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Abstract

The measurement problem is an important open question for the interpretation of the foundations of quantum me-
chanics. For the purpose of solving this problem, we focus from a new angle on the interpretation of the superposition
principle that is the origin of the measurement problem. As a result, we show that the measurement problem at issue
cannot arise, provided the mathematical and physical aspects of the superposition principle are considered correctly.
Our work demonstrates that since any mathematical superposition of eigenstates is never a new eigenstate, the su-
perposed state at issue, if any, should be interpreted simply as a statistical ensemble of possible states that occur
sequentially, instead of a mixed state indicative of simultaneous occurrence. Actually, this view leads to the conclu-
sion that the concept of the currently accepted state vector and the motivation of the measurement problem have no
perfect ground from both mathematical and physical aspects. Furthermore, using mainly mathematical method rather
than thought experiments, we offer a realistic interpretation of the superposition of eigenstates based on ensemble of
quantum states, thereby helping to capture the essence of the measurement problem which actually is not implicated
in Apparatus and Observer.

Key words: Eigenstate, Quantum ensemble theory, Quantum mechanics, Superposition principle, Measurement
problem

1. Introduction

One of the fundamental principles of quantum me-
chanics is the superposition principle, i.e., the principle
of linear superposition of eigenstates. The superposi-
tion principle states that a quantum-mechanical system
which can take on discrete eigenstates {φn : (n ∈ N)} is
also able to occupy the superposed state

ψ =
∑

n

anφn, (1)

where N denotes a set of integers [1]. Nevertheless,
the measurement by Observer provides only eigenval-
ues without the occurrence of a likely state smeared by
superposition. On that account, the measurement for
quantum systems seems to cause the reduction of the su-
perposed wave function to an eigenstate wave function
[1, 2]. In this connection, von Neumann first assumed

∗Corresponding author
Email addresses: jch59611@star-co.net.kp (Chol Jong),

cnc81103@star-co.net.kp (Nam-Chol Choe)

a dichotomy between two different types of evolutions:
the unitary evolution and the measurement process [3].
The famous Projection Postulate proposed by him be-
came one of the fundamental axioms in the standard
theory of quantum mechanics. Hence the measurement
problem arises that leads to the conception of Apparatus
and Observer. The conception of the measurement pro-
cess gave rise to dissenting views concerning the quan-
tum phenomena.

A remarkable position is the attempt to ascribe a fun-
damental function of the measuring process to human
consciousness [2, 3, 4, 5, 6].

The position of the statistical interpretation, or the
many-world interpretation rejecting the Projection Pos-
tulate pursues the object to eliminate the jump-like fea-
tures of the measurement [7, 8, 9, 10, 11, 12, 13, 14, 15].

Some of physicists direct their efforts to explaining
the measurement problem in terms of the intervention
of macroscopic system [16, 17].

Another method of the research into the measurement
problem is characterized by the attempt to find some ad
hoc parameters in order to explain the reduction [18].
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Their approach appears to be a theory of the relation
between microscopic physics and macroscopic physics.

Some physicists have developed the theory of deco-
herence that describes non-unitary evolution by using
the specific nature of open system [19, 20, 21, 22].

It should be noted the assertion that a mathematical
superposition of states means an ensemble of states and
not a mixed state [23].

Analyzing the previous allegations concerning the
measurement problem, we can show the following clas-
sification of problems and contestations: (I) the prob-
lem of Observer, (II) the limits of the Projection Pos-
tulate, (III) the instantaneous character of the measure-
ment process, (IV) the constraints imposed by conser-
vation laws [1, 2, 24, 25, 26].

The major problem arises from the fact that while it
is possible to observe eigenstates {φn} of a given quan-
tum operator L̂, a superposed state

∑
n anψn that is seen

as being mathematically possible is not found. The his-
tory and the present situation of the measurement prob-
lem show that at the present stage any interpretation ap-
proach cannot give satisfactory answers to the measure-
ment problem.

In this work, we newly review the superposition prin-
ciple from the point of view distinct from the present
ones. Our work focuses on the mathematical structure
of the very superposition principle rather than the mea-
surement problem, thus returning to the origin of the
contestation. Starting from this, we demonstrate the
self-evident mathematical fact that the superposition of
eigenstates cannot yield a new eigenstate distinguished
from a complete set of eigenstates. On the basis of this
proposition we explain that the superposition of eigen-
states indicates the sum of events characterized by an
ensemble of eigenstates.

2. Mathematical impossibility of superposition of
eigenstates as a mixture

The measurement problem shows a subtle inner in-
consistency within the standard framework of quantum
mechanics [2, 25]. In this work, we aim to reveal the in-
ner inconsistency at issue. With this purpose we begin
with analyzing the mathematical interpretation of the
superposed state. It is obvious that the superposition of
eigenstates is not an alternative eigenstate. If the super-
position is mathematically possible, then we inevitably
encounter the measurement problem. However if not so,
the measurement problem should be assessed as having
been a misled one from the outset. It is necessary to
show for the purpose of systematic consideration that

a state vector does not satisfy the eigenvalue equation
which gives a complete set of eigenfunctions, although
its proof is trivial and simple for experts. Actually, the
discussion of this topic becomes the starting point for
airtight demonstration of the measurement problem.

