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Cli�ord algebra Cl(0,6) approach to beyond the

standard model and naturalness problems
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Abstract: Is there more to Dirac's gamma matrices than meets the eye? It turns out that

the gamma zero operator can be split into three components. This revelation facilitates

the expansion of Dirac's space-time algebra to Cli�ord algebra Cl(0,6). The resultant rich

geometric structure can be leveraged to establish a combined framework of gravity and

beyond the standard model, wherein a gravi-weak interaction between the vierbein �eld

and the extended weak gauge �eld is allowed. Inspired by the composite Higgs model,

we examine the vierbein �eld as an e�ective description of the fermion-antifermion con-

densation. The compositeness of space-time manifests itself at an energy scale which is

di�erent from the Planck scale. We propose that the regular Lagrangian terms including

the cosmological constant are of quantum condensation origin, thus possibly addressing the

naturalness problem. The Cli�ord algebra approach also permits a weaker form of charge

conjugation without particle-antiparticle interchange, which leads to a Majorana-type mass

that conserves lepton number. Additionally, in the context of spontaneous breaking of two

global U(1) symmetries, we explore a three-Higgs-doublet model which could explain the

fermion mass hierarchies.
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1 Introduction

The mathematical imaginary number i is ubiquitous in physics theories. In the case of quan-

tum mechanics, the imaginary number makes its appearance in the commutation relation

of position operator X̂ and momentum operator P̂

[X̂, P̂ ] = i~, (1.1)

where ~ is the Planck constant. Consequently, the quantum wave function is complex-

valued. On the other hand, the imaginary number also shows up in the gauge transformation

of a classical complex �eld

ψ → ψeiθ, (1.2)

which is essential in determining the electric charge property of ψ.
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We customarily treat the imaginary number i for both examples as the same. It may

come as a surprise that the imaginary number in the second case is di�erent from the �rst

one. The latter is actually a unit pseudoscalar in disguise

I = γ0γ1γ2γ3, (1.3)

where γa are no other than the celebrated gamma operators stumbled upon by Paul Dirac

in 1928. The Dirac gamma operators satisfy the Cli�ord algebra Cl(1, 3) anticommutation

relations

{γa, γb} = γaγb + γbγa = 2ηab, (1.4)

where ηab = diag(1,−1,−1,−1). In view that I2 = −1, the pseudoscalar I can be regarded

as a surrogate for the imaginary number i. As we will learn later in this paper, replacing

imaginary number i with pseudoscalar I in eq. (1.2) leads to a novel de�nition of charge

conjugation without particle-antiparticle interchange.

Historically, the Dirac operators γa are represented as gamma matrices. Due to the di-

chotomy between fermiom states as columns and operators as matrices in the conventional

formalism of quantum �eld theory (QFT), the aforementioned association of pseudoscalar

with imaginary number would run into inconsistencies. This identi�cation can only be

achieved in an unconventional way by forgoing the traditional matrix representation and en-

listing the aid of the Cli�ord algebra approach,1,2, 3, 4, 5, 7, 8, 9, 10,11,12,13,14,15,16,17,18 whereby

both the algebraic spinor states and Dirac's gamma operators can be expressed in the same

algebraic space.

The Cli�ord algebra, also known as the geometric algebra or the space-time algebra for

the speci�c case of Cl(1, 3), is a potent mathematical tool that �nds extensive applications

in the physics arena. Remarkably, there is one more application of Cli�ord algebra Cl(1, 3)

unbeknownst to Dirac. We know that gravity can be formulated as a Lorentz gauge the-

ory19,20 in terms of the vierbein (or tetrad) and the spin connection. The gauge approach

to gravity is also known as Einstein-Cartan gravity. The spin connection, associated with

the local Lorentz group SO(1, 3) (or Spin(1, 3) when fermions are involved), plays the role

of the gauge �elds in Yang-Mills theory.

In the Cli�ord algebra Cl(1, 3) formulation of Einstein-Cartan gravity,21,22,23 the vier-

bein êµ and spin connection Lorentz gauge �eld ω̂µ take values in the Cli�ord algebraic

space

êµ = eaµγa, (1.5a)

ω̂µ =
1

4
ωabµ γaγb, (1.5b)

where a, b, µ = 0, 1, 2, 3, ωabµ = −ωbaµ . Throughout this paper the summation convention for

repeated indices is adopted. The four distinct {γa} and six distinct {γaγb; a < b} are called
vectors and bi-vectors of Cli�ord algebra. We denote vierbein as êµ and spin connection

as ω̂µ rather than eµ and ωµ to accentuate the fact that they are Cli�ord-valued. The

space-time metric gµν is derived from the vierbein

gµν = eaµe
b
νηab. (1.6)
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Thus the vierbein êµ can be deemed as the �square root� of metric.

Given that the gravity-related �elds êµ and ω̂µ are vector-valued and bi-vector-valued

respectively in the Cli�ord algebraic space of Cl(1, 3), it's tempting to wonder whether the

other interactions in nature such as the electroweak and strong gauge �elds can take values

in the Cli�ord algebraic space as well. The answer is a resounding yes, provided that one

has to go beyond the con�nes of the familiar Cli�ord algebra Cl(1, 3). Learning from the

above experience that we arrived at Cl(1, 3) via splitting the imaginary number into four

operators, we may go one step further by decomposing Dirac's gamma zero operator into

its underlying components13

γ0 = Γ1Γ2Γ3, (1.7)

where the additional trio of gamma operators {Γ1, Γ2, Γ3} satisfy the anticommutation

relations

{Γi,Γj} = −2δij , (1.8)

and anticommute with the original trio {γ1, γ2, γ3}

{γi,Γj} = 0. (1.9)

Collectively, these six elements

Γ1,Γ2,Γ3, γ1, γ2, γ3, (1.10)

constitute the orthonormal vector basis of the real Cli�ord algebra Cl(0, 6), which is some-

times labeled as Cl0,6 or Cl0,6(R) in the literature.

Thanks to the recognition of γ0 as a composite tri-vector, we are able to extend Dirac's

Cli�ord algebra from Cl(1, 3) to Cl(0, 6). With it, we can de�ne an algebraic spinor as a

linear combination of all 26 = 64 basis elements of Cl(0, 6). Considering that there are 16

Weyl fermions with 16× 2 = 32 complex components (i.e. 64 real components) within each

of the three fermion families including right-handed neutrinos, an algebraic spinor of the

real Cl(0, 6) with 64 degrees of freedom is a perfect match for representing one generation of

fermions. The geometrical wealth of Cli�ord algebra Cl(0, 6) can be exploited to establish

a theory covering both the standard model and gravity.13,15,16 The Yang-Mills gauge �elds

and the spin connection Lorentz gauge �eld which governs gravity are associated with

beyond the standard model (BSM) local gauge groups

Spin(1, 3)L × Spin(1, 3)R × Spin(1, 3)WL × Spin(1, 1)WR × U(1)WR × SU(3)C × U(1)B−L,

(1.11)

where Spin(1, 3)L and Spin(1, 3)R are left- and right-handed local Lorentz gauge groups,

and Spin(1, 3)WL subsumes the left-handed weak gauge group SU(2)WL.

It's worth mentioning that Cli�ord algebra Cl(0, 6) is capable of accommodating some

enveloping groups. For example, the real symplectic group Sp(8, R), which encompasses

the Pati-Salam24 SU(4), is embedded in the Cl(0, 6) geometric structure. The Pati-Salam
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SU(4), which contains SU(3)C × U(1)B−L, is isomorphic to the six-dimensional rotation

group Spin(6) generated by all the 15 bi-vectors of Cl(0, 6). We settled for a parsimonious

set of subgroups due to lack of experimental evidence supporting any larger uni�cation

groups such as SU(4), whereas there are various clues suggestive of the BSM symmetries

(1.11).

We propose that all the regular Lagrangian terms, be it the fermion kinetic term or the

cosmological constant term, are of quantum condensation origin. The cosmological constant

problem can thus be evaded if we take abundant precaution in the renormalization procedure

that entails multiplications of divergent integrals. We regard the vierbein �eld êµ as an

composite entity emerging from the fermion-antifermion quantum condensation. Hence the

fermion �elds are the origin of space-time metric. Since the vierbein can be viewed as the

�square root� of metric, fermions can be considered as the �quarter root� of metric. Because

of the chirality of the vierbein-related condensations and the chirality of spin connection

�elds, there are left- and right-handed gravitational interactions. Additionally, a new kind

of interaction is permitted between the extended vierbeins and the extended weak gauge

�elds, which may have cosmological implications.

There is a cascade of spontaneous symmetry breaking (SSB) processes, resulted from

nonzero vacuum expectation values (VEV) acquired by the Cli�ord-valued vierbeins and

Higgs �elds. The �rst stage of SSB starts with the vierbein acquiring nonzero VEVs. As a

result, the local Lorentz and pseudo-weak symmetries are lost and we are left with a global

Lorentz symmetry.

The next step of SSB is triggered by the Majorana Higgs �eld, which is a Higgs-like

�eld in addition to the standard model Higgs �eld. At this stage, the Majorana Higgs

�eld assumes a nonzero VEV and breaks the local gauge symmetries down to the standard

model symmetries. Consequently, the neutrino is endowed with a lepton number-conserving

Majorana mass which is much heavier than the Dirac mass. A very small e�ective mass

can thus be derived for the neutrino via the seesaw mechanism.25

At the last stage of SSB, the electroweak Higgs �elds acquire nonzero VEVs and break

the standard model symmetries down to SU(3)C × U(1)EM , where U(1)EM is the elec-

tromagnetic gauge symmetry. The fermion Dirac mass hierarchies can be explained by a

three-Higgs-doublet model with the help from two additional global U(1)α (U(1)PQ) and

U(1)β symmetries involving right-handed fermions.

One point we want to highlight is that all the ingredients of our model, such as fermions,

gauge �elds, vierbein, and Higgs �elds, share the same Cli�ord algebraic space of Cl(0, 6).

For instance, the electromagnetic gauge �eld Âµ is pseudoscalar-valued

Âµ = qAµI, (1.12)

where we include charge q (such as q = −1 for electron) into the de�nition of Âµ. The pseu-

doscalar I is the 6-vector of Cl(0, 6) after expanding the tri-vector γ0 into its constituents

I = Γ1Γ2Γ3γ1γ2γ3. (1.13)

The electromagnetic gauge �eld Âµ as shown above and the gravity-related �elds ω̂µ/êµ
in eq. (1.5) take values in various Cli�ord algebraic subspaces with the same six gamma
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operators in (1.10) as the unifying building blocks. By virtue of the shared Cli�ord algebraic

space, the gauge �eld of gravity and the Yang-Mills �elds are connected with each other

through their interactions with the common fermion �elds and Higgs �elds.

Therefore, the theory outlined in this paper is a cohesive fusion of the standard model

and gravity. Note that the Cli�ord algebra approach di�ers from the conventional way

of postulating upfront a grand uni�ed symmetry which demands that the gauge coupling

constants are uni�ed. The Cli�ord algebra approach proposes a �xed Cli�ord algebra at the

�rst step, which means that the fermion contents of the model are essentially predetermined

by the Cli�ord space. At the second step, one explores the allowable symmetries that

preserve the invariance properties of spinor bilinears. Hence the symmetries of the model

are in a sense derived instead of postulated. The permitted symmetries usually involve

a direct product of di�erent groups, which suggests that the individual gauge coupling

constants are not necessarily related to each other. As such, the fusion delineated in this

paper is more of a union via spinors and less of a union via symmetry groups.

This paper is structured as follows: In Section 2, we introduce the algebraic spinors

of Cl(0, 6) and explore beyond the standard model gauge symmetries. In Section 3, we

investigate spontaneous symmetry breaking due to the non-degenerate vacuum expectation

values of various bosonic �elds, and study the fermion mass hierarchies and the lepton

number-conserving Majorana mass. In Section 4, with the goal of addressing the Higgs

mass naturalness problem and the cosmological constant problem, we propose that all the

symmetry-breaking bosonic �elds including the Higgs and vierbein �elds are the e�ective

representations of multi-fermionic condensations. In the last section we draw our conclu-

sions. Throughout this paper, we adopt the units c = ~ = 1.

2 Cli�ord algebra Cl(0,6) and symmetries

2.1 The algebraic spinor representation of fermions

As mentioned in the introduction section, one generation of the standard model fermions

can be represented by the algebraic spinor of Cli�ord algebra Cl(0, 6).13,15,16 The goal

of this section is to demonstrate how individual fermions, such as electrons, neutrinos,

and quarks, are linked to the algebraic spinor without resorting to the traditional column

representation of fermions.

For Cl(0, 6), there are
(

6
k

)
independent k-vectors. To wit, there are one single scalar

1 which is a 0-vector, 6 vectors (e.g. γ1), 15 bi-vectors (e.g. γ1γ2), 20 tri-vectors (e.g.

γ0 = Γ1Γ2Γ3), 15 4-vectors (e.g. γ1γ2I), 6 5-vectors (e.g. γ1I), and �nally one single

pseudoscalar I which is a 6-vector. In total, there are 26 = 64 independent basis elements

given by the set of all k-vectors. The algebraic spinor ψ is a multivector which can be

expressed as a linear combination of all the 64 basis elements

ψ =ψ1 + ψ2Γ1 + ψ3Γ2 + ψ4Γ3 + ψ5γ1 + · · ·+ ψ64I, (2.1)
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where the 64 linear combination coe�cients {ψn;n = 1, 2, · · · , 64} are super-real Grassmann

numbers, which satisfy the complex conjugation relation

ψ∗n =ψn. (2.2)

A few comments are in order at this point regarding the super-real Grassmann numbers

ψn. First of all, due to the fermion nature of the algebraic spinor ψ, it's mandatory that

ψn should be Grassmann-odd. This requirement is not obvious when we write down the

Dirac equation for ψ, where there is no multiplication between spinors. However, the

Grassmann-odd characteristic of ψ becomes essential when it comes to the Lagrangian

involving multiplication between spinors. As we will learn later in this paper, the Majorana

mass Lagrangian term is allowed only if the algebraic spinor is Grassmann-odd, or otherwise

the Majorana mass Lagrangian term is identically zero.

Secondly, it's customary to adopt complex Grassmann numbers in the conventional

QFT where super-real condition (2.2) does not hold. One way to make contact with the

conventional complex Grassmann numbers is to reorganize ψn in pairs, such as

ψ0 + ψ64I, (2.3)

where the pseudoscalar I can be a proxy for the imaginary number i. Therefore, ψ0 +ψ64I

is tantamount to the conventional complex Grassmann number.

It's also worth noting that there is an interesting connection between the complex

Cli�ord algebra Cl6(C) and the octonions via the left-action maps.26 Nevertheless, in our

approach we will stick to the real Cl(0, 6).

The algebraic spinor ψ of the real Cl(0, 6) with 26 = 64 components corresponds to the

union of all 16 Weyl fermions in one fermion generation of the standard model (plus right-

handed neutrino) endowed with 16×2 = 32 complex components (i.e. 64 real components).

For most part of this paper, our discussion is restricted to one generation/family of fermions.

The Cli�ord algebraic structure of the fermions as well as the gauge symmetries are the same

for the three generations. In other words, the three families are three replicas. Section 3.4 on

fermion mass hierarchy is the only exception where we propose three electroweak symmetry-

breaking Higgs �elds that couple to the three generations of fermions in di�erent patterns.

How do we connect one generation of fermions, such as electrons, neutrinos, and quarks,

with ψ? First of all, let's distinguish between the left-handed and right-handed fermions

in the setting of Cli�ord algebra. We propose that fermions with left (right) chirality

correspond to Cli�ord-odd (even) portion of ψ

ψL =
1

2
(ψ + IψI), (2.4)

ψR =
1

2
(ψ − IψI), (2.5)

That is to say, the left-handed ψL is composed of

ψL = ψ2Γ1 + ψ3Γ2 + · · ·+ ψ63γ3I, (2.6)
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whilst the right-handed ψR is composed of

ψR = ψ1 + ψ8Γ1Γ2 + · · ·+ ψ64I. (2.7)

The above projection of Cli�ord-odd (even) portion of ψ leverages the property that the

pseudoscalar I anticommutes with Cli�ord-odd elements, and commutes with Cli�ord-even

elements

IψL = −ψLI,
IψR = ψRI.

The operation of −IψI as in eq. (2.5) can be mapped to the traditional γ5ψ operation,

where −I as in −Iψ plays the role of the conventional pseudoscalar (more discussion will

be provided on the minus sign of −I in Section 3.1), while I as in ψI plays the role

of the conventional imaginary number i. Note that the positioning of I relative to the

algebraic spinor ψ does matter. This speaks to the fact that the electromagnetic �eld, as

a pseudoscalar in eq. (1.12), should always be applied to the right side of a spinor so that

I is equivalent to the imaginary number i in the traditional setting. And for that matter,

when we attempt to link the traditional complex Grassmann numbers with the super-real

Grassmann numbers as in eq. (2.3), we ought to make sure that they appear to the right

side of any Cli�ord elements.

Now we are ready to identify ψ with electrons, neutrinos, and quarks. Speci�cally, the

projection operators for the three colors of red, green, and blue quarks are given by

Pr =
1

4
(1 + Iγ1Γ1 − Iγ2Γ2 − Iγ3Γ3), (2.8a)

Pg =
1

4
(1− Iγ1Γ1 + Iγ2Γ2 − Iγ3Γ3), (2.8b)

Pb =
1

4
(1− Iγ1Γ1 − Iγ2Γ2 + Iγ3Γ3), (2.8c)

while the lepton projection operator is de�ned as

Pl =
1

4
(1 + Iγ1Γ1 + Iγ2Γ2 + Iγ3Γ3). (2.8d)

In the context of SU(4), the lepton projection operator Pl can be regarded as the projection

to the fourth color.24 The four color projections Pl, Pr, Pg, Pb are orthogonal to each other

and satisfy

Pl + Pr + Pg + Pb = 1. (2.9)

Note that the bi-vectors γiΓi appearing in the color projectors suggest an interesting in-

terplay between the trialities of {γ1, γ2, γ3}/{Γ1, Γ2, Γ3} and three colors of quarks.

