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Abstract

In this paper, I am going to propose a gradient descent algorithm using
fixed point theorem. Fixed point theorem comes from topology mathe-
matics. This gradient descent is able to converge at exponential rate,
faster than Netwon method which converges at quadratic rate. Besides
that, it does not need second order derivatives. The algorithm is simple
and can be implemented using a few lines of equations. It can be used for
training Relu deep learning network.

1 Introduction

Gradient descent is a slow process which takes many iterations to find the min-
nimum. Newton method is faster but it has some issues such as numerical
instability if 2nd order derivatives Hessian is very small, in some cases it does
not converge, some cost functions do not have 2nd order derivatives so they can-
not use Netwon method, and the Hessian matrix is very expensive to compute.
Even with quadratic convergence rate, Netwon method is still too slow for opti-
mizing many cost function. My gradient descent using fixed point theorem can
converge at exponential rate. Beside that, there are some cost functions with
no second order derivatives (e.g. Relu deep learning network), Newton method
cannot be executed.

Compared to a simple gradient descent, my gradient descent method does
not need to choose the step size. A small step size is inputed, the step size will
increase automatically as it progress through the fixed point iterations.

Fixed point theorem for one dimension case is modeled as the output of a
function is feedbacked into its input. This process is continued until the final
output converge to a single value.
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Figure 1: Fixed point theorem example in one dimension

Figure (1] shows an example of a set of fixed point theorem iterations in one
dimension. Horizontal axis represent the x variable and vertical axis represents
the y variable. Let f(z) = cos(z) be the function of the N shape curve in the
figure. Let g(z) = = be the function of the blue line function in the figure. Let
x=—1.

F(~1) = 0.5403 (1)
The output of function f(z) is feedbacked into its input.
9(0.5403) = 0.5403 2)
The output of g(x) is inputed into f(z).
£(0.5403) = 0.8576 (3)

The process is continued until convergence. The points (x,y)=(-1,0.5403) and
(0.5403,0.8576) represents the input and output of the functions.

y1=f(-1) = 0.5403 (4)
y2 = f(g(f(=1))) = 0.8576
ys = f(g(f(g(f(=1))))) = 0.6543
Yoo = f(g(--f(g(f(=1)))-)) =0.7391



Yoo = 0.7391 is the converged final y value of infinite applications of g() and f()
functions.

The line function g(x) is the reflector. By placing the line at the correct
position and orientation, fixed point theorem can do gradient descent.

2 My Model
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Figure 2: First set of iterations of gradient descent using fixed point theorem in
action with the linear function g(x) drawn at the correct place

Figure [2| shows the first set of iterations of my gradient descent method. The
yellow line is drawn downward from z = —100 where the gradient is less than
the gradient at f(xz = —100). The steps of my gradient descent is shown as the
green line. The descent will stop when the green line goes below the blue line,
or the descrease of current step of gradient descent is less than the previous step
descrease.
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Figure 3: Gradient descent using fixed point theorem in action with the linear
function g(x) drawn at the correct place

Figure [3|shows an example of my gradient descent using fixed point theorem
in action. The steps of my gradient descent is shown as the green line. The
starting point is * = —100. The line g(z) is drawn at the starting point down-
wards, with a absolute gradient less than the actual gradient of the starting
point. Fixed point iteration is started from an x position equal to the starting
point plus a small step size. The iteration is continued until the decrease of
current step of gradient descent is smaller than the decrease of previous step.
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Figure 4: Second set of fixed point theorem iterations for gradient descent

Another line of g(x) is drawn and gradient descent is continued until con-
vergence (see figure . The starting point is z = —38.

3 Case where cost function is non-convex

My gradient descent using fixed point theorem can even work on cases where
the cost function is non-convex.
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Figure 5: Gradient descent using fixed point theorem on non-convex function

From figure |5, we can see that as long as our line function g(z) is above the
cost function f(z) during fixed point iterations, it can do gradient descent on
non-convex function and find the minimum value of the function.

4 Proof of exponential convergence of gradient
descent using fixed point theorem

Let g(x) = —z. Let f(x) = —2z.
Doing the fixed point iterations,

y1=f(1) = -2 (5)
y2 = f(g(f(1))) =—4
ys = f(g(f(g(f(1))))) =-8
Yn = fg(.-f(g(f(=1)))-..)) = -2",

we can prove that y, decrease exponentially as —2".



5 Gradient descent on high dimensional prob-
lem

For a cost function that has 2 or higher dimensions, my gradient descent using
fixed point theorem will draw a line along the direction of the gradient. It will
perform fixed point theorem iterations on the line. Then another line along the
gradient at the point of current step will be drawn. Another fixed point theorem
iterations are carried out and so on.

6 Experiment Results

To compare with Newton method, I will use the function f(x) =1/(z + 101) +
1/(—x +101) — 0.01 x 2. This is a one dimensional interior point method. The
terms 1/(x + 101) and 1/(—x + 101) are the barrier functions to represent the
hard constraints of left and right boundaries of the linear programming. The
term —0.01 % z is the cost function of the linear programming.
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Figure 6: One dimensional interior point method cost function solved using my
fixed point theorem gradient descent

Figure [6] shows how my fixed point theorem gradient descent solved the one
dimensional interior point method cost function. In less than 10 iterations, my



gradient descent has reached the minimum of the cost function.
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Figure 7: Comparsion of number of iterations to converge with gradient descent
using fixed point theorem and Netwon method

From figure [7] we can see that my gradient descent algorithm using fixed
point theorem converges faster than Newton method empirically.

Access my GitHub codes thru this link: [https://github.com /singkuangtan/fixedpointdesc|

7 Conclusion

I have shown that my gradient descent using fixed point theorem is better than
Newton method in both theoretical and empirical ways. My gradient descent is
the only method that has theoretical exponential convergence rate. I believe it
can be used to speed up many optimization applications including deep learning.
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