioning that the conventional
formalism leverages a different transformation of the standard model Higgs field

¢ = ioad™, (3.60)

so that q; can be coupled to up-type fermions. It involves the complex conjugate, whereas
the Clifford algebra version (3.59) doesn’t.
The Yukawa coupling scheme (3.55) partitions fermions into three cohorts, namely

¢r  cohort : t,v., b, e, (3.61)
¢u, cohort vy, e, p,d, (3.62)
¢r cohort:T,s,vy,u. (3.63)

The right-handed fermions in each cohort only couple to the designated Higgs field, thus
preventing the flavor-changing neutral currents (FCNCs). Within each Higgs field cohort,
only one out of four Yukawa terms is free from the ® singlets, since it is impossible to
make the relevant Yukawa terms simultaneously U(1),/U(1)g invariant without including
the additional ® singlets. After inserting these ® singlets in the Yukawa couplings, it can
be verified that all the Yukawa terms respect the U(1), and U(1)g global symmetries.

The coupling patterns (3.55) of the three Higgs fields are predicated on an alternative
generation /family assignment,

Generation 0: t,b,v,,e, (3.64)
Generation +: «¢,s,vr,T, (3.65)
Generation —: wu,d, vy, [, (3.66)

which are tied to the flavor projection operators {¢%, ¢*, ¢(~}.!%16 These flavor projection
operators dictate the (T /¢~ mixing between the ¢, cohort and the ¢, cohort. The projec-
tion operators can also be applied to the Majorana-type Yukawa coupling and the resultant

15,16 which is evidenced in the

Majorana mass can directly mix the v,r and v;r neutrinos
observation of neutrino oscillations.?®2%30 Other flavor mixing phenomena might also be
accommodated by the framework, which we leave to future research.

We assume that the Lagrangians of the three Higgs doublets and six ® singlets are
analogous to the one specified for the regular Higgs mechanism (3.35), albeit the scalar
potential V could be more complicated with cross terms mixing different scalar fields.*?43
The study of the exact form of V is beyond the scope of this paper. For our purpose here,

we just postulate that these scalar fields acquire the following nonzero VEVs

1 1 1
= —u Py, = —uv, Py, r=—=vP_, 3.67
ol o b b, o hicais ¢ 7 (3.67)
(I)ozt = Vat, q)ocm— = Vav,, (I)orr = Var, (368)
(I),Bt = Upt, (I)/By_r = Uy, <I>57— = Upr- (3.69)
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The three ®,-type fields break the global U(1),/U(1)pg symmetry, while the three
®s-type fields break the global U(1)g symmetry. Note that the ® fields do not break
any local gauge symmetry since they are gauge singlets. Post the SSB, there will be six
massive sigma modes and six Nambu-Goldstone modes. As opposed to the Higgs mecha-
nism, the Nambu-Goldstone modes are not “eaten” by the gauge field. Due to the explicit
symmetry breaking originated from the quantum anomaly and instanton effects, the oth-
erwise massless Nambu-Goldstone bosons of the three @, fields acquire masses and turn
into pseudo-Nambu-Goldstone bosons in a similar fashion as the axions.’»32:53 Since the
®,, fields are local gauge (especially electroweak) singlets, they are more in line with the
invisible axions.?*:95:56:57 The axions have historically been proposed as dark matter can-
didates and as a possible solution to the strong CP problem. We leave the investigation of
the U(1)g-type (pseudo-)Nambu-Goldstone boson’s role as dark matter to future study.

After replacement of the three Higgs doublets and six ® singlets with their VEVs, the
Yukawa terms reduce to the Dirac mass terms

Grugt (Itt) 4 gu, VUt (IDeVe) + GyUarvti <IBb> + geVarvpivyi (Lee) (3.70a)
+ v, U, 1t (ID217) + GeVgy, Uy, i (1EC) + guvaw, Vv, i (TR) + gaVar, Uy, Uy, i (Idd)  (3.70Db)
+9r0r0 (ITT) + gsvgr 071 (155) + Gy, VarVri (I V) + guVarvgrvri (ITu) (3.70c)

where for brevity sake, all terms are multiplied by v/2.

Before making contact with the experimental results, we have to identify which mode
of the three Higgs doublets corresponds to the 125 GeV boson observed at the Large Hadron
Collider.?®59 Generally speaking, a Higgs boson can be defined as a linear combination of
the Clifford-scalar sector (with VEVs subtracted) of the three Higgs fields. For a order-of-
magnitude kind of analysis, let’s assume that the 125 GeV Higgs boson is aligned with the
top-quark Higgs field ¢;. Therefore the VEV of ¢, is approximately

v & 246GeV, (3.71)

and the bare Yukawa coupling constant g; can be identified as the top quark Yukawa
constant y; = g;. For the sake of estimation, we make the further assumption that the bare
Yukawa coupling constants are almost uniform

Yt = Gt R Gu. X R Gu- (3.72)

The standard model Yukawa constants, except y;, can be identified as effective coupling
constants. For example, the bottom quark’s effective Yukawa constant is y, = yrvae, and
tau neutrino’s effective Yukawa constant is y,. = yv,._/v;.

Aided by the above assumptions and the mass formula (3.70), we arrive at an estimation
of the Higgs/® VEVs and the neutrino Dirac masses as shown in table 2, where the known
fermion masses are also included for comparison.
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Table 2. Higgs VEVs (MeV), ® VEVs, and Dirac masses (MeV)
¢¢ Cohort ¢y, Cohort | ¢, Cohort

Higgs VEVs | vy 246,000 | v,

o

41,900 | v. 2,530

®, VEVs Vot 1/41 | vay,  1/278 | var  1/44

®5 VEVs Vgt 1/8200 | vg,, 1/23 | vz, 1/19

t 173,000 | v, 29,500 | 7 1,780

Dirac Masses | v, 21 | ¢ 1,280 | s 96
b 4,180 | p 106 | v, 40
e 0.51 | d 4.6 | u 2.2

There are a couple of takeaways from the above estimations. Firstly, the magnitudes
of ® VEVs (vat, s, -+ ) are all small, albeit to varying degrees. In accordance with the
technical naturalness principle of 't Hooft,?" the weakly broken symmetries of U(1),/U(1)s
ensure that the smallness of the VEVs is preserved against possible quantum corrections. We
have mentioned earlier that the ® singlets can be considered as traditional mass dimension-
one scalar fields characterized by an unknown energy scale M. Given that the VEVs of
the Majorana Higgs field and the three electroweak Higgs fields violate the U(1)o/U(1)g
symmetries as well, we assume that the energy scale M is higher than the Majorana scale
vpr (3.26). This is to make sure that the ® field-induced U(1),/U(1)s global symmetry
breaking process is decoupled from the Higgs(-like) symmetry breaking mechanism triggered
by either the Majorana IHiggs field ¢ps or the electroweak Higgs fields ¢y, ¢, and ¢;.

The @ VEVs play a crucial role in determining the magnitudes of the effective Yukawa
constants and thus establishing fermion mass hierarchies within each of the ¢, ¢,_, and
¢+ cohorts. On the other hand, the relative fermion mass sizes between different ¢ cohorts
are controlled by the Higgs field VEVs (v, v, ,v;). The fermion masses within a given ¢
cohort are mostly in a descending order in each column of table 2. The only exception is
the reversed order between the v, and b masses due to the abnormally small magnitude of
the ®g; VEV (vg ~ 1/8200) compared with the other ® VEVs. Note that the estimated
neutrino masses are meant to be the Dirac masses, as opposed to the much smaller seesaw
effective masses or the vastly larger Majorana masses outlined in Section 3.2. Interestingly,
according to our estimation, the Dirac mass of the v, neutrino (m,. ~ 29,500MeV) is
considerably larger than those of the v, and v, neutrinos (m,, ~ 40MeV and m,, ~
21MeV).