Figuratively speaking, the three colors of quarks are tied to the three space dimensions,

whilst the lepton as the fourth color is tied to the time dimension. In Section 2.2, we will

further explore the signi�cance of these color projectors in terms of carving out the color

group SU(3)C from Pati-Salam's SU(4).
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For the purpose of di�erentiating between weak isospin up-type and down-type fermions,

we introduce another set of orthogonal projection operators

P± =
1

2
(1± IΓ1Γ2), (2.10)

which sum up to

P+ + P− = 1. (2.11)

We identify projections of the algebraic spinor ψ

ψ = ψL + ψR = (P+ + P−)(ψL + ψR)(Pl + Pr + Pg + Pb), (2.12)

with left-handed neutrino, electron, and quarks
νL = P+ψLPl,

uL,r = P+ψLPr, uL,g = P+ψLPg, uL,b = P+ψLPb,

eL = P−ψLPl,

dL,r = P−ψLPr, dL,g = P−ψLPg, dL,b = P−ψLPb,

(2.13)

and right-handed neutrino, electron, and quarks
νR = P−ψRPl,

uR,r = P−ψRPr, uR,g = P−ψRPg, uR,b = P−ψRPb,

eR = P+ψRPl,

dR,r = P+ψRPr, dR,g = P+ψRPg, dR,b = P+ψRPb.

(2.14)

Note that the de�nition of isospin I3 for a given standard model fermion ψf is given by

ψf (I3I) =
1

2
Γ1Γ2ψf . (2.15)

With the help from the property that

Γ1Γ2P±ψf = ∓IP±ψf , (2.16)

it can thus be veri�ed that the isospin values of the fermions in eq. (2.13) and eq. (2.14)

are consistent with those of the standard model. When the I in eq. (2.16) appearing on

the left side of ψf is moved to the right side of ψf as in eq. (2.15), its sign is changed

for Cli�ord-odd left-handed fermions. This is the underlying reason why there is a �ip of

sign in P± between the left- and right-handed fermions when P± is assigned to the isospin

up-type and down-type fermions respectively in eq. (2.13) and eq. (2.14).

It's also worth mentioning that attempts have been made to associate species of fermions

with (minimal) left ideals of the Cli�ord algebraic spinor10,11 where projection operators

are restricted to acting on the right-hand side of an algebraic spinor. Obviously, our fermion

assignment scheme above departs from the (minimal) left ideal approach.

In summary, we have identi�ed individual fermions with the projections of the Cl(0, 6)

algebraic spinor without any reference to the column representation. The mappings between

the Cl(0, 6) formulation and the conventional matrix/column representation can be worked

out,13 which will not be detailed in this paper.
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2.2 Beyond the standard model symmetries

As explained in the introduction section, we strive to walk a careful line between being

too ambitious and being too conservative when it comes to choosing the suitable gauge

symmetries for our model. The aim of this subsection is to give an account of our thought

process in selecting the BSM symmetry groups employed in this paper.

The conventional way of model building is to postulate the symmetry group upfront,

and then proceed to �nd the fermion representation. In the case of Cli�ord algebra ap-

proach, it's the other way around. We choose the Cli�ord algebra Cl(0, 6) as the �rst step

which is tantamount to staking out the fermion space. The allowable symmetry groups

are thus tightly constrained by the spinor space. This is a desirable feature of the Cli�ord

algebra approach, since the symmetry groups are in a sense derived, rather than postulated.

So how do we determine the allowable symmetries? It hinges on the spinor bilinear〈
ψ̄ψ
〉

1,I
, (2.17)

where 〈. . .〉1,I stands for the Cli�ord-scalar and -pseudoscalar parts of the enclosed ex-

pression. It is the Cli�ord algebraic counterpart of the conventional Dirac inner product

ψ̄ψ between the column spinors. For the rest of the paper, we will exclusively use 〈. . .〉
which stands for the Cli�ord-scalar part of the enclosed expression, since we can get the

pseudoscalar part via 〈I . . .〉 if needed. The Dirac conjugate ψ̄ in eq. (2.17) is de�ned as

ψ̄ = ψ†γ0, (2.18)

and the Hermitian conjugate satis�es

(AB)† = B†A†, (2.19)

for any A and B valued in Cli�ord algebraic space, regardless of A and B being Grassmann-

even or Grassmann-odd. With the six Cl(0, 6) basis vectors de�ned as anti-Hermitian, the

Hermitian conjugate of any Cli�ord element can thus be determined by recursively applying

(2.19). For example,

γ†0 = (Γ1Γ2Γ3)† = Γ†3Γ†2Γ†1 = −Γ3Γ2Γ1 = γ0. (2.20)

Since the fermion Lagrangian comprises the Dirac inner product
〈
ψ̄ψ
〉
or some variants

thereof, the allowable symmetry transformations are the ones under which these sorts of

Dirac inner products are invariant. Let's start with the general gauge transformation

ψ → V ψU, (2.21)

where the Cli�ord-valued V and U are two independent gauge transformations. As an

example, the following Dirac inner product transforms as〈
ψ̄IψI

〉
→

〈
(U †ψ†V †)γ0I(V ψU)I

〉
=
〈
ψ†(V †γ0IV )ψ(UIU †)

〉
, (2.22)
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which is invariant if

V †γ0IV = γ0I, (2.23)

UIU † = I, (2.24)

where we have used the property 〈AB〉 = 〈BA〉 provided that A and B are Grassmann-even.

If we restrict our discussion to gauge transformations continuously connected to identity,

the general solution of the above equations are

V = eθ
n(x)Tn , (2.25)

U = eε
n(x)Kn , (2.26)

where {Tn;n = 1, · · · , 28} are the generators of the Spin group Spin(4, 4) (double cover of

the rotation group SO(4, 4)) which consist of

γa, γaγb,ΓaΓb, IΓi, γiγjΓk, (2.27)

and {Kn;n = 1, · · · , 36} are the generators of the real symplectic group Sp(8, R), which

comprise all 15 bi-vectors, all 20 tri-vectors, and the pseudoscalar

γiγj ,ΓiΓj , γiΓk, γ0,Γ0, γiγjΓk,ΓiΓjγk, I, (2.28)

where i, j, k= 1,2,3, a, b = 0,1,2,3, i > j, a > b. The tri-vector Γ0 is de�ned as Γ0 = γ1γ2γ3,

thus the basis {Γa; a = 0, · · · , 3} parallels {γa; a = 0, · · · , 3}. Note that the transformation

parameters θn(x) and εn(x) are space-time dependent, since we are dealing with local gauge

transformations. For brevity sake, we will omit the x label hereafter with the understanding

that the space-time dependency is implied.

A few comments are in order. First of all, in the literature the usual candidates for

gauge transformations are bi-vector-related rotations. The above Tn and Kn involve non-bi-

vector Cli�ord elements such as γ0 (tri-vector), γi (i=1,2,3, vector) and the Lorentz boosts

γ0i (4-vector) in Tn, which go beyond the con�nes of bi-vectors. While the traditional

rotation transforms a vector into another vector, the generalized �rotation� via the non-

bi-vector-valued Cli�ord elements could potentially transform vectors into multivectors.

Secondly, the two gauge transformations V and U are independent of each other. They are

applied to the left side and right side of the algebraic spinor ψ, respectively. The availability

of the double-sided gauge transformations is one of the advantages of the Cli�ord algebra

approach compared with the conventional column fermion formalism, which has historically

been leveraged in Cli�ord algebraic models.12

One interesting observation is that Tn contains the 10 generators of de Sitter group

SO(1, 4), namely

γa, γaγb. (2.29)

We know that there is another �avor of gauge gravity theory which is based on the (anti-)

de Sitter group.27 It enjoys the advantage that the vierbein êµ and spin connection ω̂µ
in eq. (1.5) jointly constitute the gauge �elds of de Sitter group. As a comparison, in the
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Lorentz gauge gravity theory,19,20 the vierbein êµ is not a bona �de gauge �eld, albeit

the spin connection ω̂µ is indeed the gauge �eld of Lorentz group. The vierbein is instead

regarded as an add-on to the spin connection. This incentivized us to adopt the (anti-) de

Sitter gauge theory of gravity in our �rst paper13 on Cli�ord algebra Cl(0, 6). However,

there is a downside with this approach: given that the de Sitter group generators γa are

Cli�ord-odd, the associated transformations mix the left- and right-handed spinors which

are Cli�ord-odd and -even, respectively. Consequently, the left- and right-handed spinors

have to transform in sync, which disagrees with the chirality of weak interaction. This is a

major shortcoming of our �rst paper.

One way of circumventing the above limitation is to demand that only the Cli�ord-even

sub-algebras of Tn and Kn are permitted, which enables us to accommodate the chirality of

weak interaction by virtue of decoupling the gauge transformations of the left- and right-

handed spinors. The trade o� is that we have to settle for the Lorentz gauge gravity

theory where vierbein êµ is an add-on transforming as a vector of the Lorentz symmetry.

It is seemingly a disadvantage compared with the (anti-) de Sitter gauge gravity theory.

However, in Sections 4.3 and 4.4 we will learn that it is a blessing in disguise, since the

vierbein is never meant to be a gauge �eld. It's actually an emergent quantity arising from

the quantum condensation of a fermion-antifermion pair.

With the restriction to the Cli�ord-even sub-algebras of Tn and Kn, we are left with

the following symmetries15

ψL → VLψLUL, (2.30)

ψR → VRψRUR, (2.31)

where

VL = eθ
n
LTn , UL = eε

n
LKn , (2.32)

VR = eθ
n
RTn , UR = eε

n
RKn . (2.33)

The Cli�ord-even {Tn;n = 1, · · · , 12} comprise the generators of Spin(1, 3)×Spin(1, 3)Weak

γaγb; ΓaΓb, (2.34)

where a, b = 0, 1, 2, 3, a > b, and the Cli�ord-even {Kn;n = 1, · · · , 17} comprise the gener-

ators of Spin(6)Pati−Salam × UI(1)

γiγj ,ΓiΓj , γiΓk; I, (2.35)

where i, j, k = 1, 2, 3, i > j. Note that the gauge transformation parameters such as θnL (εnL)

and θnR (εnR) are independent of each other. Therefore the left- and right-handed spinors

ψL and ψR transform independently. Considering that the same copies of the symmetry

groups Tn andKn are employed for the left- and right-handed spinors, the model is left-right

symmetric.

Since the vierbein êµ transforms as a vector under the Lorentz gauge transformation

êµ → e
1
4
θabγaγb êµ e

− 1
4
θabγaγb , (2.36)
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a spinor bilinear term such as 〈
ψ̄êµψ

〉
, (2.37)

can be veri�ed to be gauge invariant under the above gauge transformations restricted to the

Cli�ord-even sub-space. This invariance is of paramount importance, give that the kinetic

part of the fermion Lagrangian is of similar form and should respect these symmetries.

The above gauge symmetry groups, with (12 + 17) ∗ 2 = 58 group generators, are

the largest ones permissible by a chiral algebraic spinor of Cl(0, 6). The spin group

Spin(6)Pati−Salam is generated by all the 15 bi-vectors of Cl(0, 6). It is isomorphic to

Pati-Salem's SU(4),24 which encompasses SU(3)C × U(1)B−L. The Spin(1, 3)Weak group

comprises the regular weak group generated by {ΓiΓj} as well as the weak boosts gener-

ated by {Γ0Γi}. These are the counterparts of the spacial rotations generated by {γiγj}

and the Lorentz boosts generated by {γ0γi}. Given that there are two copies of symmetry

groups, there could be two di�erent spin connections acting on the left- and right-handed

spinors, respectively. In other words, there could be two separate left- and right-handed

gravitational interactions.

The BSM symmetry bonanza noted above are tantalizing. From a practical point of

view, do we have any inkling of symmetries beyond the local Lorentz and standard model

gauge symmetries? The observation of neutrino oscillations28,29,30 provided an interesting

clue. It implies that neutrinos have nonzero masses beyond the plain vanilla standard model.

Curiously, the neutrino masses are much smaller than that of the other standard model

fermions. The seesaw mechanism is hence proposed as an explanation,25 which invokes the

right-handed neutrinos endowed with large Majorana masses. In light of these suggestive

evidences, we whittle down to a minimum subset of groups which could accommodate a

Higgs-like mechanism to generate the Majorana masses.

Therefore, our choice of symmetry groups are

Spin(1, 3)× SU(3)C × SU(2)WL × U(1)WR × U(1)B−L. (2.38)

Note that in Section 4.4 on emergent chiral vierbeins, we will expand the above groups to

accommodate the extended vierbeins and the extended weak interaction sector. But for

now, we will stay with the above unextended symmetry groups. These symmetry groups

are the direct product of the spin connection's Spin(1, 3) with six distinct generators (as

in ψ → eθ
nTnψ)

1

2
γaγb, (2.39)

where a, b = 0, 1, 2, 3, a > b, and the left-handed weak interaction's SU(2)WL with three

generators (as in ψL → eθ
n
LTnψL)

1

2
Γ2Γ3,

1

2
Γ3Γ1,

1

2
Γ1Γ2, (2.40)

and the right-handed weak interaction's U(1)WR with one generator (as in ψR → eθ
n
RTnψR)

1

2
Γ1Γ2, (2.41)
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and the strong interaction's SU(3)C with eight generators (as in ψ → ψeε
nKn)

1
4(γ1Γ2 + γ2Γ1), 1

4(Γ1Γ2 + γ1γ2), 1
4(Γ1γ1 − Γ2γ2),

1
4(γ1Γ3 + γ3Γ1), 1

4(Γ1Γ3 + γ1γ3),
1
4(γ2Γ3 + γ3Γ2), 1

4(Γ2Γ3 + γ2γ3),
1

4
√

3
(Γ1γ1 + Γ2γ2 − 2Γ3γ3),

 (2.42)

and the BL interaction's U(1)B−L with one generator (as in ψ → ψeε
nKn)

1

2
J =

1

6
(γ1Γ1 + γ2Γ2 + γ3Γ3). (2.43)

Note that some multipliers are applied to the generators to facilitate the gauge �eld de�ni-

tions in Section 2.4. Due to the chirality of the weak interaction, the gauge transformation

parameters for the left- and right-handed spinors (θnL and θnR) are kept independent for

SU(2)WL and U(1)WR, whereas the other gauge transformation parameters of Spin(1, 3),

SU(3)C , and U(1)B−L are synchronized between the left- and right-handed spinors.

Three Cli�ord elements are pivotal in the symmetry determination. The �rst element

γ0 is hard-wired into the de�nition of Dirac inner product
〈
ψ̄ψ
〉

=
〈
ψ†γ0ψ

〉
. It facilitates

pinning down the Lorentz group Spin(1, 3). The second element Γ1Γ2 is embedded in

the de�nition of isospin (2.15), thus it picks out the isospin direction. The third critical

Cli�ord element is the BL interaction's J . It is instrumental in separating out U(3) =

SU(3)C×U(1)B−L from the encompassing Spin(6)Pati−Salam which is isomorphic to SU(4).

Mathematically speaking, this is a speci�c case of a general procedure31,5 of separating out

U(n) from Spin(2n).

When J is applied to the four color projection operators (2.8), it has the nice property

that

PlJ = −PlI, (2.44a)

PrJ =
1

3
PrI, PgJ =

1

3
PgI, PbJ =

1

3
PbI, (2.44b)

which means that J is tantamount to

J = (B − L)I, (2.45)

where B and L are baryon and lepton numbers, respectively. Therefore, J indeed corre-

sponds to the BL interaction. The de�nition of the four color projection operators (2.8)

as well as the de�nition of the color algebra (2.42) are both predicated on how J is struc-

tured. The ansatz ensures that applying any generator in the color algebra to the lepton

projector Pl is identical to zero, hence leptons are invariant (singlets) under the color gauge

transformations.

If there were grand uni�cation symmetries, the three Cli�ord elements γ0, Γ1Γ2, and

J could have emerged from vacuum expectation values (VEVs) of some hitherto unknown

symmetry-breaking �elds. That said, if we start from our choice of symmetries as a given

Spin(1, 3)× SU(3)C × SU(2)WL × U(1)WR × U(1)B−L, (2.46)
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the symmetry breaking patterns can be readily worked out and will be elaborated in Sec-

tion 3.

In a nutshell, the cascade of spontaneous symmetry breaking (SSB) begins with the

vierbein acquiring a nonzero VEV, which breaks the gauge symmetries down to

SU(3)C × SU(2)WL × U(1)WR × U(1)B−L. (2.47)

As a result, the local Lorentz gauge symmetry is lost and we are left with a global Lorentz

symmetry. The next step of symmetry breaking is triggered by the Majorana Higgs �eld,

which is a Higgs-like �eld in addition to the standard model Higgs �eld. At this stage, the

Majorana Higgs �eld assumes a nonzero VEV and breaks the local gauge symmetries down

to the standard model symmetries

SU(3)C × SU(2)WL × U(1)Y , (2.48)

where U(1)Y is the hypercharge gauge symmetry speci�ed by the synchronized double-sided

gauge transformations

ψL → ψLe
1
2
εY J , (2.49)

ψR → e
1
2
εY Γ1Γ2ψRe

1
2
εY J , (2.50)

where a shared rotation angle εY synchronizes the double-sided hypercharge gauge trans-

formations. At the third stage of SSB, the electroweak Higgs �elds acquire nonzero VEVs

and break the standard model symmetries down to

SU(3)C × U(1)EM , (2.51)

where U(1)EM is the electromagnetic gauge symmetry characterized by the synchronized

double-sided gauge transformation

ψ → e
1
2
εEMΓ1Γ2ψe

1
2
εEMJ , (2.52)

where a shared rotation angle εEM synchronizes the double-sided gauge transformation.

With the de�nition of the pseudoscalar-valued electromagnetic gauge �eld Âµ in eq. (1.12),

the electric charge q of a given standard model fermion ψf can thus be obtained from

e
1
2
εEMΓ1Γ2ψfe

1
2
εEMJ = ψfe

qεEM I . (2.53)

Thanks to the properties of Γ1Γ2 in eq. (2.16) and J in eq. (2.44), the electric charges can

be readily calculated as q = 0,−1, 2
3 , and −

1
3 for neutrino, electron, up quarks, and down

quarks according to the de�nitions in eq. (2.13) and eq. (2.14), which are perfectly aligned

with the standard model electric charge assignments.

We shall underscore the fact that all the gauge group generators are valued in the

real Cli�ord space, while the algebraic spinors are valued in the super-real Cli�ord space.

Any reference of the imagine number i in the conventional formalism with regard to gauge

transformations (and gauge �elds) and spinors can be replaced by the pseudoscalar I acting

on the right side of the spinor, as illustrated in the de�nition of electric charge above.
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2.3 Charge conjugation without particle-antiparticle interchange

The charge conjugation C changes the sign of charges. In the conventional matrix formalism,

the C conjugation of a fermion ψ in the Weyl basis is expressed as

C : ψ → ψc = −iγ2ψ
?, (2.54)

where ψ? is the complex conjugate of ψ. Because of the complex conjugate operation, C

converts a particle into its corresponding antiparticle.

