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Abstract. The theory of reproducing kernels is very fundamental, beautiful
and will have many applications in analysis, numerical analysis and data sciences.
In this paper, some essential results in complex analysis derived from the theory
of reproducing kernels will be introduced, simply.
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1. Introduction

In this paper, we would like to summarize simply the relationship of complex
analysis and the theory of reproducing kernels. For some general source for repro-
ducing kernels, see the books ([32, 34, 38]) and the papers ([24, 37]).

2. Origin of Reproducing Kernels in Conformal Mappings

Professor Begehr wrote in [4]:
100 years ago in summer 1922 two young mathematicians defended their Ph.D.

theses at the university in Berlin, Gábor Szegö and Stefan Bergmann (later:
Bergman). Szegö at that time had published a couple of papers already and de-
fended his second thesis (habilitation thesis), [3], while Bergman, an assistant with
Richard von Mises, [4], p. 472, had just started his publications in this particular
year
and their details. Both famous mathematicians were interested in the practical
construction of the Riemann mapping function, by using reproducing kernels, and
their spirit may be represented by the kernel function theory and their impact was
great. See [6, 7] and [25].

3. Three Typical Reproducing Kernels in One Complex Analysis

We introduce three reproducing kernels in one complex analysis.
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The Bergman kernel. Let D be a bounded regular domain on the complex z =
x+ iy plane whoes boundary is composed of a finite number N of disjoint analytic
Jordan curves. Let AL2(D) be a Hilbert space (Bergman space) comprising ana-
lytic functions f(z) on D and with finite norms ‖f‖AL2(D) =

{∫ ∫
D
|f(z)|2dxdy

} 1
2 .

As we see simply, f → f(z)(z ∈ D) is a bounded linear functional on AL2(D).
Therefore, there exists a reproducing kernel K(z, u) such that for any u ∈ D and
for any function f ∈ AL2(D),

f(u) =

∫ ∫
D

f(z)K(z, u)dxdy. (3.1)

From K(z, u) = K(u, z), K(z, u) is analytic in u (complex conjugate). So, we
shall denote it as K(z, u). This is the Bergman kernel of D or on D.

Let G(z, u) be the Green’s function for the Laplace equation on D with pole at
u ∈ D. Then, we have the identity

K(z, u) = − 2

π

∂2G(z, u)

∂z∂u
. (3.2)

Here we shall introduce the adjoint L− kernel for K(z, u) by

L(z, u) = − 2

π

∂2G(z, u)

∂z∂u
.

The adjoint L kernel L(z, u) has one double pole at u on D such that

L(z, u) =
1

π(z − u)2
+ regular terms

of the second order. Furthermore, along the boundary ∂D we have the identity
K(z, u)dz = −L(z, u)dz. (3.3)

This important identity shows that the Bergman kernel is indeed an analytic dif-
ferential K(z, u)dz and it is continued analytically to the double - closed Riemann
surface - of D, and at the symmetric point u of u it has the same double pole as
in the above. So, the Bergman kernel is a fundamental differential on the closed
Riemann surface.

The Szegö kernel. Let H2(D) be the Hardy 2 analytic function space on D.
A member of the class has nontangential boundary values belonging to L2(∂D).
Let AL2(∂D) denote its closed subspace in L2(∂D), and we introduce the norm
in H2(D) by {∫

∂D

|f(z)|2|dz|
} 1

2

<∞.

For a function f ∈ AL2(∂D), as we see from the Cauchy integral formula, since
f → f(u), u ∈ D is a bounded linear functional, there exists a reproducing kernel
K̂(z, u) satisfying

f(u) =

∫
∂D

f(z)K̂(z, u)|dz|.

As in the Bergman kernel, K̂(z, u) is analytic in u, and so we shall denote it by
K̂(z, u). This is the Szegö kernel of D or on D.
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The important concept is the adjoint L kernel L̂(z, u) for K̂(z, u). That is, it is
a meromorphic function on D ∪ ∂D and only at the point u, it has a simple pole

L̂(z, u) =
1

2π(z − u)
+ regular terms, (3.4)

and along the boundary ∂D it satisfies the relation

K̂(z, u)|dz| = 1

i
L̂(z, u)dz. (3.5)

This adjoint L kernel is a uniquley determined by these properties on D ∪ ∂D.
From (3.5) we have the identity

L̂(z, u) = −L̂(u, z) on D ×D. (3.6)

The adjoint L kernel L̂(z, u) is also characterized by the minimum property:

min

∫
∂D

|h(z, u)|2|dz| =
∫
∂D

|L̂(z, u)|2|dz|.