Secondly, assuming that there is no cross term between the kinetic part of the three
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Higgs Lagrangians, the masses of the W+ and Z° bosons can be calculated as

1

My = 5 VtotalgW L, (3.73)

1
Mzo = 5Vtotal |/ Q%VL + 9}2/7 (3.74)

where gy and gy are the weak and Hypercharge gauge coupling constants. The total
electroweak scale vy is dependent on all three Higgs VEVs

Utotal = \/m (375)

According to table 2, the estimated three Higgs VEVs {v, v,,, vr } have a hierarchical
structure

246 GeV > 41 GeV > 2.5 GeV, (3.76)

where the ¢, Higgs VEV is significantly larger than the other two. The ¢,, Higgs VEV
plays a non-negligible role in the electroweak scale saturation. The total electroweak scale
Ugotal 18 dominated by the ¢; Higgs VEV. The ratio between them is given by

Utotal
Ut

= 1.014. (3.77)

Given the assumption that the 125 GeV Higgs boson is attributed to the top-quark Higgs
field ¢y, this 1.4% discrepancy might be the underlying reason for the deviation of the
measured W-boson mass from the standard model prediction.%® If we tweak the uniform
Yukawa coupling assumption by proposing that the bare Yukawa couplings of the ¢, cohort
are 5 times larger than the other bare Yukawa couplings, then the wviyq/v¢ difference is
around 0.06%, close to what is observed by the CDF Collaboration.5°

And lastly, according to the Yukawa coupling scheme (3.55), the muon belongs to the
tau-neutrino Higgs field h,_ cohort. Given the intrinsic connection between the muon and
the h,_ Higgs field, it is worthwhile to investigate the h,_  Higgs field’s contribution to the
muon anomalous magnetic moment, especially in light of the recent muon g—2 measurement

with improved accuracy which confirms a deviation from the standard model prediction.b!

4 Quantum emergence and the naturalness problems

4.1 Quantization via the Clifford functional integral formalism

As mentioned in the introduction section, there are two kinds of imaginary numbers. One is
the genuine ¢ which is central to the quantum theory. The other one can be replaced by the
pseudoscalar I which shows up in the definition of spinors and gauge fields. Intriguingly, the
imaginary number ¢ is inextricably embedded in the classical fermion Lagrangian, which
suggests that there might be quantum phenomenon lurking beneath the veneer of the clas-
sical Lagrangian terms. It eventually leads us to the epiphany that quantum condensations
may hold the golden key to various sorts of naturalness problems.
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But first, let’s examine how to quantize classical spinor fields valued in the Clifford
algebraic space. To this end, we have developed the Clifford functional integral formalism
in our earlier paper.!” The generating functional Z[n] for the spinors can be represented
by the Clifford functional integral

2] = / Dipes J P aliLlw+ (In@)v(@)+I@n(@)} (41)

where the imaginary number ¢ in front of the Lagrangian is the hallmark of quantization.
The super-real Grassmann-odd sources n(x) and 7j(z) are valued in the same Clifford space
as ¥(x) and 9 (z). Tt is understood that Z[n] satisfies the normalization condition Z[0] = 1.

We regard v (z) and ¢(x) = ¥'(2)yo as dependent variables, as opposed to the tradi-
tional way of treating them as independent variables. The same logic applies to n(z) and
7(z). Therefore, an extra 1/2 factor in front of the action is required to keep the calculated
quantities, such as the fermion propagators, consistent with those of the conventional for-
malism. Note that the single-source format (I7(z)1(z)) is employed here. Alternatively,
we can adopt the bilocal-source format (7j(z)v(x)) (n(y)¥(y))'" which is well-suited for the
non-perturbative approximations analogous to the two-particle irreducible (2PI) effective
action approach.5?

One benefit of the Clifford functional integral formalism is that we don’t need to literally
perform the functional integration for most cases. Rather, we resort to the property that
the functional integration of a total functional derivative is zero

/ Dy 51/;5@) o} J (L (In@ @+ Th@n(@)} _ g, (19)
Similar property holds for (x). It means that the functional integral is invariant under a
shift of ¢(x).

In our earlier paper on the Clifford functional integral formalism,'” we have provided
the specific definition of the Clifford functional derivatives 6/ (x) and 6/6¢(x). For our
purpose here, we only need to know the basic Leibniz rule

0 )
S0 (YY) FY]) = 6(z —y)FlY] + S0

where the dot on F'[)] denotes functional derivative performed on F[t] only. Similar Leibniz
rules can be applied to (), n(z) and 7(x). Coupled with the other two Clifford algebra
properties (3.16), we are able to perform the relevant Clifford functional derivatives in this

paper.
As an excise, let’s apply the property (4.2) to the fermion Lagrangian (3.43) without

(v Flv).

the electromagnetic coupling. We arrive at the Schwinger-Dyson (SD) Clifford functional-
differential equation

wau{éggx)sz} - méﬁ%zm + n(@)IZ[) = 0. (43)

The solution to the SD equation can be readily obtained as

=2 Lo ()5 )n(r)

Zn , (4.4)
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where n(p) = [ d*zn(z)elP® and p -z = p,a*. Note that n(x)elP® #£ ePZpy(x), since n(z)
has both Clifford-even and Clifford-odd parts. The Feynman propagator S(p) is given by

1
S(p) = ma (4.5)
where p = p, "

A few comments are in order. First of all, the imaginary number i does not explicitly
show up in the DS equation (4.3). It is because the ¢ in the Clifford functional integral (4.1)
and the ¢ in the fermion Lagrangian (3.43) cancel out. When gauge fields are included in
the Lagrangian, there is no such cancellation due to the absence of ¢ in the Yang-Mills-type
Lagrangian terms.

Secondly, the Feynman propagator S(p) has poles at p?> = m?. The propagator is not
properly defined without a prescription on the pg-related integral in the vicinity of the poles.
A well-defined Lorentz-invariant Feynman propagator hinges on the contour integral on the
po complex plane prescribed by ie. Feynman’s ie trick introduces the imaginary number ¢
through the back door. And this 7 is of quantum origin too, since it can be demonstrated
that e is related to the proper time ordering of quantum fields in the operator formalism
of field quantization.

In the subsequent subsections, the Feynman propagator will be used extensively in
various calculations of quantum-loop effects. For the sake of brevity, going forward we will
not explicitly write down ie in the propagators.

4.2 Composite Higgs and the Higgs mass naturalness problem

The discovery of the 125 GeV Higgs boson®®59 has renewed the interest in the possible
explanation for the Higgs mass naturalness problem.6%:64:65 The 125 GeV Higgs mass is
technically unnatural according to ’t Hooft,?° since even if one takes the massless Higgs bo-
son limit, the symmetry of the standard model is not enhanced. The perturbative quantum
corrections tend to draw the Higgs mass towards higher scale. This is in contrast to the
case of the fermion mass, which is protected by the U4(1) global symmetry against possible
large quantum corrections.

One way of addressing the Higgs mass naturalness problem is to replace the fundamen-
tal Higgs boson with a fermion-antifermion condensation, such as in the technicolorf6:67,68
and the (extended) top condensation models.5%70:71,72,73,74,75,76,77,78,16 Ip these models,
the Higgs sector is an effective description of the low energy physics represented by the
composite Higgs field. The condensation is induced via the dynamical symmetry break-
ing (DSB) mechanism, which is a profound concept in physics. It is introduced into the
relativistic QFT by Nambu and Jona-Lasinio (NJL),” inspired by the earlier Bardeen-
Cooper-Schriefer (BCS) theory of superconductivity.®

Motivated by the proximity of top quark mass scale and the electroweak symmetry
breaking scale, the top condensation model has been extensively studied. The simplest
version of the top condensation model assumes the top quark-antiquark condensation only.
With a view toward explaining the fermion mass hierarchies in the context of composite
electroweak Higgs bosons, we have proposed the extended top condensation model in our
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previous work.'® In addition to the top quark condensation, the extended top condensation
model involves the tau neutrino and tau lepton condensations as well. The 3HDM in
Section 3.4 is essentially an effective representation of these three condensations.