Can we decouple charge conjugation from complex conjugate and thus evade particle-

antiparticle interchange? Such a decoupling is indeed possible in the Cli�ord algebra ap-

proach, thanks to the identi�cation of the imaginary number i with the pseudoscalar I

acting on the right side of a spinor. Considering the de�nition of electric charge q in

eq. (2.53), we can de�ne a weaker form of charge conjugation

C ′ : ψ → ψc′ = (IΓ2Γ3)ψγ0. (2.55)

Note that IΓ1Γ2 and γ0 in the above de�nition could be replaced with the general IΓ2Γ3e
θΓ1Γ2

and γ0e
εI , where θ and ε are two arbitrary phase factors. The weaker form of charge conju-

gation satis�es the property (ψc′)c′ = ψ. It does not involve complex conjugate, hence there

is no particle-antiparticle switching. In Section 3.2, this property of C ′ will be leveraged to

construct a Majorana mass term that conserves lepton number.

According to eq. (2.53), it can be easily checked that ψc′ transforms as

ψc′ → ψc′e
−qεEM I . (2.56)

under the electromagnetic gauge transformation. Therefore, the sign of electric charge is

changed. It's driven by the fact that γ0 in the de�nition of C ′ anticommutes with the unit

pseudoscalar I

eqεEM Iγ0 = γ0e
−qεEM I . (2.57)

This sort of mathematical acrobatics is otherwise impossible in the conventional formalism

where the electromagnetic gauge transformation is associated with the imaginary number i

as in eq. (1.2). Since i commutes with any operator, the only way to change sign of i is to

invoke complex conjugate. Consequently, charge conjugation in the conventional formalism

is inextricably linked to particle-antiparticle interchange.

It can be veri�ed that C ′ does not change isospin (2.15) or color (2.8) of any standard

model fermion. Since IΓ2Γ3 commutes with the Lorentz transformation generators γaγb,

the Lorentz transformation properties of ψc′ remain the same as ψ. Hence, ψc′ is indeed the

charge conjugation counterpart of the corresponding ψ. Note that C ′ changes the chirality

of ψ, since C ′ involves the multiplication of the Cli�ord-odd tri-vector γ0 and it turns a

left-handed fermion into a right-handed one, and vice versa.

The charge conjugation C ′ of the gauge transformation parameters (and thus gauge

�elds) can be de�ned as

C ′ : θnTn → θnc′Tn = θn(IΓ2Γ3)Tn(IΓ2Γ3), (2.58)

C ′ : εnKn → εnc′Kn = εnγ0K
nγ0, (2.59)
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with the understanding that the left side-type Tn include the generators of Spin(1, 3) ×
SU(2)WL×U(1)WR and the right side-typeKn include the generators of SU(3)C×U(1)B−L.

Some notable examples are that the electromagnetic gauge �eld Âµ is C ′-odd, while the

gravity-related spin connection Lorentz gauge �eld ω̂µ is C ′-even.

2.4 Lagrangian of the world

Having established the fermion representation and the symmetry structure, we are now well-

positioned to investigate the Lagrangians and actions. With a view toward writing down the

di�eomorphism-invariant actions, we are going to make extensive use of di�erential forms.

We de�ne gauge �eld as 1-forms and gauge forces as curvature 2-forms. Di�eomorphism-

invariance can be assured if the action is expressed as an integration of 4-forms on the

4-dimensional space-time manifold.

The vierbein 1-from ê and spin connection 1-form ω̂ of the Lorentz gauge theory of

gravity are

ê = êµdx
µ, (2.60)

ω̂ = ω̂µdx
µ, (2.61)

where µ = 0, 1, 2, 3, and the Cli�ord-valued êµ and ω̂µ are given in eq. (1.5). The Cli�ord-

valued forms are also called Cli�orms in the literature.21,22

In an similar fashion, the other gauge �eld 1-forms related to the gauge symmetries

SU(3)C × SU(2)WL × U(1)WR × U(1)B−L can be de�ned as

Ĝ = Ĝµdx
µ, (2.62)

ŴL = ŴLµdx
µ, (2.63)

ŴR = ŴRµdx
µ, (2.64)

ÂBL = ÂBLµdx
µ, (2.65)

where the strong interaction gauge �eld Ĝµ, the left-handed weak interaction gauge �eld

ŴLµ, the right-handed weak interaction gauge �eld ŴRµ, and the BL interaction gauge

�eld ÂBLµ are valued in the gauge generator space of SU(3)C , SU(2)WL, U(1)WR, and

U(1)B−L, respectively. As an example, the left-handed weak interaction gauge �eld ŴLµ

can be de�ned as

ŴLµ =
1

2
(W 1

LµΓ2Γ3 +W 2
LµΓ3Γ1 +W 3

LµΓ1Γ2), (2.66)

(2.67)

The other gauge �elds Ĝµ, ŴR, and ÂBLµ can be de�ned in a similar manner using the

corresponding gauge group generators speci�ed in Section 2.2. We adopt the notation

convention (e.g. Ĝ rather than G) to highlight the fact that these gauge �elds are Cli�ord-

valued 1-forms.

The chiral gauge-covariant derivatives of the chiral spinor �elds are de�ned as

DLψL = (d+ ω̂ + ŴL)ψL + ψL(Ĝ+ ÂBL), (2.68)

DRψR = (d+ ω̂ + ŴR)ψR + ψR(Ĝ+ ÂBL), (2.69)
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where d is the exterior derivative. It is essential that the gauge �elds should appear on the

proper side of the spinor, which is dictated by how the gauge symmetries are de�ned in

Section 2.2. Note that we follow the convention of putting the gauge coupling constant in

the coe�cient of the Yang-Mills Lagrangian, rather than in the gauge-covariant derivatives

above.

The spin connection ω̂, as the gauge �eld of the Lorentz gauge group, is crucial in

maintaining the local Lorentz gauge covariance of DLψL and DRψR. On the other hand,

given that the vierbein ê is not a gauge �eld, ê is conspicuously absent in the gauge-covariant

derivatives of the spinor �elds ψL/R(x). Nonetheless, as we will learn below, ê shows up in

other parts of the Lagrangian and it plays a pivotal role in the model building.

The gauge interactions are formulated as curvature 2-forms, namely R̂, F̂G, F̂WL, F̂WR,

and F̂BL. For instance, the spin connection curvature 2-form R̂ and the left-handed weak

interaction curvature 2-form F̂WL are expressed as

R̂ = dω̂ + ω̂ ∧ ω̂, (2.70)

F̂WL = dŴL + ŴL ∧ ŴL =
1

2
F̂WLµνdx

µdxν (2.71)

=
1

4
(F 1

WLµνΓ2Γ3 + F 2
WLµνΓ3Γ1 + F 3

WLµνΓ1Γ2)dxµdxν , (2.72)

where ∧ stands for outer product between di�erential forms. For later usage we have

expanded F̂WL in more details. The other curvature 2-forms F̂WR, F̂G, and F̂BL can be

de�ned in a similar way. Note that the outer product term vanishes for abelian interactions

such as F̂WR and F̂BL.

Now we are ready to write down the local gauge- and di�eomorphism-invariant La-

grangian of the world

LWorld =LFermion (2.73)

+LGravity + LCC (2.74)

+LYM−Color + LYM−Weak−Left + LYM−Weak−Right + LYM−BL (2.75)

+LHiggs−Majorana + LHiggs−Electroweak, (2.76)

where the fermion Lagrangian is of the form

LFermion ∼ i
〈
Iê ∧ ê ∧ ê ∧ ψLDLψL

〉
+ i
〈
Iê ∧ ê ∧ ê ∧ ψRDRψR

〉
, (2.77)

and the gravity plus cosmological constant Lagrangian terms are of the form

LGravity + LCC =
1

8πG

〈
I(ê ∧ ê ∧ R̂+

Λ

4!
ê ∧ ê ∧ ê ∧ ê)

〉
, (2.78)

where R̂ is the spin connection curvature 2-form (2.70) and Λ is the cosmological constant.

The left-handed weak interaction Yang-Mills Lagrangian term is of the form

LYM−Weak−Left ∼

〈
(Iê ∧ ê ∧ F̂WL)(Iê ∧ ê ∧ F̂WL)

〉
〈Iê ∧ ê ∧ ê ∧ ê〉

. (2.79)

� 17 �



The Yang-Mills-type Lagrangian terms for the other gauge interactions take a similar form.

Here we adopted the generic �Yang-Mills-type� label, albeit historically the term Yang-Mills

is reserved for non-abelian gauge �elds only. Note that 〈. . .〉 denotes the Cli�ord-scalar part
of the enclosed expression, as we de�ned earlier. The Higgs �eld-related Lagrangian terms

LHiggs−Majorana and LHiggs−Electroweak will be outlined in Sections 3.2 and 3.3 when we

discuss the Higgs mechanism. Upon SSB, the Majorana and Dirac mass terms will emerge

from LHiggs−Majorana and LHiggs−Electroweak via the Higgs mechanism. For later references,

we write down the Dirac mass term in curved space-time as

LDirac−Mass ∼ im
〈
Iê ∧ ê ∧ ê ∧ êψIψ̄

〉
, (2.80)

where m is the Dirac mass.

It shall be reminded that in the Yang-Mills Lagrangian term, the 4-form factor d4x =

dx0 ∧ dx1 ∧ dx2 ∧ dx3 from one of the Iê ∧ ê ∧ F̂WL should be canceled out by the similar

4-form factor from the denominator Iê ∧ ê ∧ ê ∧ ê before multiplication with the other

Iê∧ ê∧ F̂WL. As such, the Yang-Mills Lagrangian terms, along with the other Lagrangian

terms of the world, are di�eomorphism-invariant 4-forms on the 4-dimensional space-time

manifold.

Also note that the Cli�ord algebra elements of the vierbein ê and the curvature 2-forms

such as F̂G formally commute with each other in the Yang-Mills Lagrangian, since they

transform under commuting gauge groups. Since the vierbein ê transforms as a vector under

Lorentz gauge transformation (2.36) and is invariant under the other gauge transformations,

all the terms of the Lagrangian of the world can be proved to be local gauge-invariant under

Spin(1, 3)× SU(3)C × SU(2)WL × U(1)WR × U(1)B−L.

The action of the world is

Sworld =

∫
LWorld, (2.81)

where the integration over d4x = dx0∧dx1∧dx2∧dx3 is already embedded in the de�nition of

the Lagrangian. We know that the space-time metric gµν can be derived from the vierbein.

Thus the metric tensor gµν and the Hodge star in the conventional metric gravity can be

constructed using various combinations/transformations of the vierbein. For instance, the

4-form 1
4!Iê ∧ ê ∧ ê ∧ ê plays the role of the metric volume form

√
|g|d4x.

We subscribe to the general notion of e�ective �eld theory,32,33,34 which states that all

the terms allowed by the symmetry requirements should be included in the Lagrangian of

the world. Since one goal of this paper is to treat gravity and Yang-Mills interactions on

an equal footing, we should consider Lagrangian terms that is linear in Yang-Mills �elds as

well, such as 〈
Iê ∧ ê ∧ F̂WL

〉
. (2.82)

It is analogs to the gravity Lagrangian (2.78) which is linear in the spin connection curvature

2-form R̂. However, it can be veri�ed that such linear terms for the Yang-Mills �elds are

identically zero. The only allowable linear term other than the gravity Lagrangian is the

� 18 �



Holst term35 〈
ê ∧ ê ∧ R̂

〉
, (2.83)

which di�ers from the gravity Lagrangian (2.78) by removing the pseudoscalar I.

When it comes to the Lagrangian terms with two or more gauge curvature 2-forms, there

is a plethora of allowable forms besides the Yang-Mills-type Lagrangian. Some examples are

the topological CP-violating terms for the Yang-Mills interactions, the topological Gauss-

Bonnet term and Nieh-Yan term,36 and the higher-derivative gravity terms.33,34 While

all these higher-order terms should in principle be included in the Lagrangian, the key for

model building is to recognize that the practical predictions of any model must be made

within the context of separation of energy scales. The gravity and Yang-Mills Lagrangian

terms happen to be amongst the �rst few order terms that are relevant at the energy scale

accessible to experiments.

The astute reader may have noticed the presence of the imaginary number i in the

fermion kinetic Lagrangian (2.77) and Dirac mass Lagrangian (2.80). As explained in the

introduction section, there are two kinds of imaginary numbers. One is the genuine i, and

the other can be replaced by the pseudoscalar I. We have demonstrated that the gauge

group generators are valued in the real Cli�ord space, and the algebraic spinors are valued

in the super-real Cli�ord space. Hence we have managed to stay away from the imaginary

number i. So why do we need i in the fermion Lagrangian terms? It has to do with the

requirement that the classical action of the world should be (super-)real

S∗world = Sworld. (2.84)

We know that 〈. . .〉 is employed in each Lagrangian term. By de�nition, it is the Cli�ord-

scalar part of the expression, which means 〈. . .〉 is real as long as the related �elds in the

expression is valued in the real Cli�ord space. Since the bosonic �elds (gauge �elds, vierbein,

and Higgs �elds) are valued in the real Cli�ord space, the reality condition is automatically

satis�ed for all the bosonic �eld-related Lagrangian terms, such as the gravity and Yang-

mills Lagrangian terms.

On the other hand, since spinors are valued in the super-real Cli�ord space, the fermion

action can essentially be reduced to a sum/integral of terms like iψxψy. Given that the

Grassmann-odd coe�cients of the spinors are de�ned to be super-real ψ∗x = ψx and ψ
∗
y = ψy,

the complex conjugate of iψxψy can be calculated as

(iψxψy)
∗ = i∗ψ∗yψ

∗
x = −iψyψx = iψxψy. (2.85)

Hence the super-reality condition is satis�ed, which is otherwise violated if i in the ex-

pression is removed. Note that the complex conjugate of the multiplication of Grassmann

numbers obeys

(ψxψy)
∗ = ψ∗yψ

∗
x, (2.86)

with no extra minus sign, even though both ψx and ψy are Grassmann-odd.
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In summary, we are compelled to include the imaginary number i in the de�nition of

fermion Lagrangian to enforce the super-reality condition. That said, as mentioned earlier,

the imaginary number i is intimately related to the quantum theory. It will be shown later

in this paper that the appearance of i in the fermion Lagrangian is the tip of the iceberg

of quantum essence of almost everything.

3 Spontaneous symmetry breaking

3.1 Vierbein-induced SSB and the residual global Lorentz symmetry

The spontaneous symmetry breaking (SSB) saga of the universe starts with the vierbein

�eld ê acquiring a nonzero vacuum expectation value (VEV). As a consequence, the local

Lorentz gauge symmetry Spin(1, 3) and the di�eomorphism symmetry are violated. The

remaining local gauge symmetries are SU(3)C × SU(2)WL × U(1)WR × U(1)B−L plus a

residual global Lorentz symmetry.

The �ground state� of the vierbein ê and spin connection ω̂ should satisfy the �eld

equations, which are obtained by varying the world action Sworld with the �elds ê and ω̂

independently. The resultant Einstein-Cartan equations read

1

8πG
(R̂ ∧ ê+ ê ∧ R̂− Λ

3!
ê ∧ ê ∧ ê)I = T, (3.1)

1

8πG
(T̂ ∧ ê− ê ∧ T̂ )I = S, (3.2)

where the energy-momentum current 3-form T and the spin current 3-form S arise from the

matter sector, such as the fermion, Yang-Mills, and Higgs action terms. Note that R̂ is the

spin connection curvature 2-form (2.70), and T̂ is the torsion 2-form

T̂ = dê+ ω̂ ∧ ê+ ê ∧ ω̂. (3.3)

When the spin-current S is zero, the second Einstein-Cartan equation (3.2) amounts

to enforcing the zero-torsion condition

T̂ = 0, (3.4)

which can be used to express the spin connection ω̂ in terms of the vierbein ê. In this case,

the remaining (�rst) Einstein-Cartan equation can be shown to be equivalent to the regular

Einstein �eld equations for gravity plus a cosmological constant term.

Upon SSB, the vierbein �eld develops a nonzero VEV

ê = δaµγadx
µ = γµdx

µ, (3.5)

while the spin connection remains zero

ω̂ = 0. (3.6)

It can be veri�ed that both the above ê and ω̂ satisfy the Einstein-Cartan equations, pro-

vided that Λ = 0, T = 0, and S = 0. Subsequently, the space-time metric gµν = 〈êµêν〉
reduces to

gµν = 〈γµγν〉 = ηµν , (3.7)
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which is the Minkowski �at space-time metric.

With the substitution of ê and ω̂ by the above values, the fermion action in the �at

Minkowski space-time reduces to

Sfermion =

∫
i
〈
ψ̄Lγ

µDLµψL + ψ̄Rγ
µDRµψR

〉
d4x, (3.8)

where

DLµψL = (∂µ + ŴLµ)ψL + ψL(Ĝµ + ÂBLµ), (3.9)

DRµψR = (∂µ + ŴRµ)ψR + ψR(Ĝµ + ÂBLµ). (3.10)

Similarly, the Yang-Mills action(2.79) of the left-handed weak interaction F̂WL can be

rewritten as

SYM−Weak−Left = − 1

4gWL

∫
F iWLµνF

i,µν
WL d

4x, (3.11)

where gWL is the dimensionless coupling constant of the left-handed weak interaction. The

Yang-Mills-type action terms of the right-handed weak, strong, and BL interactions take a

similar form, with coupling constants gWR, gG, and gBL, respectively. Note that

γµηµν = γν , (3.12)

F i,µνWL ηµαηνβ = F iWLαβ, (3.13)

where {γµ} is the reciprocal frame of {γa}. The reciprocal frame {γµ} is the avatar of the
vierbein 3-form Iê ∧ ê ∧ ê from the original fermion Lagrangian (2.77) when the vierbein

�eld ê acquires the nonzero VEV in eq. (3.5). Therefore, when the fermion action in the �at

Minkowski space-time (3.8) is employed to derive the massless Dirac equation (the Dirac

equation with nonzero mass will be discussed in Section 3.3)

γµDL,µψL = 0, (3.14)

γµDR,µψR = 0, (3.15)

what shows up in the Dirac equation is the reciprocal frame. As such, it's the reciprocal

frame {γµ} that corresponds to the gamma matrices used in the conventional formalism.