Let L̂ be an operator and L, the corresponding eigen-
value. Then the eigenvalue equation reads as follows.

L̂φ = Lφ. (2)

The above eigenvalue equation provides a set of
eigenvalues {Ln : (n ∈ N)} and a set of eigenfunctions
corresponding to the eigenvalues, {φn : (n ∈ N)}. Let
us assume that a superposition of eigenfunctions ψ =∑

n anφn is valid. Then ψ =
∑

n anφn should satisfy Eq.
(2). Thus, we have

L̂
∑

n

anφn = L
∑

n

anφn. (3)

Multiplying the both sides of Eq. (3) by a particular
eigenfunction φ∗m and integrating with respect to posi-
tion variables, we obtain∑

n

an

〈
φm

∣∣∣L̂∣∣∣φn

〉
= L

∑
n

an 〈φm|φn〉 . (4)

In view of the orthonormality of eigenfunctions, we get

amLm = Lam. (5)

Consequently, we arrive at

Lm = L. (6)

Eq. (6) indicates that eigenvalues Lm are all identical.
This is incompatible with the fact that we began with a
set of different eigenfunctions. In order for Eq. (6) to be
valid, all {an} except for a particular am should be zero,
which implies nothing but a particular eigenstate. In the
end, we reach the conclusion that ψ =

∑
n anφn cannot

be another eigenstate. From this, it follows that the state
vector does not correspond to a physical reality, i. e., an
observable.

This conclusion also can be confirmed by the fol-
lowing simple consideration. Should

∑
n anφn be an

eigenstate of operator L̂, it would be orthogonal to
{φn : (n ∈ N)}. However, we have〈

φm

∣∣∣∣∣∣∣∑n

anφn

〉
= am , 0. (7)

Accordingly,
∑

n anφn is not orthogonal to
{φn : (n ∈ N)}.
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Meanwhile, this fact also is evident from the com-
pleteness of a system of eigenfunctions. Since a sys-
tem of eigenfunctions is a complete system, any func-
tion different from the system of eigenfunctions cannot
satisfy the eigenvalue equation.

It is common knowledge to be always possible to
form an arbitrary function with the help of {an : (n ∈ N)}
and
{φn : (n ∈ N)} because of the completeness of eigen-
functions. This fact tells us that any functions can be
expanded by eigenfunctions, but it is not an eigenfunc-
tion satisfying the eigenvalue equation. Thus, we arrive
at the conclusion that

∑
n anφn is not an eigenstate of L̂

and therefore the superposition of eigenstates is impos-
sible.

On the other hand, it is necessary to consider the state
vector in connection with eigenvalue equation. In fact,
an eigenvalue equation involves a set of linear equa-
tions. Namely, {

L̂φ = Lnφ : (n ∈ N)
}
. (8)

For this reason, these equations distinguished by eigen-
values are all clearly different equations and therefore
the linear combination of eigenfunctions loses mathe-
matical meaning. In fact,

∑
n anψn amounts to a linear

combination of solutions of different equations.
For example, for the two linear equations that are dis-

tinguished by eigenvalues Ln and Lm:

L̂φn = Lnφn (9)

and
L̂φm = Lmφm, (10)

it is mathematically meaningless to make a linear com-
bination by use of the solutions of the different equa-
tions, φn and φm. Thus, it is clarified the fact that prior
to measurement, a quantum system exists not in a su-
perposed state, but in a particular eigenstate.

The final examination is directed towards the mat-
ter of whether the time-dependent Schrödinger equation
ensures the application of the superposition principle in
terms of eigenstates. If the superposition principle holds
in the sense of eigenfunction, then for the expansion of
a wave function in terms of eigenfunctions of L̂, namely,
ψ =

∑
n anφn, the time-dependent Schrödinger equation

i~
∂ψ

∂t
= Ĥψ (11)

should be able to be written as∑
n

an

(
i~
∂

∂t
− Ĥ

)
φn = 0. (12)

However, the case is impossible.
In fact, if an is time-independent, the above equa-

tion loses mathematical meaning because φns are only
position-dependent and thus the wave function is time-
independent. Accordingly, an should be necessarily
time dependent. For this reason, Eq. (12) does not hold
in the case of time-independent an. This is self-evident
because eigenfunctions are not a solution of the time-
dependent Schrödinger equation.

Now, we can examine the superposition of eigen-
states in view of the time-dependency of an. Without
loss of generality, we can expand the time-dependent
wave function as

ψ (x, t) =
∑

n

an (t) φn (x) . (13)

In this case, the expansion coefficients {an (t)} are deter-
mined by

〈φm (x)|ψ (x, t)〉 =

〈
φm (x)

∣∣∣∣∣∣∣∑n

an (t) φn (x)
〉
. (14)

By the orthonormality of {ψm}, we get

am (t) = 〈φm (x)|ψ (x, t)〉 . (15)

Inserting Eq. (13) into Eq. (11) enables us to go through
the following manipulation:

i~
∂
∑

n an (t) φn (x)
∂t

= Ĥ
∑

n

an (t) φn (x) , (16)

i~
∑

n

dan (t)
dt

φn (x) =
∑

n

Ĥ
[
an (t) φn (x)

]
, (17)

∑
n

an (t)
[
i~

1
an (t)

dan (t)
dt

]
φn (x) =

∑
n

an (t) Ĥφn (x) .