The top condensation model in its original form is based on the NJL-like four-fermion
interactions. For example, the top quark interaction term takes the form

Viop—quark ~ g <I§%’YMQ%HR’YMR> ; (4.6)

where g is the four-fermion coupling constant and ¢3 = t1, +by. Comparing above with the
¢¢ Higgs field Yukawa coupling term (3.55), one can see that ¢; is an effective representation
of the fermion-antifermion pair

ide ~ 9q3 IR, (4.7)

where the ¢ multiplier will be explained later in this subsection. With the replacement
of the effective Higgs field, the top quark interaction term (4.6) turns into the top quark
Yukawa term

V;fop—quark: ~ i<167%7“¢t7,utR> ~ 1 <I(ﬁ),¢~)ttR> ) (48)

Now let’s investigate what kind of Clifford algebraic value the effective Higgs field ¢; can
take. First of all, ¢; is Clifford-even, given that ¢} is Clifford-odd and tg is Clifford-
even (meaning that tp = tTRfyg is Clifford-odd). And since tg = P_tg (meaning that
tr = (P_t);ﬂo = tgP}), ¢r = ¢:P+ should be the ¢ -type Higgs field. Therefore, there
are 32/2 = 16 components which correspond to the combination of the 4-component ¢ -
type scalar Higgs field (3.32) and the 12-component ¢ o7 -type antisymmetric-tensor Higgs
field (3.46).

For a free fermion, it’s straight forward to obtain the solution (4.4) to the SD equa-
tion (4.3). In the presence of interactions such as (4.6), solving the corresponding SD
equation is notoriously hard. The path well trodden is to find a perturbative solution, un-
der the assumption that a certain coupling constant is small. In our previous paper,'” we
follow a non-perturbative scheme dubbed as the bilocal-source approximation,®:82 which
effectively treats the bilocal-source term as a series expansion parameter. The zeroth-order
approximation of the Clifford functional SD equation'” is equivalent to the self-consistent
Hartree mean-field approximation (a.k.a. rainbow approximation). According to the DSB
mechanism, when the four-fermion interaction is strong enough, it will trigger a quantum

) d*p m
g ~ g/ (2r)* ma (4.9)

condensation

where v; is the magnitude of the condensation and m is the emergent top quark mass.

We can see that the above integral is quadratically divergent. The integral is seemingly
a real number. However, as we mentioned in Section 4.1, the fermion propagator has
poles at p? = m?. Feynman’s ie trick ensures that the integral on pg is well-defined. The
proper contour integral on the complex plane of py (or equivalently the Wick rotation of
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time axis) would pick up an imaginary number 4, thus making the quadratically divergent
integral (4.9) imaginary valued. Therefore, even if there is no i in the original four-fermion
interaction (4.6), the imaginary number shows up explicitly in the Higgs Yukawa coupling
term (4.8).

It’s well know that the calculations of QFT are plagued by divergent integrals, which
need to be regularized at the intermediate stage. After renormalization, a finite and regu-
larization scheme-independent result can be obtained for the renormalizable theories. The
top condensation model’s four-fermion interaction is nonrenormalizable in the conventional
sense, since the four-fermion interaction is a dimension six operator. That said, as men-
tioned earlier, we subscribe to the general notion of effective field theory, according to
which the seemingly nonrenormalizable models, including quantum gravity, are nonetheless
manageable renormalization-wise and predictive quantum effect-wise, insofar as there is a
separation of low energy physics from the high energy quantum perturbations.32»33:34

Historically the NJL model has been presented with the energy cutoff schemes,® which
usually break the Lorentz invariance. In the presence of a cutoff scale, the four-fermion in-
teraction coupling constant has to be fine-tuned in order to establish the hierarchy between
the putative large cutoff scale and the much smaller fermion mass scale. Thus the natural-
ness problem seems to haunt us again in the Lorentz symmetry-violating cutoff approach.

However, there is a Lorentz symmetry-preserving implicit regularization ansatz®4:85,86
(IR) where the divergent parts of Feynman integrals are isolated in a few Lorentz-invariant
primitive integrals that are independent of external momentum, whereas the remaining
external momentum-dependent integrals are convergent. Because the convergent integrals
are separated from the divergent ones, the finite parts can be integrated free from the effects
of regularization.

In our earlier paper,'” we applied the IR technique to the NJL-type model. Granted
that the divergent primitive integrals are independent of external momentum, they can
be treated as finite quantities as a result of unspecified (implicit) regularization. The
central tenet of the IR approach is that no attempt whatsoever shall be made to calculate
these divergent primitive integrals via any explicit regularization. The external momentum-
independent divergent primitive integrals are regarded as free parameters of the model that
shall be determined by comparing with measurable quantities, such as the emergent fermion
mass, the composite boson mass, and the vacuum energy.

Given that no explicit regularization is required in the calculation, the traditional notion
of cutoff scale and fine-tuned coupling constant are of no relevance in the IR approach. The
smallness of the symmetry breaking scale of the fermion mass m is an a priori assumption.
Once a small scale of m is settled upon at the lower order of approximation, it’s ensured
that the smallness of m is preserved against possible higher order disturbances due to the
protection from the weakly broken axial U4(1) symmetry, which is in accordance with the
technical naturalness principle.

Before preceding to examine the bosonic bound state properties of the composite Higgs
model, we would like to mention some open questions. One question is how to properly
calculate the vacuum energy shift due to the quantum condensation. And the other is the
long-standing issue of the momentum routing ambiguity associated with the fermion bubble
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diagram.®” With the goal of tackling this issues, we propose an improved version of the IR
methodology by adding two supplementary rules below.'”

Supplementary rule No. 1: The original IR approach sets forth the rule that if an
external momentum-independent primitive divergent integral A such as eq. (4.9) is isolated,
at the final stage of calculation it should be replaced with a finite renormalized value so
that it can be compared with the measurable quantities. We denote this renormalization
procedure (R procedure) as

A — <A>p. (4.10)
Rule No. 1 stipulates that if A and B are related to the same physical process, then
AB — < AB>p#< A>r< B >p. (4.11)

In other words, the relationship involving the multiplication of divergent integrals such as
< AB >r=< A >r< B >p shall be avoided if A and B are related to the same physical
process. The value of < AB >p should be treated as independent of < A > or < B >pg.
The R procedure can be applied recursively to the multiplication of two primitive divergent
integrals only if they are linked to independent physical processes, such as two independent
condensations.

Supplementary rule No. 2: When a Feynman integral is convergent or logarithmically
divergent, the integral is independent of the momentum routing parameter, because the
parameter can be shifted away by a translation of the integration variable. When it comes
to integrals that are more than logarithmically divergent, one should proceed with caution
because the seemingly harmless momentum shifting changes the integral values. For exam-
ple, the quadratically divergent integral corresponding to the fermion bubble diagram?-87
in the scalar (Higgs boson) channel is

4
() = [ 35 (S + (- S - aa). (112)
where S is the fermion propagator and « is an arbitrary parameter not determined by the
theory.®” Unlike the case of convergent or logarithmically divergent integrals, the seemingly
innocuous momentum shifting changes the integral values. Rule No. 2 stipulates that for
quadratically (or higher order) divergent integrals with momentum routing ambiguities,
the momentum routing parameter « shall be set at the symmetrical value. For the above
instance, the momentum routing parameter should be set at a = %, so that (1 —a)g = aq.
Note that a related ambiguity problem is the triangle diagrams of the Adler-Bell-Jackiw
(ABJ) anomaly,®®8% where the integrals are linearly divergent. The ambiguity is fixed by
enforcing the vector Ward identity, at the expense of the axial Ward identity.