This fact also explains the minus sign we mentioned earlier: −I plays the role of the

conventional pseudoscalar when it is applied to the left side of a spinor such as −Iψ. The
conventional pseudoscalar is de�ned using the reciprocal frame {γµ}, whereas we de�ne the
pseudoscalar using the original Cli�ord algebra basis {γa}. Hence there is a minus sign.

It's worth mentioning that when we derive the �at space-time fermion action from the

curved space-time counterpart, we have also leveraged (γµ)† = γ0γ
µγ0 and the following

properties

〈FG〉 = −〈GF 〉 , (3.16a)〈
(FG)†

〉
= −〈FG〉 , (3.16b)
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where the Grassmann-old F and G are functionals of odd multiples of ψ(x) and ψ̄(x). The

minus sign arises from the Grassmann-old nature of ψ(x) and ψ̄(x).

Upon SSB induced by the nonzero VEV of the vierbein ê, both the local Lorentz

gauge symmetry Spin(1, 3) and the di�eomorphism symmetry are violated. That said, it

can be veri�ed that the fermion (3.8) and the Yang-Mills (3.11) actions in �at Minkowski

space-time is invariant under a residual global Lorentz transformation

xµ → (Λ−1)µνx
ν , (3.17)

W i
Lµ(x) → (Λ−1)νµW

i
Lν(Λ−1x), (3.18)

ψ(x) → e
1
4
θabγaγbψ(Λ−1x), (3.19)

where the Lorentz transformation parameters θab = −θba and Λµν are related via the equa-

tion

e
1
4
θabγaγbγµe−

1
4
θabγaγb = Λµνγ

ν . (3.20)

Note that the global Lorentz rotation parameters θab above are independent of position, as

opposed to the position-dependent θab(x) for the local Lorentz gauge transformations.

The situation here parallels the Higgs mechanism where there remains a global SU(2)

custodial symmetry37 after the electroweak symmetry breaking. In the case of the vierbein-

induced SSB, the vestigial global Lorentz symmetry is a synchronization (enforced by eq.

(3.20)) of the global portion of the local Lorentz gauge transformation (e
1
4
θabγaγb) for spinors

and the global volume-preserving portion of the di�eomorphism transformation (Λνµ) for

space-time coordinates. The local Lorentz gauge transformation involves Cli�ord algebraic

elements such as γaγb labeled by Roman indices, while the di�eomorphism transformation

involves coordinates xµ and gauge �elds (e.g. the electromagnetic �eld Aµ in eq. (1.12))

labeled by Greek indices. At the nexus is the VEV of the vierbein eaµ = δaµ which acts as a

solder form gluing together the Roman and Greek propers.

3.2 Majorana mass and absence of neutrinoless double beta decay

The second stage of SSB is triggered by the Majorana Higgs �eld φM that couples to

the right-handed neutrinos only. It is a Higgs-like bosonic �eld in addition to the well

known electroweak symmetry-breaking Higgs �eld φ of the standard model. The VEV of

φM generates Majorana mass for the right-handed neutrinos and that's why we call it the

Majorana Higgs �eld. It breaks the gauge symmetries from SU(3)C×SU(2)WL×U(1)WR×
U(1)B−L down to the standard model symmetries. This subsection also presents one major

thesis of our paper: the neutrino Majorana mass preserves lepton number and therefore it

does not lead to the neutrinoless double beta decay.

The Majorana Higgs �eld φM is valued in the real Cli�ord algebraic subspace spanned

by two multivectors

φM = (φM1 + φM2I)γ0Pl, (3.21)
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where φM1 and φM2 are two real numbers, and Pl is the lepton projection operator (2.8).

The Majorana Higgs �eld obeys gauge transformation rules

φM → e−
1
2
θWRI− 1

2
εBLJ φM e

1
2
θWRI+

1
2
εBLJ , (3.22)

where θWR and εBL are the right-handed weak U(1)WR and BL U(1)B−L gauge transfor-

mation parameters. As such, φM is invariant under the Lorentz Spin(1, 3) (Lorentz scalar),

left-handed weak SU(2)WL (weak singlet), and color SU(3)C (color singlet) gauge transfor-

mations. Given that JPl = −IPl, one can replace J with −I in the above transformation.

We keep J to highlight its relevance to the BL symmetry. Note that φM is Cli�ord-odd,

di�erent from the Cli�ord-even electroweak Higgs �eld which will be investigated in Sec-

tion 3.3.

The Majorana Higgs Lagrangian reads

LHiggs−Majorana =
〈

(DµφM )†(DµφM )− VM + (yM iI)ν̄R(IΓ2Γ3)νRφM

〉
, (3.23)

where νR is the right-handed neutrino, yM is the Majorana Yukawa coupling constant, and

the Majorana Higgs potential VM is

VM = −µ2
Mφ
†
MφM + λM (φ†MφM )2. (3.24)

The gauge-covariant derivative of φM is de�ned as

DµφM = (∂µ −
1

2
WRµI −

1

2
ABLµJ)φM + φM (

1

2
WRµI +

1

2
ABLµJ), (3.25)

which involves the right-handed weak gauge �eld ŴRµ and the BL gauge �eld ÂBLµ. Note

that the bivector Γ2Γ3 in the Yukawa term can be replaced by an arbitrary combination

of Γ2Γ3 and Γ1Γ3. But it does not change the overall picture. The imaginary number i

shows up in the Yukawa term. This is in compliance with the super-real condition for the

Majorana Higgs Lagrangian.

Given that φM is a weak singlet, the Majorana Yukawa term couples with the right-

handed fermions only, as opposed to the electroweak Higgs Yukawa term which couples with

both the left- and right-handed fermions. The Majorana Higgs Lagrangian LHiggs−Majorana

can be veri�ed to be SU(3)C × SU(2)WL × U(1)WR × U(1)B−L gauge invariant. Due to

the gauge transformation properties of φM (3.22), it can be shown that a similar Majorana

Yukawa term for the right-handed electrons is prohibited since such a term violates the

gauge symmetries. Therefore, the Majorana Yukawa term couples to the right-handed

neutrinos exclusively.

By virtue of the Mexican hat-shaped potential VM , the Majorana Higgs �eld φM ac-

quires a nonzero VEV

φM =
1√
2
υMγ0Pl, (3.26)

where υM = µM√
λM

is called the Majorana scale (or the seesaw scale).
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As a result, the gauge symmetry related to the gauge �eld Ẑ ′µ

Ẑ ′µ = WRµI +ABLµJ = (WRµ −ABLµ)I, (3.27)

is spontaneously broken. The would-be Nambu-Goldstone boson is "eaten� by the gauge

�eld Ẑ ′µ which gains a mass as a consequence. The local gauge symmetries are broken

down to the standard model symmetries SU(3)C ×SU(2)WL×U(1)Y , with the the hyper-

charge gauge symmetry U(1)Y speci�ed by the synchronized double-sided gauge transfor-

mations (2.49). The U(1)Y gauge �eld ÂY remains massless and has an e�ective coupling

constant of15

gY =
gWRgBL√
g2
WR + g2

BL

, (3.28)

where gWR and gBL are the right-handed weak and the BL coupling constants, respectively.

After replacement of φM with its VEV, the Majorana Yukawa term reduces to the

Majorana mass term of the right-handed neutrino

Mi 〈Iν̄R(IΓ2Γ3)νRγ0〉 = Mi 〈Iν̄R(νR)C′〉 , (3.29)

where (νR)C′ is the weaker form charge conjugation C ′ (2.55) of νR and the Majorana mass

M is

M =
1√
2
yMυM . (3.30)

It can be veri�ed that the Majorana mass term respects all the standard model symmetries.

This kind of mass is allowed for a standard model singlet such as νR. It can also be shown

that the Majorana mass term is permitted only if νR is valued in the Grassmann-odd Cli�ord

algebraic space. On the other hand, it would be identically zero if νR were valued in the

real Grassmann-even Cli�ord algebraic space.

If we juxtapose the Majorana mass term with a typical Dirac mass term between

neutrinos

mνi 〈Iν̄ν〉 = mνi 〈Iν̄LνR + Iν̄RνL〉 , (3.31)

we can see that the former couples ν̄R with (νR)C′ , while the later couples ν̄R with νL.

We know that the weaker form of charge conjugation C ′ (2.55) is a Cli�ord-odd operation.

It converts the Cli�ord-even νR to Cli�ord-odd (νR)C′ . Consequently, (νR)C′ is e�ectively

left-handed and could be coupled to the right-handed ν̄R in a similar fashion as the Dirac

mass term.

The observation of neutrino oscillations28,29,30 indicates that neutrinos have nonzero

masses which are much smaller than that of the other standard model fermions. If we

assume that the neutrino Majorana mass M is much heavier than the neutrino Dirac mass

m, a very small e�ective mass of the order of m2
ν/M can thus be generated for the neutrino.

This appealing explanation for the tiny neutrino mass is historically called the seesaw
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mechanism.25 If we could experimentally detect the Majorana nature of the neutrino mass,

it would lend support to the seesaw mechanism.

Given that the traditional de�nition of the Majorana mass involves the charge conju-

gation C (2.54) that converts a particle into its corresponding antiparticle, the traditional

Majorana mass term violates the conservation of lepton number and could be con�rmed

by the lepton number-violating process of the neutrinoless double beta decay. Therefore,

it's widely believed that the observation of the neutrinoless double beta decay could be a

con�rmation of the Majorana mass. The lepton number-violating process can also be used

to explain the origin of matter in the universe via a mechanism known as leptogenesis.38

A slew of experiments have been commissioned to search for the neutrinoless double beta

decay. As of yet, no evidence of such decay has ever been found.39,40

On the other hand, the weaker form of charge conjugation C ′ (2.55) does not invoke

complex conjugate, and thus there is no particle-antiparticle interchange. Consequently, the

Majorana mass term as shown in eq. (3.29) conserves lepton number, which is dissimilar to

the traditional Majorana mass term that invokes the stronger form of charge conjugation C.

This suggests that the absence of the neutrinoless double beta decay does not disapprove

the Majorana mass as de�ned in eq. (3.29). We shall seek other means of the Majorana

mass detection.

3.3 Scalar and antisymmetric-tensor Higgs �elds

The third step of SSB concerns the well known electroweak symmetry-breaking Higgs �eld

φ of the standard model which couples with both the left-handed and the right-handed

fermions. The VEV of the scalar φ breaks the standard model symmetries down to SU(3)C×
U(1)EM . The SSB pattern outlined in this subsection is in many ways similar to the

the conventional Higgs mechanism, only that it's transposed onto the Cli�ord algebraic

landscape. That said, toward the end of this subsection we will touch upon a non-scalar

Higgs �eld which could have cosmological implications.

The Higgs �eld φ is valued in the real Cli�ord algebraic subspace spanned by four

Cli�ord-even multivectors

φ = (φ0 + φ1Γ2Γ3 + φ2Γ3Γ1 + φ3Γ1Γ2)P+, (3.32)

where P+ is the projection operator (2.10) with the property Γ1Γ2P+ = −IP+. The four real

coe�cients {φa; a = 0, 1, 2, 3} correspond to the 2 complex components (i.e. 4 real degrees

of freedom) of the traditional Higgs doublet. The Higgs �eld obeys gauge transformation

rules

φ → e
1
2
θ1WLΓ2Γ3+ 1

2
θ2WLΓ3Γ1+ 1

2
θ3WLΓ1Γ2 φ e−

1
2
εY Γ1Γ2 , (3.33)

where {θ1
WL, θ

2
WL, θ

3
WL} and εY are the left-handed weak SU(2)WL and the hypercharge

U(1)Y gauge transformation parameters. As such, φ is a weak doublet and is invariant

under the Lorentz Spin(1, 3) (Lorentz scalar) and the color SU(3)C (color singlet) gauge

transformations. Given that P+Γ1Γ2 = −P+I, one can replace −1
2εY Γ1Γ2 with

1
2εY I in the

above transformations and therefore the Higgs �eld has Hypercharge 1 (or 1
2 depending on
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the Hypercharge de�nition convention). We keep −1
2εY Γ1Γ2 to highlight its relevance to

the Hypercharge symmetry (2.49).

Note that the Higgs �eld could take values in a complimentary Cli�ord-even subspace

φ = (φ0 + φ1Γ2Γ3 + φ2Γ3Γ1 + φ3Γ1Γ2)P−, (3.34)

where the projection operator is changed from P+ to P−. We call the original φ (3.32)

and the complimentary φ (3.34) the φ+-type and φ−-type Higgs �elds, respectively. They

have opposite Hypercharges and thus their coupling patterns with the isospin up-type and

down-type fermions di�er from each other. This additional φ−-type Higgs �eld can be

exploited in various extensions of the standard model such as the two-Higgs-doublet model

(2HDM)41,42 or the three-Higgs-doublet model (3HDM).43 We will circle back to this point

in Section 3.4. But for now, let's focus on the φ+-type Higgs �eld only.

The standard model gauge-invariant Higgs Lagrangian reads

LHiggs−Electroweak =
〈

(Dµφ)†(Dµφ)− VM + (yeiIl̄LφeR + h.c.)
〉
, (3.35)

where lL = νL + eL is the left-handed lepton doublet, eR is the right-handed electron, ye is

the Yukawa coupling constant, and Higgs potential V is

V = −µ2φ†φ+ λ(φ†φ)2. (3.36)

The gauge-covariant derivative is de�ned as

Dµφ = (∂µ +
1

2
W 1
LµΓ2Γ3 +

1

2
W 2
LµΓ3Γ1 +

1

2
W 3
LµΓ1Γ2)φ− φ(

1

2
AY µΓ1Γ2), (3.37)

which involves the left-handed weak gauge �eld ŴLµ and the Hypercharge gauge �eld ÂY µ.

We omit Yukawa terms for non-electron fermions which will be investigated in more detail

in Section 3.4 when we tackle the issue of the fermion mass hierarchies. Note that the

imaginary number i shows up in the Yukawa term. This is in compliance with the super-

real condition.

By virtue of the Mexican hat-shaped potential V , the Higgs �eld acquires a nonzero

VEV

φ =
1√
2
υEWP+, (3.38)

where υEW = µ√
λ
is usually called the electroweak scale. As a result, the gauge �elds Ŵ±Lµ

and Ẑµ gain masses. The standard model symmetries are broken down to SU(3)C×U(1)EM .

The electromagnetic U(1)EM gauge �eld Â remains massless and has an e�ective coupling

constant of15

gEM =
gWLgWRgBL√

g2
WLg

2
WR + g2

WLg
2
BL + g2

WRg
2
BL

, (3.39)
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where gWL, gWR and gBL are the left-handed weak, the right-handed weak and the BL cou-

pling constants, respectively. The electromagnetic �eld Â-related gauge-covariant derivative

of the algebraic spinor ψ can be cast into the form

Dµψ = (∂µ +
1

2
AµΓ1Γ2)ψ + ψ(

1

2
AµJ) = ∂µψ + qAµψI, (3.40)

where q is the electric charge.

With replacement of φ with its VEV, the Yukawa term reduces to the Dirac mass term

of electron

mei 〈Iēe〉 = mei 〈IēLeR + IēReL〉 , (3.41)

where the electron mass me is

me =
1√
2
yeυEW . (3.42)

At this �nal stage of SSB, we are ready to write down the action of the electron

Selectron =

∫
L d4x = i

∫ 〈
ψ̄γµ(∂µψ + qAµψI) +mψ̄ψI

〉
d4x, (3.43)

where q = −1 and we relabel e as ψ and me as m. The Cli�ord algebraic Dirac equation

can be readily derived

γµ(∂µψI − qAµψ)−mψ = 0. (3.44)

It's similar to the conventional Dirac equation, provided that i is replaced with I posi-

tioned on the right side of ψ. It can be used to derive the equation for the C ′ charge

conjugation (2.55) counterpart ψc′

γµ(∂µψc′I + qAµψc′)−mψc′ = 0. (3.45)

The above equation demonstrates that the weaker form of charge conjugation C ′ indeed

changes the sign of the electric charge.

The electroweak symmetry breaking process delineated above bears close resemblance

to the traditional Higgs mechanism. Curiously, the Cli�ord algebra framework allows for a

non-scalar Higgs �eld φAT which could potentially break both the electroweak and Lorentz

symmetries. The non-scalar Higgs �eld is valued in the real Cli�ord algebraic subspace

spanned by 4 ∗ 6 = 24 Cli�ord-even multivectors15

γaγb, γaγbΓiΓj , (3.46)

where i, j = 1, 2, 3, i>j, a, b = 0, 1, 2, 3, a>b. We have the �exibility of only considering

the projected portion of it φAT± = φATP± with each half having 12 independent Cli�ord

algebraic components. The non-scalar Higgs �eld obeys the transformation rules

φAT → e
1
4
θabγaγb+

1
2
θ1WLΓ2Γ3+ 1

2
θ2WLΓ3Γ1+ 1

2
θ3WLΓ1Γ2 φAT e

− 1
2
εY Γ1Γ2− 1

4
θabγaγb , (3.47)
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where θabγaγb represents Lorentz transformations. As such, φAT is a weak doublet as well as

a Lorentz sextet (an antisymmetric tensor rather than a scalar). If φAT acquires a nonzero

VEV

φAT =
1√
2
υATγ0γ3, (3.48)

it would break the electroweak and Lorentz symmetries at the same time, since it sin-

gles out a speci�c space-time direction via γ0γ3. The magnitude of this VEV could be

extremely small compared with the electroweak scale υAT � υEW , rendering the υAT -

related e�ects unobservable in laboratories. We hypothesize that the ethereal VEV of the

antisymmetric-tensor Higgs �eld might manifest itself as the large-scale anisotropies of the

universe.44,45,46,47,48,49

3.4 The 3HDM and the fermion mass hierarchy problem

Dimensionless ratios between physical constants appearing in a physical theory cannot be

accidentally small. The technical naturalness principle is elegantly de�ned by 't Hooft:50

a quantity should be small only if the underlying theory becomes more symmetric as that

quantity tends to zero. Weakly broken symmetry ensures that the smallness of a parameter

is preserved against possible large quantum corrections.

