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1 Introduction

Recently there has been a development of theories related to invariant Planck
Voltages [3, 4, 5]. This is part of a larger trend in extending special relativ-
ity by postulating additional invariants of nature, another prominent example
being doubly special relativity [1, 2, 6]. In a previous paper, we showed that
postulating an invariant voltage at the Planck Scale can lead to unification by
automatically producing the Poisson equation for gravitation from the Poisson
equation for electrostatics. In this paper, we further develop the theory from
a Lagrangian standpoint. We derive a modified electrostatic Lagrangian for a
single dimension, and we demonstrate that the resulting field equations produce
a hyperbolic tangent function for the potential. This function has horizontal
asymptotes at the positive and negative Planck Voltages. It is shown that the
new leading corrective term in the Taylor series for the new electrostatic po-
tential is in fact the classical gravitational potential. We then discuss how this
Lagrangian could be derived from a version of calculus in which the derivatives
are formulated to be consistent with a non-additive field space. It is then dis-
cussed how the modified derivatives may allow this theory to be generalized
beyond electrostatics to produce a unified theory of electricity, magnetism, and
gravitation. We then discuss corresponding modifications for the Dirac equa-
tion and its implications for quantum gravity. The basic theory advanced in
this paper is a unique form of unified field theory that does not assume the
existence of extra dimensions, in contrast to nearly all leading theories on this
subject to date.

2 Lagrangian Formulation

Having demonstrated that it is possible to derive Poisson’s equation for grav-
itation from Poisson’s equation for electrostatics, the next logical step is to
develop the theory from a Lagrangian standpoint. As a simple example, we
begin with the Lagrangian for a free electrostatic field in a single dimension
denoted as x.
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L =
ε0
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(
∂(φ)

∂(x)

)2

(1)

The simplest way to develop a Lagrangian for this theory would be to modify
the usual Maxwell Lagrangian by substituting the ”voltage-boosted” potential
formula directly into that Lagrangian. Inserting the ”voltage-boosted” formula
for the potential φ gives
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 ∂
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p
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(2)

In the above transformation, it has been assumed that U1 = 0 for simplicity.
The idea is to transform from a ”voltage frame” where energy is zero at the ori-
gin to another ”voltage frame” where it is non-zero. After some mathematics,
the Lagrangian is shown to be the following:
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Applying the Taylor series to the factors of 1/(1− φ2

V 2
p
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This strongly suggests that the above Lagrangian is actually an approxima-
tion to the following simpler formula. We now take the formula below to be the
actual Lagrangian, with additional theoretical and mathematical justification
being provided in future sections.
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3 Euler-Lagrange Equations

The Euler-Lagrange equations can then be applied to the new Lagrangian to
obtain the field equations. The field equations are found to be the following:
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These equations admit an exact closed form solution which is as follows:

φ(x) = −Vp ∗ tanh

(
C1

Vp
x+

C2C1

Vp

)
(9)

Now the free electrostatic potential no longer has a linear form, but rather
the form of a hyperbolic tangent. Deriving a hyperbolic tangent function is
a pleasing result, as it allows the scalar potential to be non-additive and is
reminiscent of velocity addition in special relativity. The function can be ap-
proximated as

φ(x) ≈ −C1 ∗ x− C2 ∗ C1 (10)

Note that since the space is 1-dimensional, the electric field is constant and
does not decay with the x-coordinate. Clearly C1 is to be identified with the
electric field in the x-direction, while C1 ∗ C2 is the negative of the potential
at the origin. This allows us to re-write the full formula as

φ(x) = −Vp ∗ tanh

(
Ex
Vp
x− φ0

Vp

)
(11)

Note that the hyperbolic tangent function has horizontal asymptotes at +Vp
and −Vp, the positive and negative Planck voltages. In a 1-dimensional space,
the classic Maxwell electrostatic field Lagrangian causes the electric field to
be constant so that the potentials will eventually reach positive and negative
infinity far enough from the zero point of the potential . In contrast, the
Lagrangian derived in this paper will make that voltage gradually level off so
that it never quite reaches a negative or positive Planck Voltage. Note that
The Taylor polynomial expansion for this expression around x = 0 is as follows:

φ(x) ≈ −Vp tanh(−φ0

Vp
)− Ex ∗ sech2(−φ0

Vp
) ∗ x+

E2
x

Vp
tanh(−φ0

Vp
) ∗ x2 (12)

Further approximating that φ << Vp gives the following formula.