With these two supplementary rules set, let’s investigate the bosonic bound state prop-
erties of the composite Higgs model. To this end, we go beyond the zeroth-order bilocal-
source approximation and turn to the first-order approximation of the Clifford functional
SD equation.!” The collective mode of the composite Higgs boson can be determined via the
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pole of the composite boson propagator (a.k.a. the fermion-antifermion channel T-matrix)
in the scalar channel

Ds(p) ~ (4.13)

g -1 Hs (p) 7
where II4(p) is the bubble function (4.12). The composite boson propagators Ds(p) is the
re-summation of the infinite order chain of the fermion bubble diagrams. Similar leading
order calculation in the context of contact interactions goes by various names such as the
random-phase approximation, ladder approximation, Bethe-Salpeter T-matrix equation,
and 1/N expansion.

After setting the momentum routing parameter in eq. (4.12) to a = %, the pole (i.e.
the Higgs boson mass) of the composite boson propagator D,(p) can be calculated as'”

S —- (4.14)

mp =
V1+IA|
where m is the dynamically generated fermion mass and A is specified by the renormalized
logarithmically divergent integral

d! 1
A~ = 64r? < / (27:)’4 7 TR (4.15)
Because of the /1 + |A| factor, the composite Higgs boson mass my, is less than 2m, which
deviates from the usual first-order approximation prediction my = 2m.™ In other words,
2m serves as an upper bound of the Higgs boson mass, which implies that the Higgs boson
mass is also protected by the weakly broken axial symmetry, because the Higgs boson
mass and the fermion mass are simultaneously generated by the same DSB mechanism.
And additionally, at the electroweak scale there is no elementary Higgs mass term to be
modified by any higher order quantum perturbation from external sources. Therefore, the
composite Higgs mass is naturally small.

When it comes to the top quark condensation model, one phenomenological problem
is related to the prediction of the Higgs-top mass ratio. Since the 2012 discovery,®®59 the
Higgs boson is known to be lighter than the top quark. According to the traditional way of
Higgs mass calculation, the top condensation model appears to fail since it gives too heavy
Higgs mass compared with the top quark mass. However, in our calculation the Higgs mass
and the top mass relation involves an extra primitive divergent integral (4.15). According
to the central rule of the IR approach, the value of such integral should not be explicitly
calculated. Rather, it is determined by the experimental measurements. Therefore, the
observed Higgs-top mass ratio does not falsify the top condensation model. Instead, the
ratio fixes the dimensionless parameter |A| of the model. Based on the measured top quark
mass (173Gev) and Higgs mass (125Gev), we arrive at an estimation of |A| = 6.66 from
eq. (4.14).

In the same vein as the composite electroweak Higgs field, the Majorana Higgs field
¢ can be regarded as a composite field representing the condensation of a right-handed

neutrino-antineutrino pair'6

Top ~ IﬂR(Irgrg)llR. (4.16)
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Similarly, the ® singlets can be represented by the condensation of fermion-antifermion
double pairs'® such as

ot ~ bRERTGS, (4.17)
®p1 ~ LA G RV uVeR- (4.18)

The quantum condensation details of the ¢p; and ® composite fields can be worked out
along the lines of the aforementioned composite electroweak Higgs field. Note that there
is no imaginary number ¢ in the definition of the effective ® field, since even numbers of 4
(two fermion-antifermion pairs) cancel out.

In summary, the Higgs mass could be naturally small and we have demystified the
imaginary number ¢ in the Yukawa/mass term as a vestige of the quantum condensation.
Emboldened by these achievements, one might wonder whether we can also surmount the
vacuum energy’s naturalness problem and decipher the genesis of the imaginary number ¢
in the fermion kinetic Lagrangian term. That is the subject of the next subsection.

4.3 Composite vierbein and the cosmological constant problem

Quantum fluctuations of the vacuum contribute to the cosmological constant A. The calcu-
lated vacuum energy is extremely large compared with the commonly accepted estimation
of A.9%9L,92,93 The vacuum energy is 10'2° times too large according to the zero-point
energy calculation, or 105 times too large according to the electroweak symmetry breaking
calculation. The cosmological constant problem is perceived as the most severe naturalness
problem in physics.?* 95,96

Inspired by the composite Higgs model investigated in Section 4.2, we turn to the com-

posite vierbein field?798,99,100,101,102,103

as a possible solution to the cosmological constant
problem. Paralleling the dynamical symmetry breaking (DSB) mechanism of the composite
Higgs approach, the vierbein field € can be considered as an effective representation of the

fermion-antifermion condensation
ié ~ E = di, (4.19)

where d is the exterior derivative, hence E,, = w&,ﬂ/;. Unlike the previous approaches to the
composite vierbein, the Clifford-valued composite vierbein field above is not restricted to
the vector space ,, albeit its VEV will congeal around ~,. This is analogous to the Higgs
mechanism where the Higgs VEV settles around the limited scalar subspace ¢g out of the
full Higgs doublet space of ¢g+ ¢1121'3 + ¢ol'sT'1 + ¢31'1's. We will delve into more details
about the extended vierbein space in Section 4.4.

The composite vierbein field is to be compared with a generalized version of the com-
posite Higgs field

ip ~ H =Ip. (4.20)

For simplicity reasons, we consider a generic spinor field 1 with both chirality and ignore
gauge field coupling. A more accurate definition of the chiral composite vierbein fields will
be provided in Section 4.4 when we examine the gauge-covariant chiral vierbeins.
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There are a couple of similarities and dissimilarities between spinor the bilinears H
and E. Given that there is no (...) operation in the definition of H and E, both H
and E take values in the entire Clifford algebraic space. The Higgs spinor bilinear H is
a O-form, whereas the vierbein spinor bilinear £ = E,dx* is a 1-form which conforms
with fact that the vierbein field é is a 1-form. The Higgs spinor bilinear H acquires a
Clifford-even VEV, which implies that the Higgs field ¢ describes the condensation of an
opposite-handed fermion-antifermion pair (¢rI¢g or ¥rIr). On the other hand, the
vierbein spinor bilinear E acquires Clifford-odd VEVs valued in {~,}, which suggests that
the vierbein field é describes the condensation of a like-handed fermion-antifermion pair
(Yrdr, or Yrdir).

In the above H and E definitions, we follow the tradition'? 194 of regarding the spinor
field v as dimensionless, a.k.a. bare spinor field. Consequently, the Higgs spinor bilinear
H is also dimensionless. The vierbein spinor bilinear F,, = wauzﬁ is endowed with mass
dimension one from the partial derivative. As such, a proper differential form would remain
dimensionless. For example, for £' = E,dx* the mass dimension one of E, is canceled out
by the mass dimension minus one of dz*. The same logic applies to any 1-form gauge field
A= Aud:c", provided that Au is assigned mass dimension one. If we construct a Lagrangian
term using the proper differential forms, the mass dimension assignment convention implies
that the coefficient in front of the Lagrangian term should be of mass dimension zero. The
conventional mass dimensions of parameters can be recovered when we re-scale the bare
spinor field which will be discussed later in this subsection.

Leveraging the spinor bilinears ¥ and H, we can write down the diffeomorphism-
invariant Lagrangian terms of the pre-condensation primordial world

Lrermionscc ~ (IENENENE) (4.21a)

Lyukawarcc ~ (IEANENENEH?) (4.21Db)
(IENENF)IENE A F))

Ly ang—Mills ™~ TENENENE , (4.21c)

Léravity ~ <IE NE A R> , (4.21d)

where F' stands for any Yang-Mills-type gauge field curvature 2-form and R is the spin
connection curvature 2-form (2.70). Note that Ly ykewercco could have some variations,
such as (IE AN EANE N HEH) which corresponds to the top quark-type Yukawa interaction
term (4.6).