For the application of the naturalness principle, let's examine two global symmetries

related to the vector UV (1) phase transformation

ψL → ψLe
θV I , ψR → ψRe

θV I , (3.49a)

φM → φMe
2θV I , (3.49b)

φ → φ, (3.49c)

and the axial UA(1) phase transformation

ψL → ψLe
−θAI , ψR → ψRe

θAI , (3.50a)

φM → φMe
2θAI , (3.50b)

φ → φe2θAI , (3.50c)

where ψL is the left-handed spinor, ψR is the right-handed spinor, φM is the Majorana

Higgs �eld, and φ is the regular Higgs �eld. The phase transformation rules for φM and φ

may not seem intuitive. But when we consider φM and φ as multi-fermion condensations

in Section 4.2, the reason for these transformation rules will become clear.

For later discussion, let's also introduce a Uα(1) phase transformation for the right-

handed spinors

ψL → ψL, ψR → ψRe
αI , (3.51a)

φM → φMe
2αI , (3.51b)

φ → φeαI , (3.51c)

which is basically a combination of UV (1) and UA(1) .
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It can be checked that, when φM and φ are replaced by their VEVs, the Majorana (3.29)

and Dirac (3.41) mass terms violate the UV (1)/UA(1)/Uα(1) and UA(1)/Uα(1) symmetries,

respectively. Hence the Majorana and Dirac masses are technically natural, given that these

global symmetries can be restored if the Majorana and Dirac masses were set to zero. In

other words, the smallness of the Majorana and Dirac masses are protected by the global

symmetries against possible large quantum corrections.

Prior to the SSB induced by φM and φ, these two Higgs �elds would transform according

to the aforementioned phase transformation rules. It can be shown that all the terms of the

Lagrangian of the world (2.73) respect the UV (1), UA(1), and Uα(1) global symmetries, with

only one exception which is the UA(1)/Uα(1)-violating electron Yukawa term in eq. (3.35).

It would be nice if we can tinker with the UA(1)/Uα(1) transformation rule for φ, so that the

whole Lagrangian of the world is invariant. Contrary to our expectation, it's not achievable.

Within the con�nes of a single standard model Higgs �eld φ, it is impossible to make both

the isospin up-type and down-type fermion Yukawa terms UA(1)/Uα(1)-invariant.

The seemingly worrisome symmetry-violating Yukawa terms can be turned into our

advantage. In the spirit of the technical naturalness principle, we can exploit the global

symmetry properties to explain the vast range of fermion masses which span �ve orders of

magnitude between the heaviest top quark and the lightest electron. The key for solving the

fermion mass hierarchy problem is to realize that some of the Yukawa coupling constants

are actually not constants at all.16 Embedded in the Yukawa couplings, there are six

Cli�ord-valued bosonic scalar �elds

Φαt = Φαt1 + Φαt2I, Φβt = Φβt1 + Φβt2I, (3.52)

Φαντ = Φαντ1 + Φαντ2I, Φβντ = Φβντ1 + Φβντ2I, (3.53)

Φατ = Φατ1 + Φατ2I, Φβτ = Φβτ1 + Φβτ2I, (3.54)

where all the coe�cients, such as Φαt1 and Φαt2, are real numbers.

The three α-type Φ �elds are tied to the U(1)α symmetry, while the three β-type Φ

�elds are tied to a novel U(1)β symmetry (see table 1). The symmetry-violating e�ective

Yukawa terms are originated from these six Φ �elds acquiring nonzero VEVs via the SSB

mechanism. Note that these Φ �elds are gauge singlets, i.e. they are invariant under all

gauge transformations. This is in contrast to the regular electroweak Higgs �eld which is a

weak SU(2)WL doublet.

To account for the masses of the three families of fermions, we adopt three Higgs �elds

in our model (a.k.a. 3HDM), namely, the top-quark Higgs �eld φt, the tau-neutrino Higgs

�eld φντ , and the tau-lepton Higgs �eld φτ . The naming convention of the three Higgs

�elds (and the six Φ �elds) will become clear when we related them to their corresponding

quantum condensations in Section 4.2. Among these Higgs �elds, φt and φντ are φ+-type

Higgs �eld (3.32), while φτ is φ−-type Higgs �eld (3.34). All the three Higgs doublets obey

the usual gauge transformation rules for the electroweak Higgs �eld (3.33).

We introduce one more global symmetry U(1)β which, like U(1)α, is related to the

phases of the right-handed fermions. However, the U(1)β charge is not uniformly assigned

to fermions. While Uα(1) transforms all the right-handed fermions by the same phase eαI ,
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Uβ(1) transforms the isospin up-type quarks (uR, cR, tR) and down-type leptons (eR, µR,

τR) by the phase eβI and it transforms the down-type quarks (dR, sR, bR) and up-type

leptons (νeR, νµR, ντR) by the opposite phase e−βI . The U(1)α/U(1)β charge assignments

are summarized in table 1

Table 1. The U(1)α and U(1)β charge

uR,cR,tR dR,sR,bR φt φντ φτ Φαt, Φαντ , Φατ Φβt, Φβντ , Φβτ

eR,µR,τR νeR,νµR,ντR
U(1)α 1 1 1 1 1 -2 0

U(1)β 1 -1 1 -1 1 0 -2

It will be shown later in this subsection that the two global symmetries U(1)α and U(1)β
are instrumental in determining the relative magnitudes of the e�ective Yukawa coupling

constants, and consequently establishing the fermion mass hierarchies. As the U(1)α charge

assignment is analogous to that of the Peccei-Quine U(1)PQ symmetry,51 we will use the

term U(1)α and U(1)PQ interchangeably henceforth.

Now we are ready to write down the Yukawa coupling terms for all three generations

of the standard model fermions (plus right-handed neutrinos)

i
〈
gtIq̄

3
Lφ̃ttR + gνeΦ

†
βtIl̄

1
Lφ̃tνeR + gbΦαtIq̄

3
LφtbR + geΦαtΦβtIl̄

1
LφteR

〉
+ h.c. (3.55a)

+i
〈
gντ Il̄

3
Lφ̃ντ ντR + gcΦβντ Iq̄

2
Lφ
†
ντ cR + gµΦαντ Il̄

2
LφντµR + gdΦαντΦ†βντ Iq̄

1
LφντdR

〉
+ h.c.

(3.55b)

+i
〈
gτIl̄

3
Lφ̃ττR + gsΦ

†
βτIq̄

2
Lφ̃τsR + gνµΦατIl̄

2
LφτνµR + guΦατΦβτIq̄

1
LφτuR

〉
+ h.c., (3.55c)

where gt, gντ , · · · are the bare Yukawa coupling constants which are dimensionless parame-

ters of order O(1). The left-handed doublets are

l1L = νeL + eL, q1
L = uL + dL, (3.56)

l2L = νµL + µL, q2
L = cL + sL, (3.57)

l3L = ντL + τL, q3
L = tL + bL, (3.58)

where quarks stand for color triplets, such as uL = urL + ugL + ubL. From the Yukawa

coupling pattern we can tell that the Φ singlets are of mass dimension zero, di�erent from

the traditional mass dimension-one scalar �elds. Alternatively, we can rewrite these singlets

as the conventional mass dimension-one scalar �elds, as long as they show up in the Yukawa

terms as Φ/M with M being an unknown energy scale.

Note that in the literature, the φ+-type and φ−-type Higgs �eld are called down-type

and up-type Higgs �elds, respectively. As we have mentioned before, φt is a φ+-type Higgs

�eld, which means that it can only couple to the isospin down-type fermions such as bR
and eR, whereas direct coupling to the up-type fermions is prohibited. Only a transformed

form of φt

φ̃t =
1

4
γµφtγµ, (3.59)
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can couple to the up-type fermions such as tR and νeR. Similar logic applies to φντ and φτ ,

which are φ+-type and φ−-type, respectively. It's worth mentioning that the conventional

formalism leverages a di�erent transformation of the standard model Higgs �eld

φ̃ = iσ2φ
∗, (3.60)

so that φ̃ can be coupled to up-type fermions. It involves the complex conjugate, whereas

the Cli�ord algebra version (3.59) doesn't.

The Yukawa coupling scheme (3.55) partitions fermions into three cohorts, namely

φt cohort : t, νe, b, e, (3.61)

φντ cohort : ντ , c, µ, d, (3.62)

φτ cohort : τ, s, νµ, u. (3.63)

The right-handed fermions in each cohort only couple to the designated Higgs �eld, thus

preventing the �avor-changing neutral currents (FCNCs). Within each Higgs �eld cohort,

only one out of four Yukawa terms is free from the Φ singlets, since it is impossible to

make the relevant Yukawa terms simultaneously U(1)α/U(1)β invariant without including

the additional Φ singlets. After inserting these Φ singlets in the Yukawa couplings, it can

be veri�ed that all the Yukawa terms respect the U(1)α and U(1)β global symmetries.

The coupling patterns (3.55) of the three Higgs �elds are predicated on an alternative

generation/family assignment,

Generation 0 : t, b, νe, e, (3.64)

Generation + : c, s, ντ , τ, (3.65)

Generation − : u, d, νµ, µ, (3.66)

which are tied to the �avor projection operators {ζ0, ζ+, ζ−}.15,16 These �avor projection

operators dictate the ζ+/ζ− mixing between the φντ cohort and the φτ cohort. The projec-

tion operators can also be applied to the Majorana-type Yukawa coupling and the resultant

Majorana mass can directly mix the νµR and ντR neutrinos15,16 which is evidenced in the

observation of neutrino oscillations.28,29,30 Other �avor mixing phenomena might also be

accommodated by the framework, which we leave to future research.

We assume that the Lagrangians of the three Higgs doublets and six Φ singlets are

analogous to the one speci�ed for the regular Higgs mechanism (3.35), albeit the scalar

potential V could be more complicated with cross terms mixing di�erent scalar �elds.42,43

The study of the exact form of V is beyond the scope of this paper. For our purpose here,

we just postulate that these scalar �elds acquire the following nonzero VEVs

φt =
1√
2
υtP+, φντ =

1√
2
υντP+, φτ =

1√
2
υτP−, (3.67)

Φαt = υαt, Φαντ = υαντ , Φατ = υατ , (3.68)

Φβt = υβt, Φβντ = υβντ , Φβτ = υβτ . (3.69)
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The three Φα-type �elds break the global U(1)α/U(1)PQ symmetry, while the three

Φβ-type �elds break the global U(1)β symmetry. Note that the Φ �elds do not break

any local gauge symmetry since they are gauge singlets. Post the SSB, there will be six

massive sigma modes and six Nambu-Goldstone modes. As opposed to the Higgs mecha-

nism, the Nambu-Goldstone modes are not �eaten� by the gauge �eld. Due to the explicit

symmetry breaking originated from the quantum anomaly and instanton e�ects, the oth-

erwise massless Nambu-Goldstone bosons of the three Φα �elds acquire masses and turn

into pseudo-Nambu-Goldstone bosons in a similar fashion as the axions.51,52,53 Since the

Φα �elds are local gauge (especially electroweak) singlets, they are more in line with the

invisible axions.54,55,56,57 The axions have historically been proposed as dark matter can-

didates and as a possible solution to the strong CP problem. We leave the investigation of

the U(1)β-type (pseudo-)Nambu-Goldstone boson's role as dark matter to future study.

After replacement of the three Higgs doublets and six Φ singlets with their VEVs, the

Yukawa terms reduce to the Dirac mass terms

gtυti 〈It̄t〉+ gνeυβtυti 〈Iν̄eνe〉+ gbυαtυti
〈
Ib̄b
〉

+ geυαtυβtυti 〈Iēe〉 (3.70a)

+gντυντ i 〈Iν̄τντ 〉+ gcυβντυντ i 〈Ic̄c〉+ gµυαντυντ i 〈Iµ̄µ〉+ gdυαντυβντυντ i
〈
Id̄d
〉

(3.70b)

+gτυτ i 〈Iτ̄τ〉+ gsυβτυτ i 〈Is̄s〉+ gνµυατυτ i 〈Iν̄µνµ〉+ guυατυβτυτ i 〈Iūu〉 , (3.70c)

where for brevity sake, all terms are multiplied by
√

2.

Before making contact with the experimental results, we have to identify which mode

of the three Higgs doublets corresponds to the 125 GeV boson observed at the Large Hadron

Collider.58,59 Generally speaking, a Higgs boson can be de�ned as a linear combination of

the Cli�ord-scalar sector (with VEVs subtracted) of the three Higgs �elds. For a order-of-

magnitude kind of analysis, let's assume that the 125 GeV Higgs boson is aligned with the

top-quark Higgs �eld φt. Therefore the VEV of φt is approximately

υt ≈ 246GeV, (3.71)

and the bare Yukawa coupling constant gt can be identi�ed as the top quark Yukawa

constant yt = gt. For the sake of estimation, we make the further assumption that the bare

Yukawa coupling constants are almost uniform

yt = gt ≈ gνe ≈ · · · ≈ gu. (3.72)

The standard model Yukawa constants, except yt, can be identi�ed as e�ective coupling

constants. For example, the bottom quark's e�ective Yukawa constant is yb = ytυαt, and

tau neutrino's e�ective Yukawa constant is yντ = ytυντ /υt.

Aided by the above assumptions and the mass formula (3.70), we arrive at an estimation

of the Higgs/Φ VEVs and the neutrino Dirac masses as shown in table 2, where the known

fermion masses are also included for comparison.
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Table 2. Higgs VEVs (MeV), Φ VEVs, and Dirac masses (MeV)

φt Cohort φντ Cohort φτ Cohort

Higgs VEVs υt 246,000 υντ 41,900 υτ 2,530

Φα VEVs υαt 1/41 υαντ 1/278 υατ 1/44

Φβ VEVs υβt 1/8200 υβντ 1/23 υβτ 1/19

t 173,000 ντ 29,500 τ 1,780

Dirac Masses νe 21 c 1,280 s 96

b 4,180 µ 106 νµ 40

e 0.51 d 4.6 u 2.2

There are a couple of takeaways from the above estimations. Firstly, the magnitudes

of Φ VEVs (υαt, υβt, · · · ) are all small, albeit to varying degrees. In accordance with the

technical naturalness principle of 't Hooft,50 the weakly broken symmetries of U(1)α/U(1)β
ensure that the smallness of the VEVs is preserved against possible quantum corrections. We

have mentioned earlier that the Φ singlets can be considered as traditional mass dimension-

one scalar �elds characterized by an unknown energy scale M . Given that the VEVs of

the Majorana Higgs �eld and the three electroweak Higgs �elds violate the U(1)α/U(1)β
symmetries as well, we assume that the energy scale M is higher than the Majorana scale

υM (3.26). This is to make sure that the Φ �eld-induced U(1)α/U(1)β global symmetry

breaking process is decoupled from the Higgs(-like) symmetry breaking mechanism triggered

by either the Majorana Higgs �eld φM or the electroweak Higgs �elds φt, φντ , and φτ .

The Φ VEVs play a crucial role in determining the magnitudes of the e�ective Yukawa

constants and thus establishing fermion mass hierarchies within each of the φt, φντ , and

φτ cohorts. On the other hand, the relative fermion mass sizes between di�erent φ cohorts

are controlled by the Higgs �eld VEVs (υt, υντ , υτ ). The fermion masses within a given φ

cohort are mostly in a descending order in each column of table 2. The only exception is

the reversed order between the νe and b masses due to the abnormally small magnitude of

the Φβt VEV (υβt ∼ 1/8200) compared with the other Φ VEVs. Note that the estimated

neutrino masses are meant to be the Dirac masses, as opposed to the much smaller seesaw

e�ective masses or the vastly larger Majorana masses outlined in Section 3.2. Interestingly,

according to our estimation, the Dirac mass of the ντ neutrino (mντ ∼ 29, 500MeV ) is

considerably larger than those of the νµ and νe neutrinos (mνµ ∼ 40MeV and mνe ∼
21MeV ).

Secondly, assuming that there is no cross term between the kinetic part of the three
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Higgs Lagrangians, the masses of the W± and Z0 bosons can be calculated as

mW± =
1

2
υtotalgWL, (3.73)

mZ0 =
1

2
υtotal

√
g2
WL + g2

Y , (3.74)

where gWL and gY are the weak and Hypercharge gauge coupling constants. The total

electroweak scale υtotal is dependent on all three Higgs VEVs

υtotal =
√
υ2
t + υ2

ντ + υ2
τ . (3.75)

According to table 2, the estimated three Higgs VEVs {υt, υντ , υτ } have a hierarchical

structure

246 GeV � 41 GeV � 2.5 GeV, (3.76)

where the φt Higgs VEV is signi�cantly larger than the other two. The φντ Higgs VEV

plays a non-negligible role in the electroweak scale saturation. The total electroweak scale

υtotal is dominated by the φt Higgs VEV. The ratio between them is given by

υtotal
υt

= 1.014. (3.77)

Given the assumption that the 125 GeV Higgs boson is attributed to the top-quark Higgs

�eld φt, this 1.4% discrepancy might be the underlying reason for the deviation of the

measured W-boson mass from the standard model prediction.60 If we tweak the uniform

Yukawa coupling assumption by proposing that the bare Yukawa couplings of the φντ cohort

are 5 times larger than the other bare Yukawa couplings, then the υtotal/υt di�erence is

around 0.06%, close to what is observed by the CDF Collaboration.60

And lastly, according to the Yukawa coupling scheme (3.55), the muon belongs to the

tau-neutrino Higgs �eld hντ cohort. Given the intrinsic connection between the muon and

the hντ Higgs �eld, it is worthwhile to investigate the hντ Higgs �eld's contribution to the

muon anomalous magnetic moment, especially in light of the recent muon g−2 measurement

with improved accuracy which con�rms a deviation from the standard model prediction.61

4 Quantum emergence and the naturalness problems

4.1 Quantization via the Cli�ord functional integral formalism

As mentioned in the introduction section, there are two kinds of imaginary numbers. One is

the genuine i which is central to the quantum theory. The other one can be replaced by the

pseudoscalar I which shows up in the de�nition of spinors and gauge �elds. Intriguingly, the

imaginary number i is inextricably embedded in the classical fermion Lagrangian, which

suggests that there might be quantum phenomenon lurking beneath the veneer of the clas-

sical Lagrangian terms. It eventually leads us to the epiphany that quantum condensations

may hold the golden key to various sorts of naturalness problems.
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But �rst, let's examine how to quantize classical spinor �elds valued in the Cli�ord

algebraic space. To this end, we have developed the Cli�ord functional integral formalism

in our earlier paper.17 The generating functional Z[η] for the spinors can be represented

by the Cli�ord functional integral

Z[η] =

∫
Dψe

1
2

∫
d4x{iL[ψ]+〈Iη̄(x)ψ(x)+Iψ̄(x)η(x)〉}, (4.1)

where the imaginary number i in front of the Lagrangian is the hallmark of quantization.