Here the minimum is considered on the meromorphic functions {h(z, u)} on D

with the singularity at u as in (3.4) and satisfying
{∫

∂D
|h(z, u)|2|dz|

} 1
2 <∞.

A deep and important property of the adjoint L kernel L̂(z, u) is that it does
not have any zero point on D ∪ ∂D. From this fact and (3.5),

f0(z;u) =
K̂(z, u)

L̂(z, u)

is the Ahlfors function of D with respect to u. That is, f0(z;u) is an analytic
function on D, among the analytic functions satisfying the properties

f(u;u) = 0, f ′(u;u) ≥ 0 and |f(z;u)| ≤ 1 on D,

it satisfies the extremal property f ′0(u;u) = max f ′(u;u). - This may be related to
the analytic capacity. Then, as we see from (3.5) and the principle of argument,
the function f0(z;u) maps D onto the unit disc and the disc is covered N times.
Here, we assume D is N -ply connected.

From (3.5) along ∂D we see

K̂(z, u)2dz = −L̂(z, u)2dz. (3.7)

From this relation, we see that the square of the Szegö kernel is an analyic dif-
ferential, it is continued to the double of D analytically that is a closed Riemann
surface as in the Bergman kernel. In this sense, the Szegö kernel is a half order
differential on the closed Riemann surface and so its properties are very involved
for the sake of multi-valuedness on the closed Riemann surface. The profound
theory for these properties was done by D. A. Hejhal [22] and J. D. Fay [18] by
using the Riemann theta functions and the Klein prime forms. As we see
from (3.5), the Szegö kernel is a Cauchy kernel on the Riemann surface and so it
is very important reproducing kernel.
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The Hardy reproducing kernel. Let H2(D)(Ĥ2(D), resp.) be the Hilbert space
equipped the norm in the space H2(D):{

1

2π

∫
∂D

|f(z)|2 ∂G(z, t)
∂νz

|dz|
} 1

2

(3.8){ 1

2π

∫
∂D

|f(z)|2
(
∂G(z, t)

∂νz

)−1

|dz|

} 1
2

, resp.

 . (3.9)

Here, ∂/∂νz is the inner normal derivative with respect to D. ∂G(z, t)/∂νz is a
positive continuous function on ∂D and so as in the Szegö space, we can consider
the reproducing kernel Kt(z, u)(K̂t(z, u), resp.) satisfying

f(u) =
1

2π

∫
∂D

f(z)Kt(z, u)
∂G(z, t)

∂νz
|dz|,(

f(u) =
1

2π

∫
∂D

f(z)K̂t(z, u)

(
∂G(z, t)

∂νz

)−1

|dz|, resp.
)
.

We call Kt(z, u) and K̂t(z, u) the Hardy reproducing kernel and its conjugate
reproducing kernel of D.

For an arbitrary open Riemann surface S, we can introduce the space H2(S)
similarly and the Hardy reproducing kernel. The reproducing kernel Kt(z, u) is
introduced by W. Rudin in 1955.

Let G∗(z, t) be the conjugate harmonic function of G(z, t) and when we form
the multi-valued meromorphic function W (z, t) = G(z, t) + iG∗(z, t), idW (z, t) is
a single-valued meromorphic differential, and it satisfies along ∂D,

∂G(z, t)

∂νz
|dz| = idW (z, t).

Therefore, the integral (3.9) is represented by

1

2π

∫
∂D

|f(z)dz|2

idW (z, t)
.

This will mean that Ĥ2(D) is indeed comprised of analytic differentials f(z)dz.
Therefore, the conjugate space may be considered on bordered Riemann surfaces
with some good boundaries.

For Kt(z, u)(resp.K̂t(z, u)), the adjont L kernel Lt(z, u)(resp.L̂t(z, u)), that is
a meromorphic function on D ∪ ∂D with only one simle pole at u with residue 1,
is characterized by the identity, along ∂D

Kt(z, u)idW (z, t) =
1

i
Lt(z, u)dz (3.10)(

K̂t(z, u)dz =
1

i
L̂t(z, u)idW (z, t) along ∂D, resp.