Diffeomorphism-invariance is guaranteed since all the Lagrangian terms are 4-forms on
the 4-dimensional space-time manifold. As mentioned earlier, the coefficients in front of
the Lagrangian terms (for brevity sake not explicitly written out) are all of mass dimension
zero. And we further assume that these dimensionless coeflicients should of order O(1). In
other words, there shouldn’t be any unnaturally small or large coefficients.

It’s worth mentioning that there are even numbers of fermion-antifermion pairs in
each Lagrangian term. It’s driven by the two imperatives of being super-real and having
no imaginary number ¢ in the pre-condensation Lagrangian. Note that there is no bare
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cosmological constant term, since diffeomorphism-invariance demands that the Lagrangian
terms must be 4-forms and the available gauge-invariant differential forms are either the
fermion field-related E spinor bilinear 1-form or the gauge field-related curvature 2-forms.
The fermion Lpermiontcco and the Yukawa Ly ykewercc Lagrangian terms are com-
prised of 8 and 12 Grassmann-odd fermion fields respectively. This is very different from
the typical fermion Lagrangian. Upon quantum condensation, they will give rise to the
conventional fermion kinetic and mass terms as well as the effective cosmological constant
term. More specifically, when the three E spinor bilinears in Lpermiontco are replaced
by their condensation values, the Lagrangian term Lpermion+cc is left with one E spinor
bilinear and is turned into the effective fermion kinetic term. Similarly, when the four £
spinor bilinears and one H spinor bilinear in Lyykewarcc are replaced by their conden-
sation values, the Lagrangian term Ly ,kawetcco 18 left with one H spinor bilinear and is
turned into the effective Dirac mass term. Lastly, when all spinor bilinears in £ permion+cc
and Ly ykawarcc are replaced by their condensation values, these two Lagrangian terms are
left with no spinor bilinear and are turned into the effective cosmological constant term.
Upon quantum condensation, the diffeomorphism-invariance is broken and the effective
fermion propagator S(p) assumes the form
S(p) = —2—,
p—mo

where mg is the emergent mass arising from the Ly ykewercc term, and the parameter ag

(4.22)

comes from the Lrermion+cc term. The parameter ag Lis of mass dimension three, since
it’s related to the condensations of three mass dimension-one £, spinor bilinears. The
parameters ag and mg can be determined self-consistently via their respective mean-field
“gap” equations in a similar fashion as the NJL-type model.”17

Leveraging the Clifford generating functional Z[n] (eq. (4.4)), the mean-field VEVs of
E, and H can be calculated as

d4p p2
E, ~ 1M, = —_ 4.23
m 1LV aOVu/ (27‘(‘)4 p2 — m(g)a ( a)
d'p  mg
H ~ vy = ag/, (4.23b)
)t 12—l

where the VEV magnitudes My and vg are of mass dimension one and zero, respectively.
The VEV of H takes value in the Clifford-scalar space, while the VEV of E,, takes value in
the Clifford-vector space {7,} as expected for an effective vierbein field. We can see that
the above primitive quantum loop integrals for F,, and H are quartically and quadratically
divergent, respectively. According to the contour integral rule on the complex plane of pg,
these integrals pick up an imaginary number ¢ factor. The VEV magnitudes My and vg are
subject to the renormalization procedure < --- >p as delineated in Section 4.2.

As we know, E, is of mass dimension one. To be consistent with the conventional
formalism of the dimensionless vierbein, the correspondence between the spinor bilinear £,
and the dimensionless vierbein €, should be

E, ~ iMyé,, (4.24)
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which means é, = v, according to (4.23a), as expected for the flat space-time. The above
calculation of VEVs are based on the flat space-time fermion propagator S(p) (4.22). In
the following discussion, we will assume that the assignment of E, ~ iMgé, is applicable
for the general cases of curved space-time as well.

After replacement of E,, with iMyé, and H with 7vg and retaining the lowest order
terms in the non-condensated E and H, the effective Lagrangian terms take the form

L Fermion—Kinetic ~1 < M3 >p (IENéNENE), (4.25a)
L Fermion—Mass ~ 1 < Mgvg >p (IENENENEH), (4.25b)
i Mg <(IéAéAF)(IéAéAF)> .
Yang=Mills ™ E S R (TENENENE) 7 '
Léravity ~< M2 > <Ié AENA R> : (4.25d)
LOC—Fermion ~< Mg >p (IENENENE), (4.25€)
LOC—yukawa ~< MivE >r (IENENENE), (4.25f)

where the Lpermion—Kinetic and LoC—Fermion terms are derived from Lpermiont+cc, while
the Lrermion—Mass and Loo—yukawa terms are derived from Ly ykqwatrco-

Now we can trace the origin of the imaginary number ¢ in the “classical” Lagrangian
terms. The imaginary number 7 stems from the primitive divergent integrals (4.23) related
to the quantum condensations of the £, and H spinor bilinears. If there are odd numbers
of condensations, there is an ¢ in the coefficient of the effective “classical” Lagrangian, such
as the fermion kinetic (4.25a) and mass (4.25b) terms. On the other hand, if there are
even numbers of condensations, there is no ¢ in the coefficient of the effective “classical”
Lagrangian since 7 squares to —1, such as the Yang-Mills (4.25c), gravity (4.25d), and
cosmological constant (4.25e) (4.25f) terms.

We can verify that the fermion kinetic (4.25a) and mass (4.25b) terms conform with the
corresponding terms specified in the Lagrangian of the world in Section 2.4 (see eq. (2.77)
and (2.80)). The only difference is in the coefficients, since we have adopted the dimension-
less spinor field in this subsection. To map to the traditional mass dimension 3/2 spinor
field (a.k.a. dressed spinor field) in Section 2.4, we can leverage the field renormalization
relationship

wdressed = < Mg’ >R wbarev (426)

where 1p.. stands for the dimensionless bare spinor field and g esseq sStands for the mass
dimension 3/2 dressed spinor field. With the substitution of ¥pgre With Ygressed, We can
see that the fermion kinetic term (4.25a) regains the conventional form (2.77) with the
coefficient normalized to one. The same substitution in the fermion mass (4.25b) term
implies that the fermion mass for the dressed spinor field is

< Mguo >

. 4.27
< M3 >p (4.27)

mo
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For the effective Yang-Mills-type Lagrangian (4.25¢), the < Mg >g factors from the
numerator and the denominator cancel out. As we mentioned earlier, the dimensionless
coefficient in front of the original Yang-Mills-type Lagrangian term (4.21c¢) is assumed to be
of order O(1). Therefore we expect that the effective Yang-Mills-type Lagrangian coupling
strength should not be far from being of order O(1) as well. As a verification, the QED’s
fine-structure constant is a &~ 1/137, which meets our expectation.

For the effective gravity Lagrangian (4.25d), the coefficient < M3 >pg is of mass di-
mension two and can be identified with the Planck mass M,

< Mg >p~ M. (4.28)

The effective cosmological constant A is of mass-dimension two. It is defined by the
ratio between the Lcoc—Fermion/LoC—Yukawa a0d LGravity Lagrangian coefficients

< Mg >r+ < Mjvi >r _ <My >r+ < Mjvj >g

A
< M2 >p Mgl ’

(4.29)

where < Mg >p is the vacuum energy contribution from the fermion Lagrangian, and
< MjvE >p is the Higgs ground state energy contribution from the Yukawa Lagrangian.