The super-real Grassmann-odd sources η(x) and η̄(x) are valued in the same Cli�ord space

as ψ(x) and ψ̄(x). It is understood that Z[η] satis�es the normalization condition Z[0] = 1.

We regard ψ(x) and ψ̄(x) = ψ†(x)γ0 as dependent variables, as opposed to the tradi-

tional way of treating them as independent variables. The same logic applies to η(x) and

η̄(x). Therefore, an extra 1/2 factor in front of the action is required to keep the calculated

quantities, such as the fermion propagators, consistent with those of the conventional for-

malism. Note that the single-source format 〈Iη̄(x)ψ(x)〉 is employed here. Alternatively,

we can adopt the bilocal-source format 〈η̄(x)ψ(x)〉
〈
η(y)ψ̄(y)

〉
17 which is well-suited for the

non-perturbative approximations analogous to the two-particle irreducible (2PI) e�ective

action approach.62

One bene�t of the Cli�ord functional integral formalism is that we don't need to literally

perform the functional integration for most cases. Rather, we resort to the property that

the functional integration of a total functional derivative is zero∫
Dψ δ

δψ(x)
e

1
2

∫
d4x{iL[ψ]+〈Iη̄(x)ψ(x)+Iψ̄(x)η(x)〉} = 0. (4.2)

Similar property holds for ψ̄(x). It means that the functional integral is invariant under a

shift of ψ(x).

In our earlier paper on the Cli�ord functional integral formalism,17 we have provided

the speci�c de�nition of the Cli�ord functional derivatives δ/δψ(x) and δ/δψ̄(x). For our

purpose here, we only need to know the basic Leibniz rule

δ

δψ(x)
〈ψ(y)F [ψ]〉 = δ(x− y)F [ψ] +

δ

δψ(x)

〈
ψ(y)Ḟ [ψ]

〉
,

where the dot on Ḟ [ψ] denotes functional derivative performed on F [ψ] only. Similar Leibniz

rules can be applied to ψ̄(x), η(x) and η̄(x). Coupled with the other two Cli�ord algebra

properties (3.16), we are able to perform the relevant Cli�ord functional derivatives in this

paper.

As an excise, let's apply the property (4.2) to the fermion Lagrangian (3.43) without

the electromagnetic coupling. We arrive at the Schwinger-Dyson (SD) Cli�ord functional-

di�erential equation

γµ∂µ{
δ

δη̄(x)
Z[η]I} −m δ

δη̄(x)
Z[η] + η(x)IZ[η] = 0. (4.3)

The solution to the SD equation can be readily obtained as

Z[η] = e
− 1

2

∫ d4p

(2π)4
〈Iη̄(p)S(p)η(p)〉

, (4.4)
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where η(p) =
∫
d4xη(x)eIp·x and p · x = pµx

µ. Note that η(x)eIp·x 6= eIp·xη(x), since η(x)

has both Cli�ord-even and Cli�ord-odd parts. The Feynman propagator S(p) is given by

S(p) =
1

/p−m+ iε
, (4.5)

where /p = pµγ
µ.

A few comments are in order. First of all, the imaginary number i does not explicitly

show up in the DS equation (4.3). It is because the i in the Cli�ord functional integral (4.1)

and the i in the fermion Lagrangian (3.43) cancel out. When gauge �elds are included in

the Lagrangian, there is no such cancellation due to the absence of i in the Yang-Mills-type

Lagrangian terms.

Secondly, the Feynman propagator S(p) has poles at p2 = m2. The propagator is not

properly de�ned without a prescription on the p0-related integral in the vicinity of the poles.

A well-de�ned Lorentz-invariant Feynman propagator hinges on the contour integral on the

p0 complex plane prescribed by iε. Feynman's iε trick introduces the imaginary number i

through the back door. And this i is of quantum origin too, since it can be demonstrated

that iε is related to the proper time ordering of quantum �elds in the operator formalism

of �eld quantization.

In the subsequent subsections, the Feynman propagator will be used extensively in

various calculations of quantum-loop e�ects. For the sake of brevity, going forward we will

not explicitly write down iε in the propagators.

4.2 Composite Higgs and the Higgs mass naturalness problem

The discovery of the 125 GeV Higgs boson58,59 has renewed the interest in the possible

explanation for the Higgs mass naturalness problem.63,64,65 The 125 GeV Higgs mass is

technically unnatural according to 't Hooft,50 since even if one takes the massless Higgs bo-

son limit, the symmetry of the standard model is not enhanced. The perturbative quantum

corrections tend to draw the Higgs mass towards higher scale. This is in contrast to the

case of the fermion mass, which is protected by the UA(1) global symmetry against possible

large quantum corrections.

One way of addressing the Higgs mass naturalness problem is to replace the fundamen-

tal Higgs boson with a fermion-antifermion condensation, such as in the technicolor66,67,68

and the (extended) top condensation models.69,70,71,72,73,74,75,76,77,78,16 In these models,

the Higgs sector is an e�ective description of the low energy physics represented by the

composite Higgs �eld. The condensation is induced via the dynamical symmetry break-

ing (DSB) mechanism, which is a profound concept in physics. It is introduced into the

relativistic QFT by Nambu and Jona-Lasinio (NJL),79 inspired by the earlier Bardeen-

Cooper-Schriefer (BCS) theory of superconductivity.80

Motivated by the proximity of top quark mass scale and the electroweak symmetry

breaking scale, the top condensation model has been extensively studied. The simplest

version of the top condensation model assumes the top quark-antiquark condensation only.

With a view toward explaining the fermion mass hierarchies in the context of composite

electroweak Higgs bosons, we have proposed the extended top condensation model in our
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previous work.16 In addition to the top quark condensation, the extended top condensation

model involves the tau neutrino and tau lepton condensations as well. The 3HDM in

Section 3.4 is essentially an e�ective representation of these three condensations.

The top condensation model in its original form is based on the NJL-like four-fermion

interactions. For example, the top quark interaction term takes the form

Vtop−quark ∼ g
〈
Iq̄3
Lγ

µq3
LIt̄RγµtR

〉
, (4.6)

where g is the four-fermion coupling constant and q3
L = tL+ bL. Comparing above with the

φt Higgs �eld Yukawa coupling term (3.55), one can see that φt is an e�ective representation

of the fermion-antifermion pair

iφt ∼ gq3
LIt̄R, (4.7)

where the i multiplier will be explained later in this subsection. With the replacement

of the e�ective Higgs �eld, the top quark interaction term (4.6) turns into the top quark

Yukawa term

Vtop−quark ∼ i
〈
Iq̄3
Lγ

µφtγµtR
〉
∼ i
〈
Iq̄3
Lφ̃ttR

〉
, (4.8)

Now let's investigate what kind of Cli�ord algebraic value the e�ective Higgs �eld φt can

take. First of all, φt is Cli�ord-even, given that q3
L is Cli�ord-odd and tR is Cli�ord-

even (meaning that t̄R = t†Rγ0 is Cli�ord-odd). And since tR = P−tR (meaning that

t̄R = (P−t)
†
Rγ0 = t̄RP+), φt = φtP+ should be the φ+-type Higgs �eld. Therefore, there

are 32/2 = 16 components which correspond to the combination of the 4-component φ+-

type scalar Higgs �eld (3.32) and the 12-component φAT+-type antisymmetric-tensor Higgs

�eld (3.46).

For a free fermion, it's straight forward to obtain the solution (4.4) to the SD equa-

tion (4.3). In the presence of interactions such as (4.6), solving the corresponding SD

equation is notoriously hard. The path well trodden is to �nd a perturbative solution, un-

der the assumption that a certain coupling constant is small. In our previous paper,17 we

follow a non-perturbative scheme dubbed as the bilocal-source approximation,81,82 which

e�ectively treats the bilocal-source term as a series expansion parameter. The zeroth-order

approximation of the Cli�ord functional SD equation17 is equivalent to the self-consistent

Hartree mean-�eld approximation (a.k.a. rainbow approximation). According to the DSB

mechanism, when the four-fermion interaction is strong enough, it will trigger a quantum

condensation

iυt ∼ g
∫

d4p

(2π)4

m

p2 −m2
, (4.9)

where υt is the magnitude of the condensation and m is the emergent top quark mass.

We can see that the above integral is quadratically divergent. The integral is seemingly

a real number. However, as we mentioned in Section 4.1, the fermion propagator has

poles at p2 = m2. Feynman's iε trick ensures that the integral on p0 is well-de�ned. The

proper contour integral on the complex plane of p0 (or equivalently the Wick rotation of
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time axis) would pick up an imaginary number i, thus making the quadratically divergent

integral (4.9) imaginary valued. Therefore, even if there is no i in the original four-fermion

interaction (4.6), the imaginary number shows up explicitly in the Higgs Yukawa coupling

term (4.8).

It's well know that the calculations of QFT are plagued by divergent integrals, which

need to be regularized at the intermediate stage. After renormalization, a �nite and regu-

larization scheme-independent result can be obtained for the renormalizable theories. The

top condensation model's four-fermion interaction is nonrenormalizable in the conventional

sense, since the four-fermion interaction is a dimension six operator. That said, as men-

tioned earlier, we subscribe to the general notion of e�ective �eld theory, according to

which the seemingly nonrenormalizable models, including quantum gravity, are nonetheless

manageable renormalization-wise and predictive quantum e�ect-wise, insofar as there is a

separation of low energy physics from the high energy quantum perturbations.32,33,34

Historically the NJL model has been presented with the energy cuto� schemes,83 which

usually break the Lorentz invariance. In the presence of a cuto� scale, the four-fermion in-

teraction coupling constant has to be �ne-tuned in order to establish the hierarchy between

the putative large cuto� scale and the much smaller fermion mass scale. Thus the natural-

ness problem seems to haunt us again in the Lorentz symmetry-violating cuto� approach.

However, there is a Lorentz symmetry-preserving implicit regularization ansatz84,85,86

(IR) where the divergent parts of Feynman integrals are isolated in a few Lorentz-invariant

primitive integrals that are independent of external momentum, whereas the remaining

external momentum-dependent integrals are convergent. Because the convergent integrals

are separated from the divergent ones, the �nite parts can be integrated free from the e�ects

of regularization.

In our earlier paper,17 we applied the IR technique to the NJL-type model. Granted

that the divergent primitive integrals are independent of external momentum, they can

be treated as �nite quantities as a result of unspeci�ed (implicit) regularization. The

central tenet of the IR approach is that no attempt whatsoever shall be made to calculate

these divergent primitive integrals via any explicit regularization. The external momentum-

independent divergent primitive integrals are regarded as free parameters of the model that

shall be determined by comparing with measurable quantities, such as the emergent fermion

mass, the composite boson mass, and the vacuum energy.

Given that no explicit regularization is required in the calculation, the traditional notion

of cuto� scale and �ne-tuned coupling constant are of no relevance in the IR approach. The

smallness of the symmetry breaking scale of the fermion mass m is an a priori assumption.

Once a small scale of m is settled upon at the lower order of approximation, it's ensured

that the smallness of m is preserved against possible higher order disturbances due to the

protection from the weakly broken axial UA(1) symmetry, which is in accordance with the

technical naturalness principle.

Before preceding to examine the bosonic bound state properties of the composite Higgs

model, we would like to mention some open questions. One question is how to properly

calculate the vacuum energy shift due to the quantum condensation. And the other is the

long-standing issue of the momentum routing ambiguity associated with the fermion bubble
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diagram.87 With the goal of tackling this issues, we propose an improved version of the IR

methodology by adding two supplementary rules below.17

Supplementary rule No. 1: The original IR approach sets forth the rule that if an

external momentum-independent primitive divergent integral A such as eq. (4.9) is isolated,

at the �nal stage of calculation it should be replaced with a �nite renormalized value so

that it can be compared with the measurable quantities. We denote this renormalization

procedure (R procedure) as

A → < A >R . (4.10)

Rule No. 1 stipulates that if A and B are related to the same physical process, then

AB → < AB >R 6=< A >R< B >R . (4.11)

In other words, the relationship involving the multiplication of divergent integrals such as

< AB >R=< A >R< B >R shall be avoided if A and B are related to the same physical

process. The value of < AB >R should be treated as independent of < A >R or < B >R.

The R procedure can be applied recursively to the multiplication of two primitive divergent

integrals only if they are linked to independent physical processes, such as two independent

condensations.

Supplementary rule No. 2: When a Feynman integral is convergent or logarithmically

divergent, the integral is independent of the momentum routing parameter, because the

parameter can be shifted away by a translation of the integration variable. When it comes

to integrals that are more than logarithmically divergent, one should proceed with caution

because the seemingly harmless momentum shifting changes the integral values. For exam-

ple, the quadratically divergent integral corresponding to the fermion bubble diagram79,87

in the scalar (Higgs boson) channel is

Πs(q) = i

∫
d4p

(2π)4
〈S(p+ (1− α)q)S(p− αq)〉 , (4.12)

where S is the fermion propagator and α is an arbitrary parameter not determined by the

theory.87 Unlike the case of convergent or logarithmically divergent integrals, the seemingly

innocuous momentum shifting changes the integral values. Rule No. 2 stipulates that for

quadratically (or higher order) divergent integrals with momentum routing ambiguities,

the momentum routing parameter α shall be set at the symmetrical value. For the above

instance, the momentum routing parameter should be set at α = 1
2 , so that (1− α)q = αq.

Note that a related ambiguity problem is the triangle diagrams of the Adler-Bell-Jackiw

(ABJ) anomaly,88,89 where the integrals are linearly divergent. The ambiguity is �xed by

enforcing the vector Ward identity, at the expense of the axial Ward identity.

With these two supplementary rules set, let's investigate the bosonic bound state prop-

erties of the composite Higgs model. To this end, we go beyond the zeroth-order bilocal-

source approximation and turn to the �rst-order approximation of the Cli�ord functional

SD equation.17 The collective mode of the composite Higgs boson can be determined via the
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pole of the composite boson propagator (a.k.a. the fermion-antifermion channel T-matrix)

in the scalar channel

Ds(p) ∼
1

g−1 −Πs(p)
, (4.13)

where Πs(p) is the bubble function (4.12). The composite boson propagators Ds(p) is the

re-summation of the in�nite order chain of the fermion bubble diagrams. Similar leading

order calculation in the context of contact interactions goes by various names such as the

random-phase approximation, ladder approximation, Bethe-Salpeter T-matrix equation,

and 1/N expansion.

After setting the momentum routing parameter in eq. (4.12) to α = 1
2 , the pole (i.e.

the Higgs boson mass) of the composite boson propagator Ds(p) can be calculated as17

mh =
2√

1 + |∆|
m, (4.14)

where m is the dynamically generated fermion mass and ∆ is speci�ed by the renormalized

logarithmically divergent integral

∆−1 = 64π2 <

∫
d4p

(2π)4

1

(p2 −m2)2
>R . (4.15)

Because of the
√

1 + |∆| factor, the composite Higgs boson mass mh is less than 2m, which

deviates from the usual �rst-order approximation prediction mh = 2m.79 In other words,

2m serves as an upper bound of the Higgs boson mass, which implies that the Higgs boson

mass is also protected by the weakly broken axial symmetry, because the Higgs boson

mass and the fermion mass are simultaneously generated by the same DSB mechanism.

And additionally, at the electroweak scale there is no elementary Higgs mass term to be

modi�ed by any higher order quantum perturbation from external sources. Therefore, the

composite Higgs mass is naturally small.

When it comes to the top quark condensation model, one phenomenological problem

is related to the prediction of the Higgs-top mass ratio. Since the 2012 discovery,58,59 the

Higgs boson is known to be lighter than the top quark. According to the traditional way of

Higgs mass calculation, the top condensation model appears to fail since it gives too heavy

Higgs mass compared with the top quark mass. However, in our calculation the Higgs mass

and the top mass relation involves an extra primitive divergent integral (4.15). According

to the central rule of the IR approach, the value of such integral should not be explicitly

calculated. Rather, it is determined by the experimental measurements. Therefore, the

observed Higgs-top mass ratio does not falsify the top condensation model. Instead, the

ratio �xes the dimensionless parameter |∆| of the model. Based on the measured top quark

mass (173Gev) and Higgs mass (125Gev), we arrive at an estimation of |∆| = 6.66 from

eq. (4.14).

In the same vein as the composite electroweak Higgs �eld, the Majorana Higgs �eld

φM can be regarded as a composite �eld representing the condensation of a right-handed

neutrino-antineutrino pair16

iφM ∼ Iν̄R(IΓ2Γ3)νR. (4.16)
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Similarly, the Φ singlets can be represented by the condensation of fermion-antifermion

double pairs16 such as

Φαt ∼ b̄RtRq̄3
Lq

3
L, (4.17)

Φβt ∼ l̄1Lγµq3
Lt̄RγµνeR. (4.18)

The quantum condensation details of the φM and Φ composite �elds can be worked out

along the lines of the aforementioned composite electroweak Higgs �eld. Note that there

is no imaginary number i in the de�nition of the e�ective Φ �eld, since even numbers of i

(two fermion-antifermion pairs) cancel out.

In summary, the Higgs mass could be naturally small and we have demysti�ed the

imaginary number i in the Yukawa/mass term as a vestige of the quantum condensation.

Emboldened by these achievements, one might wonder whether we can also surmount the

vacuum energy's naturalness problem and decipher the genesis of the imaginary number i

in the fermion kinetic Lagrangian term. That is the subject of the next subsection.

4.3 Composite vierbein and the cosmological constant problem

Quantum �uctuations of the vacuum contribute to the cosmological constant Λ. The calcu-

lated vacuum energy is extremely large compared with the commonly accepted estimation

of Λ.90,91,92,93 The vacuum energy is 10120 times too large according to the zero-point

energy calculation, or 1055 times too large according to the electroweak symmetry breaking

calculation. The cosmological constant problem is perceived as the most severe naturalness

problem in physics.94,95,96

Inspired by the composite Higgs model investigated in Section 4.2, we turn to the com-

posite vierbein �eld97,98,99,100,101,102,103 as a possible solution to the cosmological constant

problem. Paralleling the dynamical symmetry breaking (DSB) mechanism of the composite

Higgs approach, the vierbein �eld ê can be considered as an e�ective representation of the

fermion-antifermion condensation

iê ∼ E = ψdψ̄, (4.19)

where d is the exterior derivative, hence Eµ = ψ∂µψ̄. Unlike the previous approaches to the

composite vierbein, the Cli�ord-valued composite vierbein �eld above is not restricted to

the vector space γa, albeit its VEV will congeal around γa. This is analogous to the Higgs

mechanism where the Higgs VEV settles around the limited scalar subspace φ0 out of the

full Higgs doublet space of φ0 +φ1Γ2Γ3 +φ2Γ3Γ1 +φ3Γ1Γ2. We will delve into more details

about the extended vierbein space in Section 4.4.