)
. (3.11)

From (3.10) and (3.11), we have a very important property:

Lt(z, u) = −L̂t(u, z) on D ×D. (3.12)



COMPLEX ANALYSIS AND THEORY OF REPRODUCING KERNELS 5

The relations (3.10), (3.11) and (3.12) show that Lt(z, u)dz is a meromorphic
differential with respect to z, a meromorphic function in u, and along z = u with
one simple pole with residue 1; that is the Cauchy kernel of D. Therefore, these
reproducing kernels are very important as in the Bergman and Szegö kernels as
the third kind of reproducing kernels in one complex variable analysis ([32, 34]).
These reproducing kernels were examined deeply on Riemann surfaces by J. D.
Fay [18] and A. Yamada [40],[41] in terms of the Riemann theta functions and the
Klein prime forms.

The norms of Bergman spaces are given by surface integrals on the domains and
so, we can consider them on some very general domains as in on regular domains,
meanwhile, for the Szegö spaces, their norms are given in terms of boundary
integrals and so, the Szegö spaces may be considered for some very respective
domains for their boundary integrals. In this viewpoint, it will be very interested
in the H2 spaces, because the norms are given by boundary integrals and however,
for any open domains we can consider them.

For the conjugate Hardy norm

1

2π

∫
∂D

|f(z)|2
(
∂G(z, t)

∂νz

)−1

|dz| = 1

2

∫
∂D

|f(z)dz|2

idW (z, t)
,

we obtain the best possible norm inequality:∫ ∫
D

|f ′(z)|2dxdy ≤ 1

2

∫
∂D

|f ′(z)dz|2

idW (z, t)
, (3.13)

and from this we see the naturality of the norm looked curiously. This inequality
is not so simple to derive and for its proof we must examine deeply the relations
among the Hardy reproducing kernel, its conjugate kernel and the Bergman kernel
([29]).

4. Suita Conjecture and its Great Extension by Q. Guan

For the Bergman kernel and the Szegö kernel on D, we have the basic and deep
relation

K(z, u) >> 4πK̂(z, u)2

– the left minus the right is a positive definite quadratic form function – which was
given by D. A. Hejhal [23]. This profound result was given on the long historical
lines as in

G.F.B. Riemann (1826-1866); F. Klein (1849-1925); S. Bergman; G. Szegö;
Z. Nehari; M.M. Schiffer; P.R. Garabedian (1949 published); D.A. Hejhal (1972
published).
It seems that any elementary proof is impossible, however, the result will, in
particular, mean the fairly simple inequality:

For two functions φ and ψ of H2(D), we obtain the generalized isoperimetric
inequality

1

π

∫ ∫
D

|φ(z)ψ(z)|2dxdy ≤ 1

2π

∫
∂D

|φ(z)|2|dz| 1
2π

∫
∂D

|ψ(z)|2|dz|, (4.1)
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and we can determine completely the cases holding the equality here. In the thesis
[28] of the author published in 1979 the result was given. The author realized
the importance of the abstract and general theory of reproducing kernels by N.
Aronszajn. In the paper, the core part was to determine the equality statement in
the above inequality, surprisingly enough, some deep and general independing poof
was appeared 26 years later in A. Yamada (see the appendix of [38]). A. Yamada
was developed deeply equality problems for some general norm inequalities derived
by the theory of reproducing kernels and it was published in the book appendix
of [38].

Of course, in the thesis we can find some fundamental idea for nonlinear trans-
forms. In particular, for the special case φ ≡ ψ ≡ 1, for the plane measure m(D)
of D and the length ℓ of the boundary we have the isoperimetric inequality

4πm(D) ≤ ℓ2.

Meanwhile, for the Hardy reproducing kernel we can give the conjecture in the
converse direction, from the case of doubly connected domains

πK(z, u) << Kt(z, u)K̂t(z, u) (4.2)
([28]). From the relation we can derive various results, the conjecture will be,
however, very difficult to solve.

The author attacked to this problem several years, it was, however, impossible
to solve it and in those days, the author derived the above result applying the result
of Hejhal conversely to the general theory of reproducing kernels by Aronszajn.
The author thinks for the conjecture we must use the deep theory of J. D. Fay,
however, his profound theory seems to be too deep and great for the author. So,
from the viewpoints of fundamental results and applicable analysis, the author
turned his research interest for the general theory of reproducing kernels.