(18)
Finally, we arrive at∑

n

an (t)
[
i~

d lnan (t)
dt

− Ĥ
]
φn (x) = 0. (19)

By comparing Eq. (19) with Eq. (12), we find that the
two wave equations with respect to eigenfunction take
on different forms. The disagreement between them
shows that the superposition principle cannot be satis-
fied by the superposition of eigenstates of an arbitrary
Hermitian operator L̂ taking a discontinuous eigenvalue
spectrum, although a wave function can be expanded in
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terms of a set of eigenfunctions. Of course, the superpo-
sition of eigenstates does not fulfill the eigenvalue equa-
tion, and therefore it is not a possible state in the sense
of eigenstate. Naturally, we arrive at the conclusion that
the superposition of eigenstates implies an ensemble of
possible states.

The impossibility of the superposition of eigenstates
as a mixture needs to reassess the validity of the mea-
surement problem. It should be considered that eigen-
states {φn : (n ∈ N)} exhibit only their inherent property,
irrespective of Apparatus and Observer because quan-
tum operators possess attributes irrelative to Appara-
tus and Observer. The fact that results of measure-
ment reflect purely eigenstates and not a superposed
state requires the review of the mathematical founda-
tion of the superposition principle rather than the mea-
surement problem. The aforementioned description has
been done in compliance with this requirement. Thus,
the mathematical result is not inconsistent but compat-
ible with physical result of measurement. As a conse-
quence, it is useless to debate upon the measurement
problem. It can be concluded that there does not exist
the superposition principle for eigenstates, and therefore
we are in a position to withdraw the measurement prob-
lem originating from the superposition of eigenstates.

3. Possibility of superposition in the sense of ensem-
ble of states

It is necessary to discuss in more detail what the su-
perposition of eigenstates,

∑
n anφn that is not an eigen-

state really means.

First, let us consider a closed system described by a
wave function ψ. When measuring a variable L repre-
sented by the Hermitian operator L̂, the eigenvalues Ln

of L̂ are the possible results of measuring that variable.
If a Hermitian operator L̂ does not commute with the
Hamiltonian operator Ĥ, then the wave function is not
the eigenfunction of L̂. In this case, the wave function
may be expanded in terms of the set of eigenfunctions
φn of L̂:

ψ =
∑

n

anφn. (20)

By definition, the expectation value of L̂ is obtained
through

〈
L̂
〉

=

∫ ∑
n,m

(
a∗mφ

∗
m
)

L̂ (anφn) dx

=
∑
n,m

a∗man

∫
φ∗mL̂φndx

=
∑
n,m

a∗manLnδmn

=
∑

n

|an|
2 Ln. (21)

In order to interpret the physical meaning of the above
result, it should be taken into account that for a sin-
gle measurement the values of measurement always be-
longs to {Ln : (n ∈ N)} and the probability of a result Ln

is given by |an|
2. In addition, it should be taken into

consideration that as already mentioned, ψ =
∑

n anφn is
not an eigenfunction of L̂, while it represents the sum
of events described by {φn}. With these two facts in
mind, we can interpret

〈
L̂
〉

as the expectation value for
the ensemble of eigenstates, but not for the mixture of
eigenstates. What is concluded here is that the superpo-
sition principle is established in the context of ensemble
of eigenstates.

For example, a wave function can be represented as
a linear combination of the spin-up wave function and
the spin-down one. Obviously, the superposition of the
two spin wave functions cannot satisfy the eigenvalue
equation with respect to spin operator. In this sense,
the superposition is impossible. Due to the character of
wave function, this superposition reflects an ensemble
of states in the context of spin rather than a mixed state.
With Eq. (21) in mind, it is obvious that this superposi-
tion merely represents an ensemble in regard to spin. In
this sense, the superposition is possible.

On the other hand, it is necessary to pay attention to
the fact that an eigenfunction of a certain operator Â can
be expressed as a linear combination of eigenfunctions
of another operator B̂. This fact implies by no means
the superposition in terms of eigenfunction and does not
bear physical meaning. It is due purely to the mathe-
matical possibility of expanding an arbitrary function in
terms of a complete system of eigenfunctions of a cer-
tain Hermitian operator. In fact, it has nothing to do
with the superposition principle because eigenfunctions
of operator B̂ do not satisfy the eigenvalue equation of
Â.