According to the conventional wisdom, each My factor in the above equations can
be identified with Planck mass M. Resultantly, the effective fermion mass mg (4.27) is
estimated as

mg ~ ’UoMpl. (4.30)

Using the top quark mass as an example, v is calculated as of order vg ~ 10717, Similarly,
A is estimated as of order

A~ (L+0)ME ~ M3, (4.31)

which is astronomically larger than the commonly accepted estimation of A ~ 10_120M§1.
However, there is a loophole in the above reasoning. According to the supplementary

rule No. 1 of the implicit regularization set forth in Section 4.2, the renormalization proce-

dure can not be applied recursively to the multiplication of primitive divergent integrals

<My >p#<M§>p < M§ >p~ M. (4.32)

As such, < Mé >p should be deemed as a parameter completely decoupled from the scale
of Mé‘l. The magnitudes of these two could differ vastly from each other. By the same
token, each of the renormalized primitive divergent integrals < Mg >R, < Mévo >R, and
< Mgvg >r should be regarded as an individual parameter which can only be determined
by comparing with measurable results.

Therefore, eq. (4.29) can not be used to predict the size of the cosmological constant.
Rather, one should use the measured magnitude of A to impute that < M§ >r + <
Mgvg > ~ 10_120M§1. Hence the cosmological constant problem can be evaded. It’s also
worth mentioning that there are other contributions to the cosmological constant, such as
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the QCD-induced and the Majorana Higgs-induced phase transitions. In principal, these
phase transitions can be treated in a similar way as delineated above. Note that the
In the last part of this subsection, we turn our attention to the possible experimental
evidences of the composite vierbein. When we write out the effective Lagrangian (4.25),
we only retain the lowest order terms of the non-condensated E/H spinor bilinears, under
the assumption that the other terms are negligible at low energies. At an elevated energy
level, additional terms could become relevant. As an example, let’s examine the fermion
Lagrangian term with two non-condensated E spinor bilinears. Therefore there are four
remaining spinor fields in the effective Lagrangian
< ME>gr
(< Mg >pr)?

where 1 # v and 9 denotes the dressed spinor field with the field renormalization (4.26).

(Y YO ) (4.33)

We specifically write down the Lagrangian term in flat space-time to highlight the fact that
the partial derivatives 9, and 0, are orthogonal as opposed to being aligned, which is very
different from a typical scalar field Lagrangian that involves two partial derivatives.

The Lagrangian term could be considered as two perpendicular fermion currents inter-
acting with each other. If such an event is detected experimentally, it would be a telltale sign
that one of the composite é fields in the effective fermion kenetic Lagrangian term (4.25a) is
broken down into the underlying fermion fields. In other words, such an event exposes the
fermion compositeness of the space-time metric. The coefficient of the above four-fermion
term is of mass dimension —4. It implies an energy scale

1 1
M M ' o % ’ (4.34)
comp < Mg >R ~ Mpl ) :

above which the space-time fabric disintegrates into fermionic smithereens. Note that we
have no theoretical recourse to pinpoint the exact compositeness scale Mcomp, since it
involves the primitive divergent integral < Mg >pr which could only be ascertained via
empirical means as per the IR mantra. Of particular interest is the fact that the compos-
iteness scale Moy is different from the Planck scale M. They are two unrelated scales.
The compositeness scale is the scale above which there could be measurable evidences of
the composite vierbeins broken down into the fermionic components, whereas the Planck
scale is the scale at which higher-order gravitational Lagrangian terms become relevant.
Therefore, if Mcomp < Mp1, we could have a chance of probing the so-called Planck-scale
physics at an energy level below the Planck scale.

4.4 Extended symmetries and gravi-weak interaction

In the case of the composite Higgs fields, we have benefited from various clues guiding
us towards the conclusion that there are three specific fermions driving the electroweak
symmetry breaking process, namely, the top quark, tau neutrino, and tau lepton condensa-
tions.'® When it comes to the composite vierbeins, due to lack of evidences we are not able
to speculate which of the standard model fermions are involved in the vierbein-related con-
densations. Nonetheless, we can still make progress by investigating the general symmetry
properties of the composite vierbeins.
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Considering the gauge transformation characteristics of the standard model fermions,
we cast the effective vierbeins into three categories

iep, ~ B =¢rDryyp, (4.35)
1€ry ~ By = YrRuDRY Rus (4.36)
i€rd ~ Eq = YraDRY R4, (4.37)

where Dy and Dp are the left- and right-handed gauge-covariant derivatives, ¢y, is any
left-handed doublet such as uy, + dr, ¥g, is any right-handed up-type singlet such as up,
and ¥pg is any right-handed down-type singlet such as dg.

Given the freedom afforded by the above chiral vierbeins unconstrained by the Clifford
subspace {7,}, the gauge symmetry groups (2.48) we studied earlier can be expanded to

Spin(l,B)L X Spin(l,B)R X Spi’rl(l,?))WL X Spi’rl(l, 1)WR X U(l)WR X SU(?))C X U(l)B,L,
(4.38)

where Spin(1,3)r, and Spin(1l,3)r are the left- and right-handed Lorentz gauge groups
respectively. The Spin(1,3)w group generators are

Fol's, I'sly, Thl'g, Tol'y, Tol'e, Tol's, (4.39)
where I'g = 717273 and the Spin(1, 1) g group generator is
Tols. (4.40)

Note that the Spin(1,3)w group comprises the regular weak group SU(2)w 1 generated
by {I';I';} as well as the weak-boosts generated by {I'oI';}. These are the counterparts of
the spacial rotations generated by {v;v;} and the Lorentz boosts generated by {yov;}. The
weak-boost is not a group on its own, it’s rather the coset Spin(1,3)wr/SU(2)wr. Given
the relationships such as T'oI's = IT1T'y, we also call {T'gI";} the pseudo-weak generators.
Henceforth, we will use the terms weak-boost and pseudo-weak interchangeably.
The vierbeins should transform as vectors under the gauge transformations of Spin(1, 3)r x

Spin(1,3)r x Spin(1,3)wr x Spin(1,1)wr. Consequently, the left-handed é7, ought to be
valued in the extended Clifford algebraic subspace spanned by the 4 * 4 multivectors

Yas  Yal'ol'i, (4.41)

where ¢ = 0,1,2,3 and ¢ = 1,2,3. The right-handed ép,, is valued in the Clifford algebraic
subspace spanned by the 4 multivectors

PYCLP+7 (442)

while the right-handed égrg is valued in the Clifford algebraic subspace spanned by the 4
multivectors

Yo P-, (4.43)
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where Py is the projection operator (2.10).
Alternatively, ér may take values in the complimentary Clifford algebraic subspace
spanned by the 4 % 4 multivectors

Yal,  Yal'iL;. (4.44)

As such, ér, could develop VEVs valued in the pseudo-vector subspace {7,[}, instead of
the regular vector subspace {7,}. The same logic goes for ég, and érq. Nervelessness,
our discussion in this paper is concentrated on the regular vector-type ér., €ry, and égq
vierbeins.

With the extended symmetries, the chiral gauge-covariant derivatives of the left- and
right-handed spinor fields 97, /r(z) are defined by

Dpibp, = (d+dp + Wi, + W)+ ¢(G + Apy), (4.45)
Drtor = (d+&p + Wr+ Wr)Ur + ¥r(G + Apyp), (4.46)

where the left-hand weak SU(2)w, gauge field Wy, the right-hand weak U(1)wr gauge
field W, the color SU(3)¢ gauge field G, and the BL U(1)5_1, gauge field Agy, follow the
same definition as specified previously (2.62). The newly introduced gauge fields are the
left- and right-handed spin connections of the Spin(1,3); and Spin(1,3)r Lorentz gauge

groups
b = S s 44
wr, = 4wLM'yaybdx , (4.47)
R 1
WR = Zw?%z")’a’}/bd[ﬂ“, (448)

the pseudo-weak portion of the extended left-handed weak gauge field
- 1
W = §(W£1MF0F1 + W7 ol's + W, Tol's)dat, (4.49)
and the pseudo-weak portion of the extended right-handed weak gauge field

. 1
W'p = 5W;;?HForg,d:z:“. (4.50)
The combination of the regular weak WL and the pseudo-weak W’ 1, constitutes the overall
gauge fields of Spin(1,3)wr

Wlso—I, = WL + W/L. (4.51)

We call wyso—1, the isospin connection since it is in many ways analogous to the spin connec-
tion of the Lorentz group. The chiral spin connections Wy, and wg are crucial in maintaining
the chiral Lorentz gauge covariance of Dy, and Drtr, which are leveraged in conjunction
with the chiral vierbeins to ensure the chiral Lorentz gauge invariance of the Lagrangian
terms.
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The gauge interaction curvature 2-forms for @y, wr, W’'r, and W'g are expressed as

4.52
4.53
4.54
4.55

Ry =dop + &p Aoy,

Rp = diog + O A g,

Fywrp =dW', + WL AW + WL AWy,
Fyrp = dW'g,

(4.52)
(4.53)
(4.54)
(4.55)

where the outer product between gauge fields vanishes for the abelian interaction Fyg.