Basic Open Problems

For the space H2(D), by exchanging
1

2π

∂G(z, t)

∂νz

with a general positive continuous function ρ, we consider the weighed Szegö space
Hρ

2 (D) and the corresponding the weighted Szegö kernel Kρ(z, u) and the conju-
gate kernel Lρ(z, u); that is, for the space{∫

∂D

|f(z)|2ρ(z)|dz|
} 1

2

<∞

with the weighted norm, we consider the reproducing kernel Kρ(z, u) satisfying

f(u) =

∫
∂D

f(z)Kρ(z, u)ρ(z)|dz|.

and

Kρ(z, u)ρ(z)|dz| =
1

i
Lρ(z, u)dz, (4.3)
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along ∂D. In particular, note that Lρ(z, u) has a similar singularity at z = u as
L̂(z, u).

For the weight ρ−1, we see that the very important relations as in the Hardy
case

Lρ(z, u) = −Lρ−1(u, z)

and
Kρ(z, u)Kρ−1(z, u)dz = −Lρ(z, u)Lρ−1(u, z)dz. (4.4)

From the boundary relations (3.3) and (4.4) on kernels, for any simply connected
regular domain we have the identity

4πK(z, u) ≡ Kρ(z, u)Kρ−1(z, u). (4.5)

We do not know whether the case (4.5) happens for N > 1 for some ρ.
Note, in particular, that for this case we have the similar result in generalizations
of the inequality (4.5) for the weighted Szegö norms.

Now, we can state the basic open problems:

Basic big open problems:
(A) Look for the condition of ρ such that

4πK(z, u) >> Kρ(z, u)Kρ−1(z, u) (4.6)
is valid.

(B) Look for the condition of ρ such that
4πK(z, u) << Kρ(z, u)Kρ−1(z, u) (4.7)

is valid.

By the deep result of D. A. Hejhal and our example, this open problems are
valid, in general, as very difficult problems. We can state the partial open problems
as in

Partial big open problems:
(A′) Look for the condition of ρ such that

4πK(z, z) > Kρ(z, z)Kρ−1(z, z) (4.8)
is valid.

(B′) Look for the condition of ρ such that
4πK(z, z) < Kρ(z, z)Kρ−1(z, z) (4.9)

is valid.

For doubly connected domains N = 2, since the differentials
4πK(z, u)dzdu−Kρ(z, u)Kρ−1(z, u)dzdu

is one dimensional first order differential that is complex Hermitian form of dzdu,
the above basic big open problems and partial big open problems are the same
problems.
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We do not know whether they are always the same problems or not.

It is very interested in the result of S. R. Bell and B. Gustafsson ([5]) that for
the Hejhal case, also for N = 3 both problems are same.

Q. Guan’s results

Surprisingly enough, since 40 years later after publication of [28], for some open
question proposed there, an entirely unexpected partial solution was published in
[14] that is an entirely new result.

For the conjecture (4.2), he proved that

πK(z, z) ≤ K̂z(z, z) (4.10)

and surprisingly enough, he completely determined the equality problem. Here
note the important fact

Kt(z, t) ≡ 1.

His interest is on the long and large topics on the Oikawa-Sario’s problems and
the Suita conjecture that determine the magnitudes of many conformal invariant
quantities.

We recall the following solution of the famous conjecture posed by Suita [39].

Theorem ([11]). Let cβ(z0) = limz→z0 exp(G(z, z0) − log |z − z0|). Then
(cβ(z0))

2 ≤ πK(z0, z0) and (cβ(z0))
2 = πK(z0, z0) holds for some z0 ∈ D if

and only if D conformally equivalent to the unit disc, i.e. N = 1.

Note that
(cβ(z0))

2 ≤ πK(z0, z0)

that was proved by Blocki in [8] for planar domains D. We can see the great impact
of the Suita conjecture from many internet sites like Wikipedia; Suita conjecture,
however, we see its frontier information in [26] and [40]. In particular, it seems
that the impact of T. Ohsawa was great that was introduced and connected to
several complex analysis group and to several complex analysis. For a complete
version of Yamada, see [41].

For some detail and global information on the Suita conjecture, see Ohsawa
([27]), the last 5 stories.

Then, Guan derived the inequalities

(cβ(z0))
2 ≤ πK(z0, z0) ≤ K̂z0(z0, z0)

that mean that the values (cβ(z0))2 and K̂z0(z0, z0) are the extremals for the value
K(z0, z0) and he solved completely the equality problems for these inequalities by
an elementary means.