φ(x) ≈ φ0 − Ex ∗ x−
(Ex)2

(Vp)2
∗ φ0 ∗ x2 (13)

We also have the following formula for potential energy:

PE(x) ≈ qφ0 − qEx ∗ x− q
(Ex)2

(Vp)2
∗ φ0 ∗ x2 (14)

We now seek to understand this new term in the electrostatic field equation
and to demonstrate that it is, in reality, a term for the gravitational potential
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energy. We note that in 1-dimensional space, the electric energy density can
be written as follows:

ρenergy = ρφ = ε0(Ex)2 = ε0 ∗ (
Q

ε0
)2 = ε0 ∗

Q2

(ε0)2
(15)

Note that per our initial and final conditions, all of this energy was derived
from a gauge transformation rather than from self-interaction. Because of this,
we have omitted the usual factor of one-half from the above formula, where
the one-half is typically inserted to prevent an erroneous double summation of
interacting particle energies. The total energy bound between a given −x and
+x is then

Eenc = 2x ∗ ε0 ∗
Q2

(ε0)2
= 2x ∗ Q

2

ε0
(16)

The strength of the gravitational field in a single dimension is then as
follows:

gx(x) = −GEenc
c4

=
4πGQ2

ε0c4
∗ 2x (17)

For a test charge q, this force corresponds to the following potential energy

φg(x) =
4πGQ2q

ε0c4
x2 = q

(Ex)2

V 2
p

∗ x2 (18)

Now we can rewrite the electrical potential energy formula as follows:

PE(x) ≈ qφ0 − qEx ∗ x− qφ0φg (19)

PE(x) ≈ qφ0 − qEx ∗ x−∆Etestφg (20)

The equation above emphasizes that the shifting potential changes the en-
ergy of the test particle, which then interacts with the existing gravitational
field of the electromagnetic field energy. We can also write this as follows, to
highlight the analogy with magnetism.

PE(x) ≈ qφelectric − qφg ∗∆V (21)

In summary, here we found that the classical gravitational potential is one
of the leading terms among a series that ”corrects” the Maxwell electrostatic
Lagrangian in order to enforce a maximum voltage. The higher order terms in
the correction will be explored in future papers. They are clearly not connected
to classical gravitation. It is not clear yet whether these new terms may be

4



related to general relativistic-corrections to classical gravitation or whether
they constitute a new prediction.

4 Next Steps

By inspection of the Lagrangian derived in this paper, it is clear that it could
also be derived by directly modifying the definition of the derivative such that

dm
dx

=

 1

1− φ2

V 2
p

 ∗ d

dx
(22)

L =
ε0
2

(
∂m(φ)

∂m(x)

)2

(23)

Such a derivative is no longer invariant under additions of a constant k.
But it can be shown to have the following property instead:

dm
dx

 φ(x) + k

1 + k∗φ(x)
V 2
p

 =
dm
dx

(φ(x)) (24)

In other words, the modified derivative function is invariant under transla-
tions in a ”non-additive” potential space. The ”composition of translations”
law in such a space would have to be be as follows.

φ′ =
φ+ ∆φ

1 + φ∆φ
V 2
p

(25)

But the above formula is exactly the new composition of voltages law. This
reveals an alternate path to deriving our Lagrangian that is more readily gen-
eralizable. We simply begin with a non-additive space, modify the derivative
function for that new space, and modify the Lagrangian by substituting the
modified derivative function. The modified derivative formula can be derived
from the following limit. The limit is believed to generally be equivalent to the
formula listed above for most simple functions.

dm
dx

= lim
∆x→0

φ(x+ ∆x)− φ(x)

∆x ∗ (1− φ(x)φ(x+∆x)
V 2
p

)
(26)

In future papers, this theory will be generalized to multiple physical di-
mensions of space. In addition, another goal will be to generalize this con-
cept so that we can make similar changes to the full Maxwell electromagnetic
field Lagrangian. We will begin with the standard Maxwell Lagrangian and
will modify the definition of the derivative in the Faraday tensor formula us-
ing a generalized form of a non-additive derivative. This modified derivative
will be constructed to be consistent with the elecromagnetic 4-potential being
non-additive. The modified derivative will be suitable for a multi-dimensional
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complex space that is non-additive, and may perhaps be related to the Anti
De-Sitter space covariant derivative. Future papers will also focus on the quan-
tum gravity implications, namely the modification of the Dirac Lagrangian re-
quired for compatibility with this new theory. It is anticipated that such a
Dirac Lagrangian must be compatible with theories of non-additive energy and
momentum such as doubly special relativity. From doubly-special relativity,
examples of such Dirac Lagrangians are already known [5].
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