The regular left-handed weak force is appended with an additional cross product term of
W',

FWL ZdWL-I-WL/\WL-i-W/L/\W/L. (4.56)

The combination of the weak FW 1, and the pseudo-weak FW/ 1, constitutes the overall gauge
curvature 2-form of the weak Spin(1,3)w,

Riso1 = Fwr + Fyrr. (4.57)

We call ]:ZISO, 1, the isospin connection curvature 2-form (or the extended weak force) in
parallel with the spin connection curvature 2-form Ry, of the Lorentz group.

The local gauge- and diffeomorphism-invariant Lagrangian terms of the world are sim-
ilar to the ones we inspected earlier in Section 2.4, provided that the chirality and isospin
conjugations are taken care of. The following are some examples

Lpermion ~ i {Ier, Négp Nér AN D) (4.58a)

+ i (Iépg N ey N éra N VRuD RV RY) (4.58b)

+ i{Iépy N era N éru N YraDRVRA) | (4.58¢)

LGravity—Left ~ (Lér N eér A RL> ; (4.58d)

[’Gr(wity—Right ~

N

I(égu A ERa + éra A éru) A RR> , (4.58¢)
IéL/\éL/\éL/\éL>, (458f)
IéRu/\éRd/\éRu/\éRd>, (4.58g)

Loo—Left ~

o~ o~

Lcc—Right ~

where the alternation between ég, and éprg is because of the properties ép, = P_ér, P+
and éRd = P+éRdP_.

In view of the extended symmetries (4.38) of the Lagrangian of the world, let’s re-
visit the diffeomorphism and Lorentz gauge symmetry breaking triggered by the nonzero
VEV of the vierbein. It can be checked that the flat space-time VEV (3.5) of the vier-
bein violates the gauge symmetries Spin(1,3)r x Spin(1,3)r x Spin(1,1)wr and the
coset Spin(1,3)wr/SU(2)wr. The remaining gauge symmetries are SU(3)c x SU(2)w 1, X
U(1)wr x U(1)p—r, plus the residual global Lorentz symmetry.

Note that the VEV magnitudes and orientations of the three vierbeins ér, érq, and
éRrq may not be aligned with each other. That said, we have the freedom to re-scale and
re-orientate (via global Lorentz rotations) the corresponding fermions, so that the three
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vierbeins take the same flat space-time VEV everywhere all at once. Hence it is assured that
all fermions, regardless of their chirality and isospin stripes, share the universal Minkowski
flat space time metric (3.5).

However, there are some factors that can not be re-scaled away. These are the differ-
ences between the coefficients of the chiral gravity (4.58d) (4.58e) Lagrangian terms and
the differences between the coefficients of the chiral cosmological constant (4.58f) (4.58g)
Lagrangian terms. As a result, the left- and right-handed fermions experience different
strengths of gravitational interactions. Under normal conditions, this is not a problem
since the left- and right-handed matters are usually commensurate with each other. Thus
we can’t really discern which chiral gravity is stronger since we routinely observe the col-
lective gravitational interaction governed by a combined effective gravitational constant.

The only exception is when there is imbalance between the left- and right-handed
matters. For example, let’s assume that the left-handed gravitational constant is larger
than the right-handed counterpart. We could observe an unexplainable drop of gravitational
force compared with expectation if there is an excess of right-handed matter. In this regard,
we would like to draw attention to the right-handed neutrinos, since they are endowed with
extremely large Majorana masses. If there is a large concentration of the right-handed
neutrinos in certain parts of the universe, the discrepancies between the chiral gravitational
forces would possibly be revealed.

In the last part of this subsection, we turn to a novel kind of Lagrangian terms

EGravity—Weak—Left ~ <IéL A éL A RISO—L> ; (4593)

Lolst—Weak—Left ~ <éL Ner N sto—L> ; (4.59b)

where Rys_p is the left-handed isospin connection curvature 2-form (4.57). As indicated
by the Lagrangian names, these terms bear close resemblance to the regular gravity (2.78)
and Holst (2.83) Lagrangian terms. We mentioned earlier that under normal circumstances
a Lagrangian term with a single Yang-Mills field curvature 2-form is identically zero. It’s
the extended symmetries (4.38) and the extended vierbein space (4.41) that make the above
single-curvature terms possible.

Let’s derive the field equations for the left-handed gravity Lagrangian (4.58d) and the
left-handed gravi-weak Lagrangian (4.59a) by varying with ér,, @y, and @yso—1, respectively.
The resultant extended Einstein-Cartan equations read (for brevity sake we drop the L

subscripts)
1 . . . ,
_— 64+ ¢ I wNé+é so)l =T, 4.
87TG(R/\6+6/\R) +87TG130(R1 Aé+éN Rrg) (4.60)
1 . .
—(The—enT)I =S 4.61
87TG( e—enT) , (4.61)

1 . .

—  (Trey A é — 6 ATro)] = Sreo, 4.62
87TG150( Tso N € — €N Trsp) I (4.62)

where G is the regular gravitational constant, Grs, is the iso-gravitation constant for the
gravi-weak Lagrangian (4.59a), T is the regular energy-momentum current 3-form, S is the
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regular spin current 3-form, Sy, is the isospin current 3-form, T is the regular torsion
2-form (3.3), and T1so is the iso-torsion 2-form

Tlso = dé+wlso /\é‘f'é/\a)lso- (463)

Compared with the regular Einstein-Cartan equations, we have an additional equation for
the iso-torsion T7s. Given that the weak gauge field W, (as part of the isospin connection
Wrso—1) is susceptible to the SSB effects from the electroweak Higgs mechanism, we expect
that the isospin connection wys,—y, would have a different kind of impact on gravity than
the regular spin connection @ry,.

This sort of modification to the gravitational equations could have cosmological implica-
tions. As we know, the concordance ACDM cosmological model is besieged with a multitude

of discordances, 0106, 107 108,109,110 /gy

with the most acute one being the Hubble tension.
ious modified gravity models'' 12113 hayve been proposed to remediate the shortcomings
of the ACDM model. Some noteworthy modified gravity theories invoke either a character-
istic Hubble scale ho'*'7 or a characteristic acceleration scale ag,''* below which gravity
changes behavior and departs from Einstein’s theory of general relativity. We hope that the
gravi-weak interplay delineated above could possibly shed some light on these characteristic

scales.

5 Conclusions

The naturalness problems have been front and center in physics researches.%495,96,63,64,65

The cosmological constant problem is arguably the most severe naturalness problem in
physics, with the runner-up being the Higgs mass/electroweak hierarchy problem. With
the goal of addressing the naturalness problems, we propose that each and every symmetry-
breaking bosonic field, such as the vierbein field or the Higgs field, is an effective represen-
tation of a unique multi-fermion condensation via the dynamical symmetry breaking (DSB)
mechanism.