Surprisingly enough, he derived there the following identity:
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For any fixed t ∈ D and for any fixed analytic function f on D which is
continuous on D ∪ ∂D, the identity

lim
r→1−0

1

1− r

∫ ∫
{e−2G(z,t)≥r}

|f(z)|2dxdy (4.11)

=
1

2

∫
∂D

|f(z)|2(∂G(z, t)/∂ν)−1|dz|

holds.

Main Result

The following inequalities seem to be interesting on its own sense:

Theorem: For any given ϵ > 0 and for any fixed analytic function f(z) on
D ∪ ∂D, there exists a (large) r in (0 < r < 1) satisfying the inequality∫ ∫

D

|f ′(z)|2dxdy − ϵ ≤ 1

1− r

∫ ∫
{e−2G(z,t)≥r}

|f ′(z)|2dxdy.

This inequality may be looked as an isoperimetric inequality, because the Dirich-
let integral on a domain is estimated (restricted) by the Dirichlet integral on some
small boundary neighborhood of the domain. Here, the neighborhood size and
estimation are stated by the level curve of the Green function, precisely.

Even the case of the identity function f(z) = z, we can enjoy the senses of the
estimation and the result.

Out Line of Proof of the Main Result

The integral of the conjugate analytic Hardy H2(D) norm seems to be not pop-
ular, however, the norm will have a beautiful structure and the norm is conformally
invariant. Furthermore, we obtain the inequality:

For any analytic function f(z) on D ∪ ∂D, we have the inequality∫ ∫
D

|f ′(z)|2dxdy ≤ 1

2

∫
∂D

|f ′(z)|2(∂G(z, t)/∂ν)−1|dz|. (4.12)

This result was derived from some complicated theory of reproducing kernels
in ([29]) on some comparison of the magnitudes of the Bergman and the Rudin
(Hardy H2) reproducing kernels. The equality problem in the inequality was also
established; that is, equality holds if and only if the domain is simply-connected
and the function f ′(z) is expressible in the form CK(z, t) for the Bergman repro-
ducing kernel K(z, u) on the domain D and for a constant C. Its source was given
by [28] and then the topics was cited in the book [32] in detail.

We can obtain the main result by combining of the Guan identity and this
inequality.
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Remarks

We note the following interesting problems:
Problem 1 : How will be some generalization of the Guan identity for a general

weight for (∂G(z, t)/∂ν)−1?
Problem 2 : We can consider similar inequalities for various function spaces.

For example, how will be the case for the harmonic Dirichlet integrals?
Problem 3 : The structure and proof of the inequality (4.12) are very com-

plicated (involved) and the Guan identity is very unique. So, we are interested in
some direct proof of the theorem.

Problem 4 : The theorem seems to be valid for a general domain D and for
general analytic functions with finite Dirichlet integrals on D apart from the proof
in this paper. However, in the theorem r is depending on the function f and
therefore the generalization of the theorem is not simple.

For the inequality (4.12), note the inequality(
1

π

∫ ∫
D

|f ′(z)|2dxdy
)2

=

(
1

2πi

∫
∂D

f(z)f ′(z)dz

)2

≤ 1

2π

∫
∂D

|f(z)|2 ∂G(z, t)
∂ν

|dz| 1
2π

∫
∂D

|f ′(z)|2(∂G(z, t)/∂ν)−1|dz|.

Note that the relation of the Bergman norm and the weighted H2 norm is very
delicate. See [28, 29, 32].

Addition with the New Paper [15] by Q. Guan and Z. Yuan

The result of Q. Guan was very surprised from the line of D. A. Hejhal and
J. D. Fay of the viewpoint of positive definiteness of reproducing kernels. On the
line of Oikawa-Sario problems Q. Guan and Z. Yuan got very deep and surprising
results [15]. This direction was suggested by the conjecture of A. Yamada [40] that
is a generalization of the conjecture of Suita:

Let u be a harmonic function on D, and let ρ = e2u. For the weighted Bergman
kernel KB

ρ (z, u)

Yamada Conjecture:

(cβ(z))
2 ≤ πρ(z)KB

ρ (z, z).

In [11], Guan-Zhou proved the Yamada conjecture and more general weighted
versions were developed surprisingly and deeply in [12] and [13].

Following this line, Q. Guan and Z. Yuan is developing the corresponding result
with the weighted Hardy H2 reproducing kernels and their results are too deep
and complicated to state them simply. A typical case, however, may be stated as
follows as a definite result:
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Let λ be any positive continuous function on ∂D. By solving the Dirichlet
problem, there exists the continuous harmonic function u on the closed domain of
D satisfying that u = − 1

2 log λ.
Then, they obtain surprisingly:

K
λ( ∂G(·,z)

∂ν· )
−1(z, z) ≥ KB

e−2u(z, z).