The composite vierbein �eld is to be compared with a generalized version of the com-

posite Higgs �eld

iφ ∼ H = ψIψ̄. (4.20)

For simplicity reasons, we consider a generic spinor �eld ψ with both chirality and ignore

gauge �eld coupling. A more accurate de�nition of the chiral composite vierbein �elds will

be provided in Section 4.4 when we examine the gauge-covariant chiral vierbeins.
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There are a couple of similarities and dissimilarities between spinor the bilinears H

and E. Given that there is no 〈. . .〉 operation in the de�nition of H and E, both H

and E take values in the entire Cli�ord algebraic space. The Higgs spinor bilinear H is

a 0-form, whereas the vierbein spinor bilinear E = Eµdx
µ is a 1-form which conforms

with fact that the vierbein �eld ê is a 1-form. The Higgs spinor bilinear H acquires a

Cli�ord-even VEV, which implies that the Higgs �eld φ describes the condensation of an

opposite-handed fermion-antifermion pair (ψLIψ̄R or ψRIψ̄L). On the other hand, the

vierbein spinor bilinear E acquires Cli�ord-odd VEVs valued in {γa}, which suggests that

the vierbein �eld ê describes the condensation of a like-handed fermion-antifermion pair

(ψLdψ̄L or ψRdψ̄R).

In the above H and E de�nitions, we follow the tradition13,104 of regarding the spinor

�eld ψ as dimensionless, a.k.a. bare spinor �eld. Consequently, the Higgs spinor bilinear

H is also dimensionless. The vierbein spinor bilinear Eµ = ψ∂µψ̄ is endowed with mass

dimension one from the partial derivative. As such, a proper di�erential form would remain

dimensionless. For example, for E = Eµdx
µ the mass dimension one of Eµ is canceled out

by the mass dimension minus one of dxµ. The same logic applies to any 1-form gauge �eld

Â = Âµdx
µ, provided that Âµ is assigned mass dimension one. If we construct a Lagrangian

term using the proper di�erential forms, the mass dimension assignment convention implies

that the coe�cient in front of the Lagrangian term should be of mass dimension zero. The

conventional mass dimensions of parameters can be recovered when we re-scale the bare

spinor �eld which will be discussed later in this subsection.

Leveraging the spinor bilinears E and H, we can write down the di�eomorphism-

invariant Lagrangian terms of the pre-condensation primordial world

LFermion+CC ∼ 〈IE ∧ E ∧ E ∧ E〉 , (4.21a)

LY ukawa+CC ∼
〈
IE ∧ E ∧ E ∧ EH2

〉
, (4.21b)

LY ang−Mills ∼

〈
(IE ∧ E ∧ F̂ )(IE ∧ E ∧ F̂ )

〉
〈IE ∧ E ∧ E ∧ E〉

, (4.21c)

LGravity ∼
〈
IE ∧ E ∧ R̂

〉
, (4.21d)

where F̂ stands for any Yang-Mills-type gauge �eld curvature 2-form and R̂ is the spin

connection curvature 2-form (2.70). Note that LY ukawa+CC could have some variations,

such as 〈IE ∧ E ∧ E ∧HEH〉 which corresponds to the top quark-type Yukawa interaction

term (4.6).

Di�eomorphism-invariance is guaranteed since all the Lagrangian terms are 4-forms on

the 4-dimensional space-time manifold. As mentioned earlier, the coe�cients in front of

the Lagrangian terms (for brevity sake not explicitly written out) are all of mass dimension

zero. And we further assume that these dimensionless coe�cients should of order O(1). In

other words, there shouldn't be any unnaturally small or large coe�cients.

It's worth mentioning that there are even numbers of fermion-antifermion pairs in

each Lagrangian term. It's driven by the two imperatives of being super-real and having

no imaginary number i in the pre-condensation Lagrangian. Note that there is no bare
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cosmological constant term, since di�eomorphism-invariance demands that the Lagrangian

terms must be 4-forms and the available gauge-invariant di�erential forms are either the

fermion �eld-related E spinor bilinear 1-form or the gauge �eld-related curvature 2-forms.

The fermion LFermion+CC and the Yukawa LY ukawa+CC Lagrangian terms are com-

prised of 8 and 12 Grassmann-odd fermion �elds respectively. This is very di�erent from

the typical fermion Lagrangian. Upon quantum condensation, they will give rise to the

conventional fermion kinetic and mass terms as well as the e�ective cosmological constant

term. More speci�cally, when the three E spinor bilinears in LFermion+CC are replaced

by their condensation values, the Lagrangian term LFermion+CC is left with one E spinor

bilinear and is turned into the e�ective fermion kinetic term. Similarly, when the four E

spinor bilinears and one H spinor bilinear in LY ukawa+CC are replaced by their conden-

sation values, the Lagrangian term LY ukawa+CC is left with one H spinor bilinear and is

turned into the e�ective Dirac mass term. Lastly, when all spinor bilinears in LFermion+CC

and LY ukawa+CC are replaced by their condensation values, these two Lagrangian terms are

left with no spinor bilinear and are turned into the e�ective cosmological constant term.

Upon quantum condensation, the di�eomorphism-invariance is broken and the e�ective

fermion propagator S(p) assumes the form

S(p) =
a0

/p−m0
, (4.22)

where m0 is the emergent mass arising from the LY ukawa+CC term, and the parameter a0

comes from the LFermion+CC term. The parameter a−1
0 is of mass dimension three, since

it's related to the condensations of three mass dimension-one Eµ spinor bilinears. The

parameters a0 and m0 can be determined self-consistently via their respective mean-�eld

�gap� equations in a similar fashion as the NJL-type model.79,17

Leveraging the Cli�ord generating functional Z[η] (eq. (4.4)), the mean-�eld VEVs of

Eµ and H can be calculated as

Eµ ∼ iM0γµ = a0γµ

∫
d4p

(2π)4

p2

p2 −m2
0

, (4.23a)

H ∼ iυ0 = a0

∫
d4p

(2π)4

m0

p2 −m2
0

, (4.23b)

where the VEV magnitudes M0 and υ0 are of mass dimension one and zero, respectively.

The VEV of H takes value in the Cli�ord-scalar space, while the VEV of Eµ takes value in

the Cli�ord-vector space {γµ} as expected for an e�ective vierbein �eld. We can see that

the above primitive quantum loop integrals for Eµ and H are quartically and quadratically

divergent, respectively. According to the contour integral rule on the complex plane of p0,

these integrals pick up an imaginary number i factor. The VEV magnitudes M0 and υ0 are

subject to the renormalization procedure < · · · >R as delineated in Section 4.2.

As we know, Eµ is of mass dimension one. To be consistent with the conventional

formalism of the dimensionless vierbein, the correspondence between the spinor bilinear Eµ
and the dimensionless vierbein êµ should be

Eµ ∼ iM0êµ, (4.24)
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which means êµ = γµ according to (4.23a), as expected for the �at space-time. The above

calculation of VEVs are based on the �at space-time fermion propagator S(p) (4.22). In

the following discussion, we will assume that the assignment of Eµ ∼ iM0êµ is applicable

for the general cases of curved space-time as well.

After replacement of Eµ with iM0êµ and H with iυ0 and retaining the lowest order

terms in the non-condensated E and H, the e�ective Lagrangian terms take the form

LFermion−Kinetic ∼ i < M3
0 >R 〈Iê ∧ ê ∧ ê ∧ E〉 , (4.25a)

LFermion−Mass ∼ i < M4
0υ0 >R 〈Iê ∧ ê ∧ ê ∧ êH〉 , (4.25b)

LY ang−Mills ∼
< M4

0 >R
< M4

0 >R

〈
(Iê ∧ ê ∧ F̂ )(Iê ∧ ê ∧ F̂ )

〉
〈Iê ∧ ê ∧ ê ∧ ê〉

, (4.25c)

LGravity ∼< M2
0 >R

〈
Iê ∧ ê ∧ R̂

〉
, (4.25d)

LCC−Fermion ∼< M4
0 >R 〈Iê ∧ ê ∧ ê ∧ ê〉 , (4.25e)

LCC−Y ukawa ∼< M4
0υ

2
0 >R 〈Iê ∧ ê ∧ ê ∧ ê〉 , (4.25f)

where the LFermion−Kinetic and LCC−Fermion terms are derived from LFermion+CC , while

the LFermion−Mass and LCC−Y ukawa terms are derived from LY ukawa+CC .

Now we can trace the origin of the imaginary number i in the �classical� Lagrangian

terms. The imaginary number i stems from the primitive divergent integrals (4.23) related

to the quantum condensations of the Eµ and H spinor bilinears. If there are odd numbers

of condensations, there is an i in the coe�cient of the e�ective �classical� Lagrangian, such

as the fermion kinetic (4.25a) and mass (4.25b) terms. On the other hand, if there are

even numbers of condensations, there is no i in the coe�cient of the e�ective �classical�

Lagrangian since i squares to −1, such as the Yang-Mills (4.25c), gravity (4.25d), and

cosmological constant (4.25e) (4.25f) terms.

We can verify that the fermion kinetic (4.25a) and mass (4.25b) terms conform with the

corresponding terms speci�ed in the Lagrangian of the world in Section 2.4 (see eq. (2.77)

and (2.80)). The only di�erence is in the coe�cients, since we have adopted the dimension-

less spinor �eld in this subsection. To map to the traditional mass dimension 3/2 spinor

�eld (a.k.a. dressed spinor �eld) in Section 2.4, we can leverage the �eld renormalization

relationship

ψdressed =
√
< M3

0 >R ψbare, (4.26)

where ψbare stands for the dimensionless bare spinor �eld and ψdressed stands for the mass

dimension 3/2 dressed spinor �eld. With the substitution of ψbare with ψdressed, we can

see that the fermion kinetic term (4.25a) regains the conventional form (2.77) with the

coe�cient normalized to one. The same substitution in the fermion mass (4.25b) term

implies that the fermion mass for the dressed spinor �eld is

m0 ∼
< M4

0υ0 >R
< M3

0 >R
. (4.27)
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For the e�ective Yang-Mills-type Lagrangian (4.25c), the < M4
0 >R factors from the

numerator and the denominator cancel out. As we mentioned earlier, the dimensionless

coe�cient in front of the original Yang-Mills-type Lagrangian term (4.21c) is assumed to be

of order O(1). Therefore we expect that the e�ective Yang-Mills-type Lagrangian coupling

strength should not be far from being of order O(1) as well. As a veri�cation, the QED's

�ne-structure constant is α ≈ 1/137, which meets our expectation.

For the e�ective gravity Lagrangian (4.25d), the coe�cient < M2
0 >R is of mass di-

mension two and can be identi�ed with the Planck mass Mpl

< M2
0 >R ≈ M2

pl. (4.28)

The e�ective cosmological constant Λ is of mass-dimension two. It is de�ned by the

ratio between the LCC−Fermion/LCC−Y ukawa and LGravity Lagrangian coe�cients

Λ ∼ < M4
0 >R + < M4

0υ
2
0 >R

< M2
0 >R

≈ < M4
0 >R + < M4

0υ
2
0 >R

M2
pl

, (4.29)

where < M4
0 >R is the vacuum energy contribution from the fermion Lagrangian, and

< M4
0υ

2
0 >R is the Higgs ground state energy contribution from the Yukawa Lagrangian.

According to the conventional wisdom, each M0 factor in the above equations can

be identi�ed with Planck mass Mpl. Resultantly, the e�ective fermion mass m0 (4.27) is

estimated as

m0 ∼ υ0Mpl. (4.30)

Using the top quark mass as an example, υ0 is calculated as of order υ0 ≈ 10−17. Similarly,

Λ is estimated as of order

Λ ∼ (1 + υ2
0)M2

pl ≈M2
pl, (4.31)

which is astronomically larger than the commonly accepted estimation of Λ ∼ 10−120M2
pl.

However, there is a loophole in the above reasoning. According to the supplementary

rule No. 1 of the implicit regularization set forth in Section 4.2, the renormalization proce-

dure can not be applied recursively to the multiplication of primitive divergent integrals

< M4
0 >R 6= < M2

0 >R < M2
0 >R ≈ M4

pl. (4.32)

As such, < M4
0 >R should be deemed as a parameter completely decoupled from the scale

of M4
pl. The magnitudes of these two could di�er vastly from each other. By the same

token, each of the renormalized primitive divergent integrals < M3
0 >R, < M4

0υ0 >R, and

< M4
0υ

2
0 >R should be regarded as an individual parameter which can only be determined

by comparing with measurable results.

Therefore, eq. (4.29) can not be used to predict the size of the cosmological constant.

Rather, one should use the measured magnitude of Λ to impute that < M4
0 >R + <

M4
0υ

2
0 >R ∼ 10−120M4

pl. Hence the cosmological constant problem can be evaded. It's also

worth mentioning that there are other contributions to the cosmological constant, such as
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the QCD-induced and the Majorana Higgs-induced phase transitions. In principal, these

phase transitions can be treated in a similar way as delineated above. Note that the

In the last part of this subsection, we turn our attention to the possible experimental

evidences of the composite vierbein. When we write out the e�ective Lagrangian (4.25),

we only retain the lowest order terms of the non-condensated E/H spinor bilinears, under

the assumption that the other terms are negligible at low energies. At an elevated energy

level, additional terms could become relevant. As an example, let's examine the fermion

Lagrangian term with two non-condensated E spinor bilinears. Therefore there are four

remaining spinor �elds in the e�ective Lagrangian

< M2
0 >R

(< M3
0 >R)2

〈
γµγνψ∂µψ̄ ψ∂νψ̄

〉
, (4.33)

where µ 6= ν and ψ denotes the dressed spinor �eld with the �eld renormalization (4.26).

We speci�cally write down the Lagrangian term in �at space-time to highlight the fact that

the partial derivatives ∂µ and ∂ν are orthogonal as opposed to being aligned, which is very

di�erent from a typical scalar �eld Lagrangian that involves two partial derivatives.

The Lagrangian term could be considered as two perpendicular fermion currents inter-

acting with each other. If such an event is detected experimentally, it would be a telltale sign

that one of the composite ê �elds in the e�ective fermion kenetic Lagrangian term (4.25a) is

broken down into the underlying fermion �elds. In other words, such an event exposes the

fermion compositeness of the space-time metric. The coe�cient of the above four-fermion

term is of mass dimension −4. It implies an energy scale

Mcomp ∼
(

(< M3
0 >R)2

< M2
0 >R

) 1
4

≈
(
< M3

0 >R
Mpl

) 1
2

, (4.34)

above which the space-time fabric disintegrates into fermionic smithereens. Note that we

have no theoretical recourse to pinpoint the exact compositeness scale Mcomp, since it

involves the primitive divergent integral < M3
0 >R which could only be ascertained via

empirical means as per the IR mantra. Of particular interest is the fact that the compos-

iteness scale Mcomp is di�erent from the Planck scale Mpl. They are two unrelated scales.

The compositeness scale is the scale above which there could be measurable evidences of

the composite vierbeins broken down into the fermionic components, whereas the Planck

scale is the scale at which higher-order gravitational Lagrangian terms become relevant.

Therefore, if Mcomp < Mpl, we could have a chance of probing the so-called Planck-scale

physics at an energy level below the Planck scale.

4.4 Extended symmetries and gravi-weak interaction

In the case of the composite Higgs �elds, we have bene�ted from various clues guiding

us towards the conclusion that there are three speci�c fermions driving the electroweak

symmetry breaking process, namely, the top quark, tau neutrino, and tau lepton condensa-

tions.16 When it comes to the composite vierbeins, due to lack of evidences we are not able

to speculate which of the standard model fermions are involved in the vierbein-related con-

densations. Nonetheless, we can still make progress by investigating the general symmetry

properties of the composite vierbeins.
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Considering the gauge transformation characteristics of the standard model fermions,

we cast the e�ective vierbeins into three categories

iêL ∼ EL = ψLDLψL, (4.35)

iêRu ∼ Eu = ψRuDRψRu, (4.36)

iêRd ∼ Ed = ψRdDRψRd, (4.37)

where DL and DR are the left- and right-handed gauge-covariant derivatives, ψL is any

left-handed doublet such as uL + dL, ψRu is any right-handed up-type singlet such as uR,

and ψRd is any right-handed down-type singlet such as dR.

Given the freedom a�orded by the above chiral vierbeins unconstrained by the Cli�ord

subspace {γa}, the gauge symmetry groups (2.48) we studied earlier can be expanded to

Spin(1, 3)L × Spin(1, 3)R × Spin(1, 3)WL × Spin(1, 1)WR × U(1)WR × SU(3)C × U(1)B−L,

(4.38)

where Spin(1, 3)L and Spin(1, 3)R are the left- and right-handed Lorentz gauge groups

respectively. The Spin(1, 3)WL group generators are

Γ2Γ3, Γ3Γ1, Γ1Γ2, Γ0Γ1, Γ0Γ2, Γ0Γ3, (4.39)

where Γ0 = γ1γ2γ3 and the Spin(1, 1)WR group generator is

Γ0Γ3. (4.40)

Note that the Spin(1, 3)WL group comprises the regular weak group SU(2)WL generated

by {ΓiΓj} as well as the weak-boosts generated by {Γ0Γi}. These are the counterparts of

the spacial rotations generated by {γiγj} and the Lorentz boosts generated by {γ0γi}. The

weak-boost is not a group on its own, it's rather the coset Spin(1, 3)WL/SU(2)WL. Given

the relationships such as Γ0Γ3 = IΓ1Γ2, we also call {Γ0Γi} the pseudo-weak generators.

Henceforth, we will use the terms weak-boost and pseudo-weak interchangeably.

The vierbeins should transform as vectors under the gauge transformations of Spin(1, 3)L×
Spin(1, 3)R × Spin(1, 3)WL × Spin(1, 1)WR. Consequently, the left-handed êL ought to be

valued in the extended Cli�ord algebraic subspace spanned by the 4 ∗ 4 multivectors

γa, γaΓ0Γi, (4.41)

where a = 0, 1, 2, 3 and i = 1, 2, 3. The right-handed êRu is valued in the Cli�ord algebraic

subspace spanned by the 4 multivectors

γaP+, (4.42)

while the right-handed êRd is valued in the Cli�ord algebraic subspace spanned by the 4

multivectors

γaP−, (4.43)
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where P± is the projection operator (2.10).