Let us consider the case when eigenvalues of L̂ form
a continuous spectrum. For example, let us examine ex-
pectation 〈 p̂〉 for a momentum component operator p̂. If
we expand the wave function in terms of eigenfunctions
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of the momentum operator,
{
φp : (p ∈ R)

}
we have

ψ =

∫
p

apφpdp, (22)

where R denotes a set of real numbers.
Hence, the expectation value of p̂ is written as

〈 p̂〉 =

∫ (∫
p

a∗pφ
∗
pdp

)
p̂
(∫

p′
ap′φp′dp′

)
dx

=

∫
p

∫
p′

a∗pap′dpdp′
∫

φ∗p p̂φp′dx

=

∫
p

∫
p′

a∗pap′ p′δ
(
p − p′

)
dpdp′

=

∫
p

∣∣∣ap

∣∣∣2 pdp. (23)

With Eq. (21) in mind, we can interpret 〈p̂〉 as the mean
value of an ensemble of the momenta, but not that of a
momentum mixture. It can be seen that also in the case
of continuous spectrum of eigenvalues the superposition
principle is established in the context of ensemble of
eigenstates.

Next, let us consider an open system described by a
density matrix

ρ =
∑

n

|ψn 〉Wn〈ψn| . (24)

Here, {ψn : n ∈ N} are determined by

Ĥψn = Enψn. (25)

The wave function for the mixed state can be written as

ψ =
∑

n

anψn. (26)

In this case, the physical quantity of L̂ for a mixed state
is represented by averaging over all the pure states in
consideration of their weights as〈

L̂
〉

=
∑

n

Wn

〈
ψn (t)

∣∣∣L̂∣∣∣ψn (t)
〉
. (27)

This also shows that for open microscopic systems, ψ =∑
n anψn as a mixed state merely reflects the ensemble

of alternating states and not the mixture of eigenstates
because ψ =

∑
n anψn is not an eigenfunction of Ĥ.

Let us consider the case of degenerate eigenvalue. In
this case, there are several eigenfunctions correspond-
ing to an eigenvalue. For example, for the Hamiltonian
operator Ĥ we can suppose an equation corresponding

to at once an energy eigenvalue and several eigenfunc-
tions: {

Ĥψn = Eψn : (n ∈ N)
}
. (28)

Since the solutions ψn satisfy an equation, the math-
ematical superposition of the degenerate eigenfunctions
is possible. Namely, for the superposed wave function

ψ =
∑

n

anψn, (29)

we have
Ĥ

∑
n

anψn = E
∑

n

anψn, (30)

by further arrangement,∑
n

an

(
Ĥ − E

)
ψn = 0. (31)

Consequently, the superposition principle holds for
the degenerate eigenfunctions. The matter is whether∑

n anψn is a mixed state or an ensemble of states. {ψn}

are orthogonal to one another. This implies that differ-
ent states {ψn} of a certain operator L̂ entering Ĥ cor-
respond to the equal E. In this case, the eigenvalues
{Ln} and eigenfunctions {ψn} constitute a discontinuous
spectrum. As mentioned above, for this discontinuous
spectrum {ψn}, a superposed state

∑
n anψn assumes not

a mixed state but an ensemble of eigenstates. Therefore,∑
n anψn also represents the probabilistic superposition.
The most of physicists believe that the wave function

of a system in the beginning, given by ψ =
∑

n anφn has
changed by measurement to be reduced to a particular
eigenstate, φl. This context can be expressed by the fol-
lowing diagram [1].

Essential here is that while the measurement gives
rise to the reduction of the superposed state to a defi-
nite eigenstate, it does not change the eigenstates them-
selves.

For a closed system, it is possible to give from Eqs.
(21, 23) obvious answer to the question about why the
repeat of measurement provides eigenvalues of an oper-
ator with a definite probability. A closed system should
be in a definite eigenstate of Ĥ. Therefore, the results of
measurement of a conservative physical quantity which
corresponds to an operator commuting with Ĥ always
are a particular eigenvalue. On the contrary, if an op-
erator L̂ does not commute with Ĥ, namely, the physi-
cal quantity corresponding to L̂ is non-conservative, the
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measurement yields an ensemble of eigenstates. This
fact is obvious from Eqs. (21) and (23). For an open
system, it is necessary to consider that any quantum
system can transfer from an eigenstate of Ĥ to another
due to the interaction with the surrounding system. Of
course, the surrounding system may contain Appara-
tus as well. For open systems, there is no conservative
physical quantity including energy, and therefore we are
to obtain a series of eigenvalues instead of a particular
eigenvalue. Actually, there is no ideally closed micro-
scopic system. A surrounding system is to remarkably
influence a microscopic system unlike a macroscopic
system. Therefore, the surrounding system plays the
role that makes the system under consideration trans-
fer between eigenstates in sequence. In this case, the
results of measurement are given as a series of eigen-
vaules subject to a definite probability rule. In the end,
the measurement yields the ensemble of possible states
the open system can take. If a microscopic system is
considered to be a closed one, it is impossible to ex-
plain why the state of the system changes alternately de-
spite the requirement for the unconditional observance
of conservation laws. If a certain phenomenon violates
conservation laws, then we naturally have to consider
the system as an open one.