In particular, they are developing a detail and deep analysis for the identity
(4.11). However, not identities, but estimates.

Q. Guan and Z. Yuan gave a very delicate and profound property of
∂G(z, t)

∂ν

for a very general situation for the Green function from the view point of the
identity (4.11). For its complicated structure, it seems that the result is at this
moment abstract in nature. However, as a typical case they were able to get the
result for the general weighted Hardy H2 norms.

This line was not an expected direction, however, we see that the results show
more wide field for our mathematics. For example, how will be the values

K(
λ( ∂G(·,z)

∂ν· )
−1

)−1(z, z)

and
K

λ( ∂G(·,z)
∂ν· )

−1(z, z)K(
λ( ∂G(·,z)

∂ν· )
−1

)−1(z, z)

?

Moore and Surprising Addition with the New Paper [16] by Q. Guan
and Z. Yuan

They furthermore consider the complete version for the product space D×D×
D × · · · ×D ⊂ Cn; indeed, they surprisingly formulate the complete version and
complete results containing the equalities problems for the related estimates with
the great paper.

See also [17] for a weighted version of Suita conjecture for higher derivatives.
In addition, S. R. Bell and B. Gustafsson [5] is discussing on the Hejhal’s result

and the Suita conjecture from a very interesting viewpoint.

5. Applications to Analytic Extension Formulas

We will introduce typical applications to analytic extension formulas of repro-
ducing kernels. We obtained many and many analytic extension formulas and
applications. Its principle is the restriction and extension of reproducing kernels;
because reproducing kernels determine the uniquely determined Hilbert spaces.
See the book [34] and many references therein.

Now, let H be a Hilbert (possibly finite-dimensional) space, and consider E to
be an abstract set and h a Hilbert H-valued function on E. Then, a very general
linear transform from H into the linear space F(E) comprising all the complex
valued functions on E may be considered by
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f(p) = (f ,h(p))H, f ∈ H, (5.1)
in the framework of Hilbert spaces. Many general linear mappings may be con-
sidered in this framework by many modifications and arrangements. For this
recall the Schwartz kernel theorem in connection with the distribution theory. In
particular, recall that distribution may be considered as functions by considering
integrals. Further, restrictions of functions and weighted norms are usual tech-
niques. However, the theory of reproducing kernels may be considered essentially
and favorably in the framework of Hilbert spaces. However, even for the theory
of Banach spaces, we can discuss the relation between the spaces of Banach and
Hilbert, and we can find many related references.

In order to investigate the linear mapping (5.1), we form a positive definite
quadratic form function K(p, q) on E × E defined by

K(p, q) = (h(q),h(p))H on E×E. (5.2)
Then, the following fundamental results are valid:

Proposition 5.1. (I) The range of the linear mapping (5.1) by H is char-
acterized as the reproducing kernel Hilbert space HK(E) admitting the
reproducing kernel K(p, q).

(II) In general, the inequality
‖f‖HK(E) ≤ ‖f‖H

holds. Here, for any member f of HK(E) there exists a uniquely deter-
mined f∗ ∈ H satisfying

f(p) = (f∗,h(p))H on E

and
‖f‖HK(E) = ‖f∗‖H. (5.3)

(III) In general, the inversion formula in (5.1) in the form
f 7→ f∗ (5.4)

in (II) holds, by using the reproducing kernel Hilbert space HK(E).

When we consider the linear mapping (5.1), Proposition 5.1 gives the image
identification that is a very fundamental and important. Furthermore, we can ob-
tain many and many reproducing kernels from the general linear mappings. When
we consider the inversion of the linear mapping (5.1), the typical ill-posed problem
(5.1) looking for its inversion becomes a well-posed problem, because the image
space of (5.1) is characterized as the reproducing kernel Hilbert space HK(E) with
the isometric identity (4.3), which may be considered as a generalization of the
Pythagorean theorem.

In Proposition 5.1, when we know the isometrical mapping between the domain
H and the reproducing kernel Hilbert space HK(E), we can determine the system
or linear mapping (5.1) by representing the system function h in terms of the
linear mapping and the reproducing kernel.
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Here, we shall introduce the typical image identifications and isometric iden-
tities that are obtained by considering the integral representations in the heat
conduction.