Our research is originated from drawing an unappreciated distinction between two
imaginary numbers. The first one is the bona fide imaginary number ¢ which governs
the quantum world. The other one is the unit pseudoscalar I masquerading as imaginary
number which shows up in the definition of spinors, gauge fields, and their transformations.
In the Clifford algebra approach, we can manage to stay away from the genuine imaginary
number ¢ in classical field equations. This is demonstrated by the Clifford algebraic Dirac
equation (3.44), where the conventional 7 is replaced by the pseudoscalar I as long as we
stick to the regime of applying the surrogate I to the right side of the algebraic spinor.

However, when it comes to the fermion Lagrangian, the imaginary number ¢ is irre-
placeable in both the kinetic and mass terms. The conundrum of the gquantum i enmeshed
in the classical Lagrangian indicates that the regular classical Lagrangian terms might
be of quantum origin. We propound that the imaginary number in the fermion kinetic
and mass terms stems from the quantum loop integrals related to odd numbers of fermion-
antifermion condensations. On the other hand, if there are even fermion-antifermion pairs
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involved in the condensations, there is no ¢ in the coefficient of the Lagrangian term, such
as the Yang-Mills, gravity, and cosmological constant terms.

We would like to underscore that there is no fixed mass/energy scale in the pre-
symmetry breaking world, since all the original Lagrangian coefficients are dimensionless.
In other words, the pre-condensation Lagrangian terms are scale-invariant. All the mass
scales of the universe, including the Planck scale, are emergent phenomena driven by the
quantum condensations via the DSB mechanism. This pan-emergence paradigm of mass
scales parallels Landau’s symmetry breaking scheme in condensed matter physics character-
ized by the nonzero order parameters. One exception to this rule might be the QCD scale
Agcp possibly generated by a topological order in the quark-gluon plasma and nucleons.'®

Let’s take stock of the various symmetry-breaking quantum condensations examined
in this paper. The first category of quantum condensation involves a fermion-antifermion
pair of the same chirality, with an extra gauge-covariant derivative sandwiched in between.
The effective representation of this sort of condensation corresponds to the vierbein field é
in the Lorentz gauge theory of gravity. In the composite vierbein scenario, fermions play
the dual role of interacting with the space-time metric as well as being the metric. The
specific standard model fermion participants in the condensation are yet to be identified.
The symmetries of the model encompass an extended weak group Spin(1,3)wr D SU(2)w L
allowed by the beyond-vector vierbein space. A gravi-weak interaction is thus permitted
between the vierbein and the weak gauge field.

The local Lorentz and pseudo-weak symmetries are spontaneously broken when the
vierbeins acquire nonzero VEVs via the DSB mechanism. One interesting implication is
that there are two different energy scales. One is the compositeness scale above which
there are measurable evidences of the composite vierbeins broken down into the fermionic
components, whereas the other is the Planck scale at which the higher-order gravitational
Lagrangian terms become relevant in quantum gravity. The second implication is that the
coefficients of the effective cosmological constant and gravity Lagrangian terms are dictated
by the divergent loop integrals of the quantum condensations. The cosmological constant
problem can be evaded if we take abundant precaution in the renormalization procedure
that entails multiplications of divergent integrals.

The second category of quantum condensation involves a neutrino-antineutrino pair
with the same right-handed chirality. The effective description of this sort of condensation
is the Majorana Higgs field ¢pr. It is a Higgs-like field whose VEV generates mass for the
7' gauge field as well as the Majorana mass for the right-handed neutrino. The Majorana
mass is capable of directly mixing neutrinos from different generations, which is evidenced
in the observation of neutrino oscillations.?®:2%3% The Clifford algebra C1(0, 6) allows for a
weaker form of charge conjugation which does not invoke particle-antiparticle interchange.
Consequently, the Clifford algebraic Majorana mass conserves lepton number, which is
different from the traditional Majorana mass term. This might be the underlying reason
that no evidence has ever been found for the neutrinoless double beta decay.3%40

The third category of quantum condensation involves a fermion-antifermion pair with
opposite chirality. Belonging to this category, the standard model Higgs field is an effective
description of the top quark condensation ¢;, while the other two yet-to-be-detected com-

~ 52—



posite Higgs fields ¢, and ¢, correspond to the tau neutrino and tau lepton condensations.
The VEVs of these three Higgs fields generate masses for the Z° /W gauge fields as well as
the Dirac masses for the standard model fermions. The composite Higgs mass is naturally
small, since at the electroweak scale there is no elementary Higgs mass term to be modified
by any higher order quantum perturbation from external sources.

The three estimated Higgs VEVs have a hierarchical structure vy =~ 246 GeV, v, =~
41 GeV and vy = 2.5 GeV, where the top-quark Higgs VEV wv; is much larger than the
other two. Nonetheless, the tau-neutrino Higgs VEV v, plays a non-negligible role in the
electroweak scale saturation, which might be the root cause of the significant deviation of
the measured W-boson mass from the standard model prediction.%® Additionally, given the
intrinsic connection between the muon and the tau-neutrino Higgs field ¢,_, it is worthwhile
to investigate the tau-neutrino Higgs field’s contribution to the muon anomalous magnetic
moment, especially in light of the recent muon g—2 measurement which confirms a deviation
from the standard model prediction.b!

The fourth category of quantum condensation involves a fermion-antifermion pair with
opposite chirality, the same as the regular composite Higgs field. However, the Clifford
algebra framework allows for a non-scalar antisymmetric-tensor composite Higgs field ¢ar
which could potentially break both the electroweak and Lorentz symmetries. The magni-
tude of its VEV could be extremely small compared with the electroweak scale, rendering
its effects unobservable in laboratories. The ethereal antisymmetric-tensor Higgs field VEV
might manifest itself as the large-scale anisotropies of the universe.44>45,46,47,48,49

The fifth category of quantum condensation involves two fermion-antifermion pairs.
There are six composite ® fields corresponding to this sort of four-fermion condensations.
In contrast to the other four types of composite fields, these scalar ® fields are invariant
under the local gauge transformations. Instead, three of the ® fields are tied to a U,(1)
global symmetry, which transforms all the right-handed fermions by the same phase e/,
in a manner similar to the Peccei-Quine U(1) pg symmetry. The other three of the ® fields
are tied to a Ug(1l) global symmetry. It transforms the up-type quarks (ug, cg, tr) and
down-type leptons (er, pgr, Tr) by the phase e®!, whereas it transforms the down-type
quarks (dg, sg, br) and up-type leptons (ver, vugr, Vrr) by the opposite phase e Pl

Upon acquiring nonzero VEVs, these six composite fields break the Uy (1) and Ug(1)
global symmetries respectively. Their VEVs play a pivotal role in establishing the relative
magnitudes of the effective Yukawa coupling constants, and consequently giving rise to the
fermion mass hierarchies. The Dirac masses of the v,, v, and v, neutrinos are estimated
as 29,500MeV, 40MeV and 21MeV, respectively. Note that these estimations are meant
to be the Dirac masses, as opposed to the significantly smaller seesaw effective masses.

Due to the explicit symmetry breaking originated from the quantum anomaly and
instanton effects, the otherwise massless Nambu-Goldstone bosons of the a-type ® fields
acquire masses and turn into the pseudo-Nambu-Goldstone bosons in a similar fashion as
the axions. Historically the axions have been proposed as a possible solution to the strong
CP and dark matter problems. In this regard, we speculate that the (pseudo-)Nambu-
Goldstone bosons of the g-type ® fields could also be viable dark matter candidates.

In summary, the proposition in this paper is at the conservative end of the physics model
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building spectrum. Our thesis is that the fundamental particles/fields of the universe are

the garden-variety standard model fermions (plus the right-handed neutrinos) accompanied

by a handful of “good old-fashioned” gauge fields. That is all there is. There are neither

extra dimensions nor exotic branes. The novel bit we bring to the table is the insight that

there is a kaleidoscope of quantum condensations which make the world as complex and

enchanting as it is.
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