It is farfetched to imagine the measurement problem
in order to account for the disagreement between the
mathematical and physical results. In fact, it makes the
situation of discussion more difficult and complicated
rather than solvable and improved. The present situation
characterized by the long and serious debates about the
measurement problem shows that it is difficult to find
the final solution to the queer problem, so far as we do
not veer the direction of the ongoing research.

Eventually, we can unravel the mystery of the mea-
surement problem. In essence, the strange measurement
problem originated from the superposition of eingen-
functions. As mentioned above, the superposition prin-
ciple does not work in the sense of simultaneous mixture
of eigenstates.

In the case of open systems,
∑

n anψn represents the
sum of events, since the wave function assumes a proba-
bilistic property. Since the sum of events means sequen-
tial occurrence of events and not the simultaneous oc-
currence of events, the superposed wave function does
not imply a mixed state, but an ensemble of possible
states. It is necessary to recall that in reality, the wave
function stands for an ensemble of positions of particles
as a sum of events. Similarly,

∑
n anψn describes an en-

semble of eigenstates. Based on the standard theory of
quantum mechanics, most of physicists have used the
idea that quantum states can exist in a superposition, al-

though such a physical circumstance seems odd. It is a
usual position to be accustomed, for example, to parti-
cles being in several places at once or being in a super-
position of different polarizations in EPR experiments
that test local realism. If anything, although the wave
function appears to write that a particle exists in several
places at once, we really observe the particle at a point.
Since the wave function reflects all possible events, it
exactly represents an ensemble of positions as a quan-
tum state. Indeed, it is reasonable to describe such a
physical situation by use of probability as in statistical
mechanics.

It is no wonder that the superposition principle holds
true for time-dependent process. In fact, in the case of
the time-dependent Schrödinger equation we can ap-
ply the superposition principle because it is a linear
differential equation. However, it is not superposition
with respect to eigenstates. Suppose we can find inde-
pendent solutions {ψn : (n ∈ N)} for the time-dependent
Schrödinger equation

i~
∂ψn

∂t
= Ĥψn. (32)

In this case, we can readily make certain that the linear
combination of these independent solutions also fulfills
the time-dependent Schrödinger equation. Namely,

i~
∂
∑

n anψn

∂t
= Ĥ

∑
n

anψn, (33)

∑
n

an

(
i~
∂ψn

∂t

)
=

∑
n

anĤψn, (34)

∑
n

an

(
i~
∂ψn

∂t
− Ĥψn

)
= 0. (35)

After all, the time-dependent Schrödinger equation
does not pose any inconsistent problem with the super-
position of independent solutions. Of course, it is im-
possible to endow the independent solutions with a cer-
tain physical meaning. Therefore, the superposed wave
function in terms of the independent solutions should be
regarded as a wave function. It should be emphasized
that in this case the superposition is described in terms
of independent solutions instead of eigenfunctions.

The physical meaning of the superposition can be ex-
plained by means of eigenfunctions of operator L̂. It is
possible to expand a time-dependent wave function in
terms of eigenfunctions of operator L̂ as

ψ (x, t) =
∑

n

an (t) φn (x) . (36)
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In view of Eq. 21, it can be seen that the expectation
value of L̂ is represented as〈

L̂
〉

=
∑

n

|an (t)|2 Ln. (37)

Of course, ψ (x, t) =
∑

n a (t) φn (x) is not an eigenfunc-
tion of L̂ and merely reflects a statistical state, namely,
an ensemble of eigenstates. Accordingly,

〈
L̂
〉

also indi-
cates the time-dependent expectation value for the en-
semble of eigenstates.

Thus, we come to the conclusion that the superpo-
sition assumes statistical ensemble and there is not the
measurement problem for time-dependent processes.

4. Impossibility of intervention of Apparatus and
Observer: Quantum mechanics without Appara-
tus and Observer

From a different angle, we can examine whether it is
justifiable to include Apparatus and Observer to solve
the measurement problem. The eigenvalue equation for
a system under consideration is represented as

L̂sψ = Lψ. (38)

If based on the measurement theory, the intervention of
Apparatus and Observe is accepted, the system is not a
closed system but an open system. Therefore, the oper-
ator of whole system should be constituted by including
Apparatus and Observer. Let us denote the subscript in-
dicating System by “s”, the subscript representing Ap-
paratus by “a” and the subscript expressing Observer by
“o”.

For example, “s-a-o” denotes an entangled system
formed by System, Apparatus and Observer. Simi-
larly, “s-a” and “a-o” refer to entangled partial sys-
tems formed by System plus Apparatus and Apparatus
plus Observer, respectively. Since the entangled sys-
tem: System, Apparatus and Observer, and interactions
between them should be taken into consideration, the
operator for the whole system can be written as

L̂s−a−o = L̂s + L̂a + L̂o + L̂s−a + L̂a−o. (39)

The above correlation between System, Apparatus and
Observer can be represented by the following diagram.