We consider the simple heat equation

ut(x, t) = uxx(x, t) on R× T+ (T+ ≡ {t > 0}) (5.5)

subject to the initial condition

uF (·, 0) = F ∈ L2(R) on R. (5.6)

Using the Fourier transform, we obtain a representation of the solution uF (x, t)

uF (x, t) =
1√
4πt

∫
R
F (ξ) exp

(
− (x− ξ)2

4t

)
dξ (5.7)

at least in the formal sense.
For any fixed t > 0, we first examine the integral transform F 7→ uF and we

shall characterize the image function uF (x, t).
We write

k(x; t) ≡ 1√
4πt

exp

(
−x

2

4t

)
(x ∈ R, t > 0) (5.8)

and

K(x, x′; t) ≡
∫
R
k(x− ξ; t)k(x′ − ξ; t)dξ =

1

2
√
2πt

exp

(
−x

2

8t
− x′2

8t
+
xx′

4t

)
.

(5.9)

Then, we obtained surprisingly the initial results.

Proposition 5.2. Let t > 0 fix. A function f takes the form uF (·, t) for some
F ∈ L2(R) if and only if f admits analytic extension f̃ to C and satisfies√

1√
2πt

∫∫
C
|f̃(x+ iy)|2 exp

(
−y2
2t

)
dxdy <∞. (5.10)

In this case, f ∈ HK(R) and the norm is given by:

‖f‖HK(R) =

√
1√
2πt

∫∫
C
|f̃(x+ iy)|2 exp

(
−y

2

2t

)
dxdy.

Proposition 5.3. Let t > 0 fix. In the integral transform F 7→ uF (·, t) of L2(R)
functions F , the images uF (·, t) extend analytically onto C to a function, which
we still write uF (·, t). Furthermore, we have the isometrical identity∫

R
|F (ξ)|2dξ = 1√

2πt

∫∫
C
|uF (z, t)|2 exp

(
−y

2

2t

)
dxdy, (5.11)

for any fixed t > 0.
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Proposition 5.4. If a C∞-function f : Rn → C has a finite integral on the
right-hand side in (5.11), then f is extended analytically onto C and

∞∑
j=0

(2t)j

j!

∫
R
|∂jxf(x)|2dx =

1√
2πt

∫∫
C
|f(x+ iy)|2 exp

(
−y

2

2t

)
dxdy. (5.12)

Proof. For fixed t > 0, the solution operator F 7→ uF can be regarded as
uF (x, t) = 〈F, k(x− ·; t)〉L2(R).

So with
E = R, H = L2(R), h(x) ≡ k(x− ·; t) and L = [F ∈ H 7→ uF (·, t) ∈ F(E)],

the reproducing Hilbert kernel space R(L) is given by:
R(L) = {uF (·, t) : F ∈ L2(R)}.

Note that for any fixed t > 0, the system
{k(· − ξ, t); ξ ∈ R} (5.13)

spans a dense subspace in L2(R). Therefore, L is isometric.
Now let us view this mapping from the point of complex analysis. Note that

the kernel K(x, x′; t) extends analytically to C× C;

K(z, u; t) =
1

2
√
2πt

exp

(
−z

2

8t
− u2

8t
+
zu

4t

)
. (5.14)

Observe that (5.14) stands for

K(z, u; t) =

∫
R
k(z − ξ; t)k(u− ξ; t) dξ. (5.15)

Consequently, the extended kernel K is again a positive definite function. Denote
by HK(C) the RKHS associated with K. The following is a description of HK(C);
we can see directly

HK(C) =

f ∈ O(C) : ‖f‖HK(C) =

√∫∫
C

|f̃(x+ iy)|2√
2πt

exp

(
−y2
2t

)
dxdy <∞

 .