Alternatively, êL may take values in the complimentary Cli�ord algebraic subspace

spanned by the 4 ∗ 4 multivectors

γaI, γaΓiΓj . (4.44)

As such, êL could develop VEVs valued in the pseudo-vector subspace {γaI}, instead of

the regular vector subspace {γa}. The same logic goes for êRu and êRd. Nervelessness,

our discussion in this paper is concentrated on the regular vector-type êL, êRu, and êRd
vierbeins.

With the extended symmetries, the chiral gauge-covariant derivatives of the left- and

right-handed spinor �elds ψL/R(x) are de�ned by

DLψL = (d+ ω̂L + ŴL + Ŵ ′L)ψL + ψL(Ĝ+ ÂBL), (4.45)

DRψR = (d+ ω̂R + ŴR + Ŵ ′R)ψR + ψR(Ĝ+ ÂBL), (4.46)

where the left-hand weak SU(2)WL gauge �eld ŴL, the right-hand weak U(1)WR gauge

�eld ŴR, the color SU(3)C gauge �eld Ĝ, and the BL U(1)B−L gauge �eld ÂBL follow the

same de�nition as speci�ed previously (2.62). The newly introduced gauge �elds are the

left- and right-handed spin connections of the Spin(1, 3)L and Spin(1, 3)R Lorentz gauge

groups

ω̂L =
1

4
ωabLµγaγbdx

µ, (4.47)

ω̂R =
1

4
ωabRµγaγbdx

µ, (4.48)

the pseudo-weak portion of the extended left-handed weak gauge �eld

Ŵ ′L =
1

2
(W ′1LµΓ0Γ1 +W ′2LµΓ0Γ3 +W ′3LµΓ0Γ3)dxµ, (4.49)

and the pseudo-weak portion of the extended right-handed weak gauge �eld

Ŵ ′R =
1

2
W ′3RµΓ0Γ3dx

µ. (4.50)

The combination of the regular weak ŴL and the pseudo-weak Ŵ ′L constitutes the overall

gauge �elds of Spin(1, 3)WL

ω̂Iso−L = ŴL + Ŵ ′L. (4.51)

We call ω̂Iso−L the isospin connection since it is in many ways analogous to the spin connec-

tion of the Lorentz group. The chiral spin connections ω̂L and ω̂R are crucial in maintaining

the chiral Lorentz gauge covariance of DLψL and DRψR, which are leveraged in conjunction

with the chiral vierbeins to ensure the chiral Lorentz gauge invariance of the Lagrangian

terms.
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The gauge interaction curvature 2-forms for ω̂L, ω̂R, Ŵ ′L, and Ŵ ′R are expressed as

R̂L = dω̂L + ω̂L ∧ ω̂L, (4.52)

R̂R = dω̂R + ω̂R ∧ ω̂R, (4.53)

F̂W ′L = dŴ ′L + Ŵ ′L ∧ ŴL + ŴL ∧ Ŵ ′L, (4.54)

F̂W ′R = dŴ ′R, (4.55)

where the outer product between gauge �elds vanishes for the abelian interaction F̂W ′R.

The regular left-handed weak force is appended with an additional cross product term of

Ŵ ′L

F̂WL = dŴL + ŴL ∧ ŴL + Ŵ ′L ∧ Ŵ ′L. (4.56)

The combination of the weak F̂WL and the pseudo-weak F̂W ′L constitutes the overall gauge

curvature 2-form of the weak Spin(1, 3)WL

R̂Iso−L = F̂WL + F̂W ′L. (4.57)

We call R̂Iso−L the isospin connection curvature 2-form (or the extended weak force) in

parallel with the spin connection curvature 2-form R̂L of the Lorentz group.

The local gauge- and di�eomorphism-invariant Lagrangian terms of the world are sim-

ilar to the ones we inspected earlier in Section 2.4, provided that the chirality and isospin

conjugations are taken care of. The following are some examples

LFermion ∼ i
〈
IêL ∧ êL ∧ êL ∧ ψLDLψL

〉
(4.58a)

+ i
〈
IêRd ∧ êRu ∧ êRd ∧ ψRuDRψRu

〉
(4.58b)

+ i
〈
IêRu ∧ êRd ∧ êRu ∧ ψRdDRψRd

〉
, (4.58c)

LGravity−Left ∼
〈
IêL ∧ êL ∧ R̂L

〉
, (4.58d)

LGravity−Right ∼
〈
I(êRu ∧ êRd + êRd ∧ êRu) ∧ R̂R

〉
, (4.58e)

LCC−Left ∼ 〈IêL ∧ êL ∧ êL ∧ êL〉 , (4.58f)

LCC−Right ∼ 〈IêRu ∧ êRd ∧ êRu ∧ êRd〉 , (4.58g)

where the alternation between êRu and êRd is because of the properties êRu = P−êRuP+

and êRd = P+êRdP−.

In view of the extended symmetries (4.38) of the Lagrangian of the world, let's re-

visit the di�eomorphism and Lorentz gauge symmetry breaking triggered by the nonzero

VEV of the vierbein. It can be checked that the �at space-time VEV (3.5) of the vier-

bein violates the gauge symmetries Spin(1, 3)L × Spin(1, 3)R × Spin(1, 1)WR and the

coset Spin(1, 3)WL/SU(2)WL. The remaining gauge symmetries are SU(3)C ×SU(2)WL×
U(1)WR × U(1)B−L plus the residual global Lorentz symmetry.

Note that the VEV magnitudes and orientations of the three vierbeins êL, êRd, and

êRd may not be aligned with each other. That said, we have the freedom to re-scale and

re-orientate (via global Lorentz rotations) the corresponding fermions, so that the three
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vierbeins take the same �at space-time VEV everywhere all at once. Hence it is assured that

all fermions, regardless of their chirality and isospin stripes, share the universal Minkowski

�at space time metric (3.5).

However, there are some factors that can not be re-scaled away. These are the di�er-

ences between the coe�cients of the chiral gravity (4.58d) (4.58e) Lagrangian terms and

the di�erences between the coe�cients of the chiral cosmological constant (4.58f) (4.58g)

Lagrangian terms. As a result, the left- and right-handed fermions experience di�erent

strengths of gravitational interactions. Under normal conditions, this is not a problem

since the left- and right-handed matters are usually commensurate with each other. Thus

we can't really discern which chiral gravity is stronger since we routinely observe the col-

lective gravitational interaction governed by a combined e�ective gravitational constant.

The only exception is when there is imbalance between the left- and right-handed

matters. For example, let's assume that the left-handed gravitational constant is larger

than the right-handed counterpart. We could observe an unexplainable drop of gravitational

force compared with expectation if there is an excess of right-handed matter. In this regard,

we would like to draw attention to the right-handed neutrinos, since they are endowed with

extremely large Majorana masses. If there is a large concentration of the right-handed

neutrinos in certain parts of the universe, the discrepancies between the chiral gravitational

forces would possibly be revealed.

In the last part of this subsection, we turn to a novel kind of Lagrangian terms

LGravity−Weak−Left ∼
〈
IêL ∧ êL ∧ R̂Iso−L

〉
, (4.59a)

LHolst−Weak−Left ∼
〈
êL ∧ êL ∧ R̂Iso−L

〉
, (4.59b)

where R̂Iso−L is the left-handed isospin connection curvature 2-form (4.57). As indicated

by the Lagrangian names, these terms bear close resemblance to the regular gravity (2.78)

and Holst (2.83) Lagrangian terms. We mentioned earlier that under normal circumstances

a Lagrangian term with a single Yang-Mills �eld curvature 2-form is identically zero. It's

the extended symmetries (4.38) and the extended vierbein space (4.41) that make the above

single-curvature terms possible.

Let's derive the �eld equations for the left-handed gravity Lagrangian (4.58d) and the

left-handed gravi-weak Lagrangian (4.59a) by varying with êL, ω̂L, and ω̂Iso−L, respectively.

The resultant extended Einstein-Cartan equations read (for brevity sake we drop the L

subscripts)

1

8πG
(R̂ ∧ ê+ ê ∧ R̂)I +

1

8πGIso
(R̂Iso ∧ ê+ ê ∧ R̂Iso)I = T, (4.60)

1

8πG
(T̂ ∧ ê− ê ∧ T̂ )I = S, (4.61)

1

8πGIso
(T̂Iso ∧ ê− ê ∧ T̂Iso)I = SIso, (4.62)

where G is the regular gravitational constant, GIso is the iso-gravitation constant for the

gravi-weak Lagrangian (4.59a), T is the regular energy-momentum current 3-form, S is the
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regular spin current 3-form, SIso is the isospin current 3-form, T̂ is the regular torsion

2-form (3.3), and T̂Iso is the iso-torsion 2-form

T̂Iso = dê+ ω̂Iso ∧ ê+ ê ∧ ω̂Iso. (4.63)

Compared with the regular Einstein-Cartan equations, we have an additional equation for

the iso-torsion T̂Iso. Given that the weak gauge �eld ŴL (as part of the isospin connection

ω̂Iso−L) is susceptible to the SSB e�ects from the electroweak Higgs mechanism, we expect

that the isospin connection ω̂Iso−L would have a di�erent kind of impact on gravity than

the regular spin connection ω̂L.

This sort of modi�cation to the gravitational equations could have cosmological implica-

tions. As we know, the concordance ΛCDM cosmological model is besieged with a multitude

of discordances,105,106,107 with the most acute one being the Hubble tension.108,109,110 Var-

ious modi�ed gravity models111,112,113 have been proposed to remediate the shortcomings

of the ΛCDM model. Some noteworthy modi�ed gravity theories invoke either a character-

istic Hubble scale h0
14,17 or a characteristic acceleration scale a0,

114 below which gravity

changes behavior and departs from Einstein's theory of general relativity. We hope that the

gravi-weak interplay delineated above could possibly shed some light on these characteristic

scales.

5 Conclusions

The naturalness problems have been front and center in physics researches.94,95,96,63,64,65

The cosmological constant problem is arguably the most severe naturalness problem in

physics, with the runner-up being the Higgs mass/electroweak hierarchy problem. With

the goal of addressing the naturalness problems, we propose that each and every symmetry-

breaking bosonic �eld, such as the vierbein �eld or the Higgs �eld, is an e�ective represen-

tation of a unique multi-fermion condensation via the dynamical symmetry breaking (DSB)

mechanism.

Our research is originated from drawing an unappreciated distinction between two

imaginary numbers. The �rst one is the bona �de imaginary number i which governs

the quantum world. The other one is the unit pseudoscalar I masquerading as imaginary

number which shows up in the de�nition of spinors, gauge �elds, and their transformations.

In the Cli�ord algebra approach, we can manage to stay away from the genuine imaginary

number i in classical �eld equations. This is demonstrated by the Cli�ord algebraic Dirac

equation (3.44), where the conventional i is replaced by the pseudoscalar I as long as we

stick to the regime of applying the surrogate I to the right side of the algebraic spinor.

However, when it comes to the fermion Lagrangian, the imaginary number i is irre-

placeable in both the kinetic and mass terms. The conundrum of the quantum i enmeshed

in the classical Lagrangian indicates that the regular classical Lagrangian terms might

be of quantum origin. We propound that the imaginary number in the fermion kinetic

and mass terms stems from the quantum loop integrals related to odd numbers of fermion-

antifermion condensations. On the other hand, if there are even fermion-antifermion pairs
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involved in the condensations, there is no i in the coe�cient of the Lagrangian term, such

as the Yang-Mills, gravity, and cosmological constant terms.

We would like to underscore that there is no �xed mass/energy scale in the pre-

symmetry breaking world, since all the original Lagrangian coe�cients are dimensionless.

In other words, the pre-condensation Lagrangian terms are scale-invariant. All the mass

scales of the universe, including the Planck scale, are emergent phenomena driven by the

quantum condensations via the DSB mechanism. This pan-emergence paradigm of mass

scales parallels Landau's symmetry breaking scheme in condensed matter physics character-

ized by the nonzero order parameters. One exception to this rule might be the QCD scale

ΛQCD possibly generated by a topological order in the quark-gluon plasma and nucleons.18

Let's take stock of the various symmetry-breaking quantum condensations examined

in this paper. The �rst category of quantum condensation involves a fermion-antifermion

pair of the same chirality, with an extra gauge-covariant derivative sandwiched in between.

The e�ective representation of this sort of condensation corresponds to the vierbein �eld ê

in the Lorentz gauge theory of gravity. In the composite vierbein scenario, fermions play

the dual role of interacting with the space-time metric as well as being the metric. The

speci�c standard model fermion participants in the condensation are yet to be identi�ed.

The symmetries of the model encompass an extended weak group Spin(1, 3)WL ⊃ SU(2)WL

allowed by the beyond-vector vierbein space. A gravi-weak interaction is thus permitted

between the vierbein and the weak gauge �eld.

The local Lorentz and pseudo-weak symmetries are spontaneously broken when the

vierbeins acquire nonzero VEVs via the DSB mechanism. One interesting implication is

that there are two di�erent energy scales. One is the compositeness scale above which

there are measurable evidences of the composite vierbeins broken down into the fermionic

components, whereas the other is the Planck scale at which the higher-order gravitational

Lagrangian terms become relevant in quantum gravity. The second implication is that the

coe�cients of the e�ective cosmological constant and gravity Lagrangian terms are dictated

by the divergent loop integrals of the quantum condensations. The cosmological constant

problem can be evaded if we take abundant precaution in the renormalization procedure

that entails multiplications of divergent integrals.

The second category of quantum condensation involves a neutrino-antineutrino pair

with the same right-handed chirality. The e�ective description of this sort of condensation

is the Majorana Higgs �eld φM . It is a Higgs-like �eld whose VEV generates mass for the

Z ′ gauge �eld as well as the Majorana mass for the right-handed neutrino. The Majorana

mass is capable of directly mixing neutrinos from di�erent generations, which is evidenced

in the observation of neutrino oscillations.28,29,30 The Cli�ord algebra Cl(0, 6) allows for a

weaker form of charge conjugation which does not invoke particle-antiparticle interchange.

Consequently, the Cli�ord algebraic Majorana mass conserves lepton number, which is

di�erent from the traditional Majorana mass term. This might be the underlying reason

that no evidence has ever been found for the neutrinoless double beta decay.39,40

The third category of quantum condensation involves a fermion-antifermion pair with

opposite chirality. Belonging to this category, the standard model Higgs �eld is an e�ective

description of the top quark condensation φt, while the other two yet-to-be-detected com-
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posite Higgs �elds φντ and φτ correspond to the tau neutrino and tau lepton condensations.

The VEVs of these three Higgs �elds generate masses for the Z0/W± gauge �elds as well as

the Dirac masses for the standard model fermions. The composite Higgs mass is naturally

small, since at the electroweak scale there is no elementary Higgs mass term to be modi�ed

by any higher order quantum perturbation from external sources.

The three estimated Higgs VEVs have a hierarchical structure υt ≈ 246 GeV , υντ ≈
41 GeV and υτ ≈ 2.5 GeV , where the top-quark Higgs VEV υt is much larger than the

other two. Nonetheless, the tau-neutrino Higgs VEV υντ plays a non-negligible role in the

electroweak scale saturation, which might be the root cause of the signi�cant deviation of

the measured W-boson mass from the standard model prediction.60 Additionally, given the

intrinsic connection between the muon and the tau-neutrino Higgs �eld φντ , it is worthwhile

to investigate the tau-neutrino Higgs �eld's contribution to the muon anomalous magnetic

moment, especially in light of the recent muon g−2 measurement which con�rms a deviation

from the standard model prediction.61

The fourth category of quantum condensation involves a fermion-antifermion pair with

opposite chirality, the same as the regular composite Higgs �eld. However, the Cli�ord

algebra framework allows for a non-scalar antisymmetric-tensor composite Higgs �eld φAT
which could potentially break both the electroweak and Lorentz symmetries. The magni-

tude of its VEV could be extremely small compared with the electroweak scale, rendering

its e�ects unobservable in laboratories. The ethereal antisymmetric-tensor Higgs �eld VEV

might manifest itself as the large-scale anisotropies of the universe.44,45,46,47,48,49

The �fth category of quantum condensation involves two fermion-antifermion pairs.

There are six composite Φ �elds corresponding to this sort of four-fermion condensations.

In contrast to the other four types of composite �elds, these scalar Φ �elds are invariant

under the local gauge transformations. Instead, three of the Φ �elds are tied to a Uα(1)

global symmetry, which transforms all the right-handed fermions by the same phase eαI ,

in a manner similar to the Peccei-Quine U(1)PQ symmetry. The other three of the Φ �elds

are tied to a Uβ(1) global symmetry. It transforms the up-type quarks (uR, cR, tR) and

down-type leptons (eR, µR, τR) by the phase eβI , whereas it transforms the down-type

quarks (dR, sR, bR) and up-type leptons (νeR, νµR, ντR) by the opposite phase e−βI .

Upon acquiring nonzero VEVs, these six composite �elds break the Uα(1) and Uβ(1)

global symmetries respectively. Their VEVs play a pivotal role in establishing the relative

magnitudes of the e�ective Yukawa coupling constants, and consequently giving rise to the

fermion mass hierarchies. The Dirac masses of the ντ , νµ and νe neutrinos are estimated

as 29, 500MeV , 40MeV and 21MeV , respectively. Note that these estimations are meant

to be the Dirac masses, as opposed to the signi�cantly smaller seesaw e�ective masses.

Due to the explicit symmetry breaking originated from the quantum anomaly and

instanton e�ects, the otherwise massless Nambu-Goldstone bosons of the α-type Φ �elds

acquire masses and turn into the pseudo-Nambu-Goldstone bosons in a similar fashion as

the axions. Historically the axions have been proposed as a possible solution to the strong

CP and dark matter problems. In this regard, we speculate that the (pseudo-)Nambu-

Goldstone bosons of the β-type Φ �elds could also be viable dark matter candidates.

In summary, the proposition in this paper is at the conservative end of the physics model
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building spectrum. Our thesis is that the fundamental particles/�elds of the universe are

the garden-variety standard model fermions (plus the right-handed neutrinos) accompanied

by a handful of �good old-fashioned� gauge �elds. That is all there is. There are neither

extra dimensions nor exotic branes. The novel bit we bring to the table is the insight that

there is a kaleidoscope of quantum condensations which make the world as complex and

enchanting as it is.
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