The eigenvalue equation for superposed state is rep-
resented as

L̂s−a−oψsup = Lψsup, (40)

where L should give a set of the same eigenvalues as
{Ln : (n ∈ N)} and ψsup is determined by {φn : (n ∈ N)}
and different sets of {an : (n ∈ N)} corresponding to ev-
ery eigenvalue. Namely,

ψsup =
∑

n

anφn. (41)

In particular, in order to distinguish between the sys-
tem under consideration and the surrounding system we
use the representation of

L̂s−a−o = L̂s + L̂s
s−a−o. (42)

For a superposed state, if eigenvalue equation(
L̂s + L̂s

s−a−o

)
ψsup = Lψsup. (43)

is projected into a particular basis vector of the Hilbert
space ψm, we have〈

φm

∣∣∣∣(L̂s + L̂s
s−a−o

)∣∣∣∣ψsup

〉
= L

〈
φm

∣∣∣ψsup

〉
. (44)

By adopting the Projection Postulation, we get

L = Lm. (45)

Consequently, we have

amLm +
〈
φm

∣∣∣L̂s
s−a−o

∣∣∣ψsup

〉
= amLm. (46)

Hence, we get 〈
φm

∣∣∣L̂s
s−a−o

∣∣∣ψsup

〉
= 0. (47)

Considering that {φn : (n ∈ N)} constitute a complete
system of eigenfunctions and that if all projection com-
ponents of a function equal zero, the function itself also
equals zero, we reach the conclusion that L̂s

s−a−oψsup =

0.
Finally, from Eq. (43) we arrive at the reduced equa-

tion:
L̂sψsup = Lψsup. (48)

Unlike in the previous description, the system of Sys-
tem, Apparatus and Observer can be represented by the
following diagram as well.

In this case, the reduction can be represented as
eigenvalue equation

L̂o L̂a L̂s

∑
n

anφn = L
∑

n

anφn. (49)
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If we would get the result; L̂o L̂a = 1, there could not ex-
ist Apparatus and Observer. As a result of the projection
of Eq.(49) into φm, we get〈

φm

∣∣∣∣∣∣∣L̂o L̂a L̂s

∣∣∣∣∣∣∣∑n

anφn

〉
= Lmam. (50)

By further arrangement, we have∑
n

anLn

〈
φm

∣∣∣L̂o L̂a

∣∣∣φn

〉
= Lmam. (51)

From this it follows that〈
φm

∣∣∣L̂o L̂a

∣∣∣φn

〉
= δmn = 〈φm|φn〉 . (52)

In the end, we reach the conclusion that

L̂o L̂a = 1. (53)

Eventually, Eqs. (48) and (53) tell us that there cannot
be the intervention of Apparatus and Observer, as far as
we believe in the objectiveness of quantum operators as
uninfluenced by Apparatus and Observer.

5. Results and discussion

The results of our work can be summarized as fol-
lows.

First, we have demonstrated that the mathematical su-
perposition of eigenstates is impossible in the currently
accepted sense. This is an undeniable mathematical
conclusion. As a result, it turns out that there cannot be
justified both the superposition principle as the super-
position of eigenstates and the resultant measurement
problem based on the interpretation of the standard the-
ory of quantum mechanics.

Second, we have offered an alternative interpretation
of the superposition principle which does not cause the
conceptual problem of Apparatus and Observer. In our
view, the superposition of eigenstates reflects the prob-
abilistic evolution of a microscopic system from one
eigenstate to another which is forced since either the
physical quantity in consideration is non-conservative,
or the microscopic system as an open system is affected
by the surrounding system. Accordingly, the superpo-
sition of eigenstates, {ψn : (n ∈ N)} stands for an en-
semble of quantum states. For this reason, Measure-
ment necessarily yields a statistical ensemble of physi-
cal quantity for a given quantum system. From this, von
Neumann’s assumption about the existence of the differ-
ent types of evolutions [3] involving the unitary evolu-
tion and the measurement process should be assessed as

being insignificant. Moreover, it should be assessed as
being inconsistent to associate the measurement prob-
lem with human consciousness [4, 5, 6].

It is quite surprising that from the beginning of quan-
tum mechanics, the measurement problem has been
a problematic area of quantum mechanics and has
spawned a diversity of different viewpoints. This physi-
cal circumstance results from the mathematically simple
fact that an arbitrary wave function is expanded in terms
of a complete set of orthonormal eigenfunctions to yield
a superposition of eigenstates, while the wave function
satisfies the time-dependent wave equation. Originally,
the mathematical logic of the superposition principle
can be understood by the fact that if ψn are the solu-
tions of a linear equation, a linear combination of the
solutions

∑
n anψn also becomes a solution because of

the linearity of the equation. Rigorously to assess, the
superposition of eigenfunctions differs from the linear
combination of independent solutions. It is due to the
fact that eigenfunctions are not independent solutions
of the time-dependent Schrödinger equation.

Our explanation of impossibility of the eigenstate su-
perposition has demonstrated that all arguments about
the measurement problem are useless. A key aspect
of the measurement problem is whether the state vec-
tor given by the linear combination of eigenfunctions is
able to satisfy the eigenvalue equation which gives the
eigenfunctions. In other words, it is identified with the
question as to whether an eigenvalue equation can be
considered as a linear equation. According to the previ-
ous demonstration, the arguments about the superposi-
tion of eigenstates are not needed anymore.