(5.16)
However, (5.16) was derived naturally and simply from the reproducing struc-

ture of (5.14) by using Proposition 3.6.
Meanwhile, the norm (5.10) is also expressible in terms of the trace f(x) of f̃(z)

to the real line.
By using the identity

k(x− ξ, t) =
1

2π

∫
R
exp{−p2t+ ip(x− ξ)}dp, (5.17)

we have
K(x, x′; t) =

1

2π

∫
R
exp{−2p2t+ ip(x− x′)}dp. (5.18)
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This implies that any member f(x) of HK(R) is expressible in the form

f(x) =
1

2π

∫
R
g(p) exp(ipx− 2p2t)dp =

1√
2π

F−1[g · exp(−2p2t)](x) (5.19)

for a function g satisfying ∫
R
|g(p)|2 exp(−2p2t)dp <∞ (5.20)

and we have the isometrical identity

‖f‖HK(R) =

√
1

2π

∫
R
|g(p)|2 exp(−2p2t)dp. (5.21)

Meanwhile, by the Fourier transform and (5.19), we have
g(p) =

√
2πFf(p) exp(2p2t) (5.22)

in L2(R). Hence, we obtain

‖f‖HK(R)
2 =

∫
R
|Ff(p)|2 exp(−2p2t)dp =

∞∑
j=0

(2t)j

j!

∫
R
|f (j)(x)|2dx, (5.23)

by virtue of the monotone convergence theorem and the Parseval–Plancherel iden-
tity.

□

As in those typical cases, we obtained many isometric identities and analytic
extension formulas. Define the right-half plane by: R+ = {z ∈ C : Re(z) > 0}.

Proposition 5.5. Let q > 1

2
. Then, for f ∈ HKq

(R+), admitting the Bergman
Selberg reproducing kernel Γ(2q)/(z + u)2q, we have the identity

‖f‖HKq (R
+) ≡

√
1

Γ(2q − 1)π

∫∫
R+

|f(z)|2(2x)2q−2dxdy

=

√√√√ ∞∑
n=0

1

n!Γ(n+ 2q + 1)

∫
R
|(xf ′(x))(n)|2x2n+2q−1dx. (5.24)

Conversely, any C∞(0,∞)-function f with convergent summation in (5.24) extends
analytically onto the right half plane R+. The analytic extension f(z) satisfying
lim
x→∞

f(x) = 0 belongs to HKq (R
+) and the identity (5.24) is valid.

We shall write S(r) ≡ {z ∈ C : 0 < arg(z) < r} for the open sector and its
boundary ∂S(r) ≡ {z ∈ C : z = 0 or arg(z) = ±r}.

Proposition 5.6. Let r ∈ (0, π/2). For an analytic function f on the open sector
S(r), we have the identity∫∫

S(r)

|f(x+ iy)|2dxdy = sin(2r)

∞∑
j=0

(2 sin r)2j

(2j + 1)!

∫
R
x2j+1|f (j)(x)|2dx. (5.25)
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Conversely, if any f ∈ C∞(S(r)) has a convergent sum in the right-hand side in
(5.25), then the function f(x) can be extended analytically onto the sector S(r) in
the form f(z) and the identity (5.25) is valid.

In the Szegö space, we have the following formula:

Proposition 5.7. Let r ∈ (0, π/2). For any member f in the Szegö space on the
open sector S(r), we have the identity∮

∂S(r)

|f(z)|2|dz| = 2 cos r

∞∑
j=0

(2 sin r)2j

(2j)!

∫
R
x2j |f (j)(x)|2dx, (5.26)

where f(x) means the nontangential Fatou limit on ∂S(r) for x ∈ R . Conversely,
if any f ∈ C∞(0,∞) has a convergent sum in the right-hand side in (5.26), then
the function f(x) extends analytically onto the open sector ∆(r) and the identity
(5.26) is valid.

These results were applied to investigate analyticity properties of the solutions
of nonlinear partial differential equations. In particular, an analogue is applied to
the proof of the unique existence of the Schödinger equation by N. Hayashi. H.
Aikawa considered the class W (cj ;R) by changing (2 sin r)2j

(2j)! with other general pos-
itive sequences, where he proved that some function can not be extended beyond
a sector.

These Propositions may be looked at the relations of the correspondent RKHSs
for the restrictions of RKs, because the both sides are reproducing kernel Hilbert
spaces. That is the relation of analytic extension and the restriction (extension)
of reproducing kernels.

6. Conclusion

In connection with the relation of complex analysis to the theory of reproducing
kernels, we will recall the famous sampling theory. However, the sampling theory
is not restricted to analytic functions, but the theory holds for some very general
functions. Indeed, it depends on some very general discretization principle that
is very favorable in the theory of reproducing kernels. Typically, its concrete
realization was established as the Aveiro discretization method. See [38].
Another typical problem may be considered in the real inversion formula of the
Laplace transform, because we have to get analyticity by discrete data.
However, we were able to overcome this very difficult problem as a general theory
and we published its principle in the book [38] globally.
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