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Abstract 

Complex Ginzburg-Landau equation (CGLE) is a universal model of nonequilibrium 

dynamical systems. Focusing on the primordial stages of cosmological evolution, this 

work points out that the connection between CGLE and the Navier-Stokes (NS) equation 

bridges the gap between fluid flows and the mathematics of General Relativity (GR). 
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1. Introduction 

CGLE is considered a paradigm of non-equilibrium statistical physics and 

dynamic critical phenomena. It encodes many key properties of collective 
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phenomena with space-time dependence, and it models the generic onset of 

chaos, turbulence, and spatiotemporal patterns in extended systems [1-3]. 

We recently argued that applying CGLE to the chaotic dynamics of 

interacting fields yields unforeseen solutions to the challenges raised by 

high-energy theory [4-5]. The goal of this work is to expand our findings to 

the possible link between CGLE and the high temperature / long wavelength 

limit of GR.  

Let’s begin with the observation that there are (at least) four distinct routes 

leading from nonequilibrium dynamics to GR: 

1. The emergence of a nonvanishing K-entropy in the unstable sector of 

gravitational dynamics, the N-body problem (N > 2) of cosmology in near or 

non-equilibrium conditions [6-8].     

2. The emergence of a spacetime equipped with continuous dimensionality 

above the Fermi scale follows from several premises, one of them being the 

onset of Hamiltonian chaos and fractional dynamics [9-10]. Along the same 
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lines, it can be argued that fractional dynamics in flat spacetime is formally 

equivalent to classical dynamics on curved manifolds [11].  

3. The geometry of Hamiltonian systems is dual to geometry on curved 

manifolds [12].  

4. Thermodynamics of Black Holes lends support for the multifractal 

interpretation of horizon dynamics [13].   

We believe that, besides 1) - 4), a scenario worthy of investigation is the fluid-

gravity correspondence inspired by the gauge-gravity duality of string theory 

[14]. A drawback of this duality is that it operates with a negative 

cosmological constant, clearly at odds with current astrophysical 

observations. It was found in [15] that, applying the gauge-gravity 

conjecture to a 1+1 spacetime endowed with continuous dimensions leads to 

a positive cosmological constant. Besides leading to a positive cosmological 

constant, setting the fluid-gravity duality in 1+1 dimensions brings up two 

attractive features, namely, a) a low dimensional metric is compatible with 
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the framework of dimensional reduction (DR) applied to the primordial stages 

of Universe evolution [16], b) the duality of hydrodynamics and high-

temperature/long-wavelength gravitational dynamics in 1 + 1 dimensions 

necessarily turns into an identity, as continuous dimensions automatically 

overlap within an infinite range of positive values.  

The paper is divided into four sections. Section 2 lists the main couple of 

assumptions underlying the approach, while section 3 and 4 delve into the 

route connecting CGLE, relativistic NS equation and General Relativity, 

following the straightforward diagram shown below:   

CGL Equation    NS Equation     General Relativity  

2. Assumptions 

A1) The DR conjecture asserts that the number of spacetime dimensions 

monotonically drops with the boost in the observation scale. In a nutshell, 

the DR expectation is that spacetime becomes two-dimensional near the Big-

Bang singularity. This conjecture is backed up by several cosmological 
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scenarios, including the BKL ansatz and the Kasnerian regime of metric 

fluctuations in the primordial Universe [17-18]. 

A2) When applied to the fluid-gravity correspondence, DR yields a positive 

cosmological constant in 1+1 dimensions [15]. It is conceivable that the 

cosmological constant stays unchanged as the Universe expands and cools 

off, on account of inherent memory effects attributed to nonequilibrium 

dynamics.   

3. From CGLE to the NS equation  

The standard form of CGLE is given by,  

 
2

1 3
(1 ) (1 )t z az ic z ic z z


 = + +  − −   (1) 

in which z  is a complex-valued field, the parameters a  and   are positive 

and the coefficients 1c  and 
3

c  are real [1-2]. The nonlinear Schrödinger equation 

(NSE) is a particular embodiment of the CGLE in the limit 0a→ , namely 

[19] 
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2

1 3ti z c z c z z


−  =  +   (2a) 

In what follows we set 1 = . In natural units ( 1= ), the quantum-

mechanical version of (2a) reads, 

 21
( , ) [ ( , )] ( , )

2
i z x t V x t z x t

t m


= −  +


  (2b) 

where ( , )V x t  is the potential function. The Madelung transformation enables 

one to turn (2b) into the quantum Euler equation for compressible potential 

flows [20]. To this end, taking the complex-valued field in the canonical 

form, 

 
( , )

( , ) exp[ ( , )]
x t

z x t iS x t
m


=   (3) 

and substituting it into (1)-(2) leads to  

 ( ) 0u
t





+ =


  (4) 

 
1

( )
du u

u u Q V
dt t m


= +  = −  +


  (5) 
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Here, ( , )u x t  denotes the flow velocity, 
2

m z =  stands for the mass density 

and  

 
2( )1

2
Q

m





= −   (6) 

is the Bohm potential. The flow velocity and its associated probability 

current are given by, respectively, 

 
1

( , )
i z

u x t S
m m z


=  =−   (7) 

 
1

[ ( ) ( )]
2

j u z z z z
mi

  = =  −    (8) 

Since the Schrödinger equation is conservative, the Madelung 

transformation naturally leads to the Euler equation, which is exclusively 

valid for inviscid flows. To account for fluid viscosity and arrive at the NS 

equation, one needs to either appeal to an extended version of the NS 

equation containing non-conservative terms or bring up the concept of 

kinematic viscosity – a concept linked to the mass of quantum particles as in  
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1

2m
 =   (9) 

By (9) and for incompressible flows, the NS equation that mirrors (5) can be 

written as,  

 21du u
u u p u

dt t


= +  = −  + 





  (10) 

where p  denotes the pressure. 

4. From the NS equation to gravitational dynamics 

According to the gauge-gravity duality, Einstein’s equations in 1D d= +  

spacetime dimensions contain a negative cosmological constant   and are 

written as [14-15]:  

 
1

0
2

R Rg g− + =    (11) 

in which, 

 
2

( 1)

2 AdS

d d

R

−
 = − ;  0,1,2,...d =  (12) 
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with AdS
R  denoting the AdS curvature radius, a parameter that can be 

conveniently set to unity. On a minimal fractal spacetime defined in 1+1 

dimensions ( , 0,1  = ), the spatial dimension flows with the 

Renormalization Group (RG) scale and spans a continuous range of values 

as in  

 
2

2 ]
( )

( ) 1 ( ) 1 [ RG
RG RG

UV

m
d O= −  −




   ;  1   (13) 

where  RG   stands for the RG scale and UV  is the ultraviolet cutoff. In 

contrast with the conventional gauge-gravity duality, it follows from (13) 

that (12) turns into a positive cosmological constant, that is,  

 2 ( ) 0AdSR O= =   (14) 

Following (13) and [14], in the high temperature / long wavelength limit of 

gravitational dynamics, Einstein’s equations reduce to the NS equations (10) 

in one-dimensional space ( 1d = ).   
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