However, it is necessary to illustrate in more detail
how to resolve open questions pertaining to the mea-
surement problem from our perspective. Actually, the
concept and meaning of the measurement have always
held a central position in the discussions of the foun-
dations of quantum mechanics. Obviously, despite the
privileged place of the measurement problem in quan-
tum theory, the studies of this problem have not offered
good prospect.

The measurement problem arises from the basic
proposition of quantum mechanics that the real state of
a quantum system is represented as a state vector which
is constituted by eigenstates whereas measurement al-
ways yields only eigenvalues corresponding to eigen-
states. Since a smeared-out measurement result as a
result of superposition cannot be found out in experi-
ments, the measurement problem becomes an important
conceptual problem for the standard quantum theory.

Although the motive of the measurement problem is
likely to be plausible, it is untenable to devise several
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thought experiments for solving the measurement prob-
lem. This is because the problem has the wrong starting
point relevant to the superposition principle, thereby af-
fording a multitude of unsolvable paradoxes, and con-
flicts with natural epistemology. The standard quan-
tum theory cannot solve the measurement problem but
merely circumvents it by applying the Projection Postu-
late: a measurement instantaneously projects the super-
position into an eigenstate with a definite probability.
The Projection Postulate then refers to the collapse of a
wave function by measurement. At this stage, we can
conclude that according to the impossibility of the su-
perposition of eigenstates producing a new eigenstate,
the state vector is meaningless and therefore the Projec-
tion Postulate should be rejected.

The paradoxes arising from the superposition prin-
ciple and the measurement problem thereof make the
foundations of quantum mechanics unreliable. As
a well-known quantum paradox, we can illustrate
Schrödinger’s cat problem on the basis of the impossi-
bility of eigenstate superposition. In the standard the-
ory of quantum mechanics it is alleged that prior to
the observation, the cat’s state vector is in a superposi-
tion corresponding to the cat being both alive and dead
and not being either alive or dead. Although a micro-
scopic quantum entity described by superposition may
be palatable to most physicists, such a result is un-
acceptable for macroscopic objects, such as cats [27].
Should the state vector give a complete description of
the state of the cat, the observation, i. e., measurement
would project the cat’s state vector into either of the two
eigenstates: the eigenstate where the cat is alive and the
eigenstate where the cat is dead. However, we actually
cannot experience the fact that according to observation
a cat may be either alive or dead. Obviously, it is not
reasonable that a simple act of observation could so stu-
pendously alter the state of the cat. Practically, we can-
not witness such a mysterious reality.

Now, we examine this paradox from our perspective.
If it were not for the superposition principle, the cat
could not exist in the superposed state of both life and
death at once. Since the superposition of eigenstates is
impossible, it is evident that there cannot be the cat’s
mixed state of life and death. Meanwhile, if the transi-
tion between eigenstates of life and death were possible
(it means the superposition in the sense of the ensem-
ble of states), then it could exist alternately in either life
or death state. It is necessary to consider that the tran-
sition from an eigenstate to another can be realized by
the action of the surrounding system. The radioactive
decay as an action makes the living cat die, while the
reverse process is forbidden since the radioactive decay

cannot make the dead cat be brought back to life: the
biological process of transition from life to death is ir-
reversible. Eventually, the paradox of Schrödinger’s cat
comes to be unraveled. Finally, it can be concluded that
the Schrödinger’s cat state cannot exist because it indi-
cates an ensemble of irreversible states which cannot be
transferred to each other by quantum action.

Once it is clarified that an alternative superposed
eigenstate in terms of the superposition of eigenstates
is impossible, it is (I) the problem of Apparatus and Ob-
server, (II) the limits of the Projection Postulate and (III)
the instantaneous character of the measurement pro-
cess that have no significance at all in the researches
into the foundation of quantum mechanics. Since usu-
ally microscopic systems should be regarded as open
systems, (IV) the constraints imposed by conservation
laws should be considered by taking both microscopic
system in consideration and surrounding system as a
whole.

The two-slit experiment is at the core of the myster-
ies surrounding quantum mechanics. This experiment
exemplifies a subtle point of quantum phenomena gov-
erned by the superposition principle. Our view on this
phenomenon is that since the wave field surrounding
a particle is non-local, it passes through two slits and
then the field disturbed by the two slits affects the move-
ment of the particle afterward[28]. All told, the particle
passes through either of the two slits, while the wave
field passes through both of the slits. Naturally, parti-
cles are self-interferential because particle and field are
inseparably unified. In essence, the diffraction of a par-
ticle through two slits is identified with the scattering
problem. Since a microscopic particle is non-local, two
slits can be regarded as a single unified object scatter-
ing an incoming particle. To explain the two-slit exper-
iment, we start with the wave equation

i~
∂ψ

∂t
= Ĥψ. (54)

Dividing the Hamiltonian operator into the kinetic en-
ergy and potential energy part, we have

i~
∂ψ

∂t
=

(
K̂ + U

)
ψ, (55)

where K̂ is the kinetic energy operator, U the potential
organized by two slits. To unravel the two-slit diffrac-
tion in a fundamental way, it is necessary to find the
sophisticated technique for determining U.

Nevertheless, it is possible to treat U in a simple way.
It is justifiable to consider that U approximates to U1
or U2 associated only with either of the two slits in the
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Figure 1: Two-slit experiment: ψinc denotes the wave function of an
incoming particle. ψ1 is the wave function of the particle scattered by
the potential U1 and ψ2, that by the potential U2. The superposition of
ψ1 and ψ2 furnishes the wave function of the scattered particle, ψsup.

vicinity of it, respectively. Therefore, solving Eq. (55),
we obtain two independent solutions, ψ1 and ψ2 for U1
and U2, respectively. Since these are all the independent
solutions of Eq. (55), we can apply the superposition
principle. Thus, the scattered wave can be represented
as the linear combination of ψ1 and ψ2. Namely,

ψsup (q, t) = aψ1 (q, t) + bψ2 (q, t) . (56)

The probability density is represented as

ρ (q, t) =
∣∣∣ψsup (q, , t)

∣∣∣2
= |a|2 |ψ1 (q, t)|2 + |b|2 |ψ2 (q, t)|2

+ 2Re
[
ab∗ψ1 (q, t)ψ∗2 (q, t)

]
. (57)

The term, 2Re
[
ab∗ψ1 (q, t)ψ∗2 (q, t)

]
stands for the inter-

ference via the two slits.
Here, we merely showed essentials for dealing with

the two-slit interference applying the superposition
principle. The aim of this description is to show an
example of applying the superposition principle to the
study of time-dependent processes. Obviously, the su-
perposition is related only to independent solutions and
not eigenstates. It is necessary to analyze the state vec-
tor from the point of view of probability theory. The
probability in quantum mechanics, represented by the
wave function, takes on the meaning of mutually exclu-
sive and jointly exhaustive possibilities. This means that
at most and at least one of possible events happens. In
this case, we describe such an event as a sum of events.
On the other hand, the superposition of eigenstates can
be identified with a sum of weighed events, since the
wave function assumes probabilistic property and thus
is represented as the linear combination of eigenfunc-
tions. Here, we should keep in our mind the fact that

the coefficients of the linear combination are time de-
pendent. Of course, in the perfect sense, the probability
in quantum mechanics is determined by probability den-
sity and directly not wave function. In this work we do
not deal with why as an open problem, the relation be-
tween wave function and probability density should be
defined as

ρ = |ψ|2 , (58)

since it is beyond the scope of this paper. However it
is necessary to stress that this relation leads to the en-
tanglement of eigenstates in a quantum statistical pro-
cess. As far as the entanglement is concerned, it im-
plies correlation between members of a given ensemble
of events indicative of eigenstates. It should be consid-
ered that every eigenstate is forbidden to occur simul-
taneously with the rest due to the mutually exclusive
property of sum of events and a quantum process contin-
ues with a definite probability through eigenstates that
happen in a sequence due to the jointly exhaustive prop-
erty of sum of events. Evidently, if the conventional
interpretation of the state vector were accepted, the su-
perposition of eigenstates should have to be represented
as a product of events, i.e., a product of eigenfunctions
rather than a sum of events, which cannot be both phys-
ically and mathematically justifiable because it contra-
dicts the physical causality.

6. Conclusion

In this work, we have discussed the superposition
principle and the measurement problem mainly from
the mathematical point of view to reach an important
conclusion capable of improving the conventional un-
derstanding. Our attention was paid importantly to the
mathematical structure of the superposition principle.
Our work has shown that the superposition principle
cannot be established on the basis of the notion of the
standard theory implicated in Observer and Apparatus.
In fact, a superposed state does not satisfy the time-
dependent wave equation as well as an eigenvalue equa-
tion and an individual eigenstate constituting a super-
posed state also does not fulfill the wave equation. This
fact raises the question as to what the superposition
means in the physical sense.

Without examining the superposition of eigenstates
starting with the origin of the problem at issue, it is im-
possible to find out a key for solving the measurement
problem. For that reason, we newly examined whether
the superposition of eigenstates can yield an eigenstate
and what the mathematical superposition of eigenstates
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means. Our investigation has led to the important con-
clusion that the superposition of eigenstates should be
interpreted based on the notion of ensemble of eigen-
states.

It remains to be seen whether on the whole, the aim
to resolve the measurement problem shrouded in mys-
tery has been attained. For all that, our research gives
a clear reason that the superposition principle and the
measurement problem should be interpreted based on
the superposition in the sense of the ensemble of states.
We believe that the wrong understanding of the mixed
state caused the measurement problem which led to a
conceptual confusion of interpretations of quantum me-
chanics.

Finally, our work has offered a possibility of resolv-
ing some intractable open questions of quantum me-
chanics concerning the superposition of states and the
measurement problem from a realistic viewpoint based
on the conception of ensemble of quantum states which
is irrelevant to Observer and Apparatus.
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