
Hidden variables foundation of matrix mechanics

Abstract

A preliminary hidden variables matrix mechanics treatment of the harmonic 

oscillator has been previously presented based on classical endogenous periodic 

motion. This work extends to incorporating the model into the mathematics of 

matrix mechanics. Although initially motivated by EPR-Bell analysis, the 

proposed model is based on re-examining the physical assumptions of 

Heisenberg and Born. All assumptions are maintained except for Bohr’s state-

to-state instantaneous transition which has been experimentally invalidated, and 

Heisenberg’s non-path postulate which is replaced by classical endogenous 

periodic paths. Matrix elements of standard matrix mechanics are modified to 

replace transition amplitudes by transition paths. The redefined elements 

generate eigenvalues-eigenstates which then characterise eigenpaths. Since the 

endogenous motion averages out over a cycle it is unseen by the wave function. 

Nevertheless, mathematical equivalence with position and momentum non-

commutation in Schrodinger operators is preserved. The modified matrix 

mechanics is shown to be mathematically equivalent to that of Born-Jordan

reproducing all standard results. Generic quantum equations of motion are 

obtained following the quantization procedures of Born-Jordan and Dirac’s 

Poisson Bracket equation. These new relations meet the benchmark criteria of 

reproducing conservation of energy and the quantum frequency condition. Since 

the endogenous paths are ontologically classical no radical metaphysical 

interpretations are needed for spatial-temporal movement. Quantum randomness 

is not explained by the proposed model but is attributed to endogenous 

structures of quantum matter.
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1. Introduction

Bell inequalities which were motivated by the Einstein-Podosky-Rosen (EPR) 

paradox are central for exploring questions on quantum mechanics (QM) 

foundations [1]. A consensus on the experimentally verified inequalities 

violation is that no locally causal hidden variables (HV) theory is possible. 

Nevertheless, there are alternative views that violation can be based on

contextuality (a significant alternative) or possibly superdeterminism, Bohr 

complementarity and/or dependent on descriptions used [2-8 (see ref.)]. As 

previously discussed, other interpretations have also been proposed, including 

Bell’s own work with a free particle position-momentum configuration where 

there is no contradiction with QM [1, 9]. It is worth noting Bell’s own 

conclusion on his later work: “with the wave function (original EPR), then, 

there is no non-locality problem when the incompleteness of the wave function 

description is admitted”. 

Interpretations of QM and EPR-Bell type analysis have dominated the 

foundations question, while exploring actual HV models as an alternative 

approach, has remained peripheral. Notwithstanding insights into the nature of 

QM emulating from Bell analysis, it is nevertheless restricted. Experiments 

confirm that the non-quantum inequalities are incorrect not why they are 

incorrect. No empirical evidence has emerged ruling out hidden variables, nor 

are such variables ruled out by inequalities violation. Furthermore, any 



conclusion is conditional on the assumption that all possible assumptions have 

been identified. As has already been stated, Bell’s theorem “merely shows that a 

hidden variables theory which fulfils all the assumptions of the theorem is ruled 

out by observation” [4]. Whether QM is based on a deeper structure or 

maintaining the status quo, remains a matter of choice. If incompleteness is the 

chosen option, it seems reasonable to explore actual models.

A preliminary matrix mechanics (MM) hidden variables model based on a 

classical ontology was presented for the harmonic oscillator (HO) aiming to 

establish a physical rationale [9]. The primary aim of this work is to show the 

model can be incorporated into the mathematics of matrix mechanics. 

EPR raised the possibility of HV, while Bell focused on whether such theories 

must be non-local. Bell was motivated by the apparent contradiction between 

von Neumann’s completeness proof, that no HV could reproduce the results of 

QM, and Bohm - de Broglie’s actual (non-local) theory which did. 

By questioning the completeness of the wave function EPR concentrated

attention on wave mechanics. However, the foundation question can also be 

approached independent of any opinion on Bell and EPR by re-examining the 

basic physical assumptions of quantum mechanics. If QM is indeed incomplete 

it is plausible to consider the possibility of limitations in the theory’s basic 

assumptions. In formulating MM, Heisenberg and Born introduced postulates 

guided by the criteria of maintaining consistency with classical mechanics [10,



11]. Dirac was likewise guided by the same criteria [12]. Clarity of foundational 

assumptions makes MM simpler to re-examine.

As is now legend, Heisenberg initially attempted to mathematically describe 

atomic behaviour on the basis of classical paths. Concluding the approach was 

futile, he took the radical step of dispensing altogether with generic space and 

time trajectories opting instead for a description based solely on empirical 

observables. Born and also Dirac noted the essential feature of Heisenberg’s 

mathematics was the non-commutation of the product rule for quantum 

observables. The question arises whether Heisenberg’s non-path postulate is 

essential. At least for matrix mechanics it is found that it is unnecessary to take 

such a radical step.

The relevant Heisenberg and Born postulates are briefly repeated, ensuring a 

more self-contained presentation. The generic non-commutation relation of a

modified MM was previously obtained following similar reasoning to Born-

Jordan (BJ) [9]. In this presentation all basic relations are obtained from Dirac’s

quantum Poisson Bracket (PB) equation together with Born-Jordan. Critically, 

the new relations meet the benchmark criteria of reproducing conservation of 

energy and the frequency condition. Mathematical equivalence with standard 

MM is maintained.

For an actual HV theory reproducing QM results is seen to be the stronger 

criteria of judgement. An inequalities-type conclusion that no HV theory subject 



to particular constraints can reproduce the results of QM is invalided by an 

actual such theory which does.

Nevertheless, EPR-Bell remains a guiding analysis. Mermin’s EPR-conundrum 

will be briefly considered in relation to the proposed model.

2. Physical Postulates

Heisenberg’s most critical assumption was to reject continuous path movement 

on the basis of operational non-measurability, and also that an orbital theory did 

not reproduce experiment - it is not “possible to associate the electron with a 

point in space, considered as a function of time”. Rejection of orbital-type 

movement does not however necessitate rejection of all other forms of 

endogenous motion. 

In what was termed a kinematic re-interpretation, Heisenberg retained 

empirically observable transition amplitudes which Born mathematically 

represented as matrix elements. Working from the experimentally verified 

frequency condition Heisenberg concluded that amplitudes were a function of 

two indices representing the initial and final states of a transition. Bohr had 

previously introduced the assumption that state-to-state transitions were 

instantaneous. This assumption has been found to be invalid. Experiments on 

atomic systems show duration intervals in the order of attoseconds [13-14].



Heisenberg’s non-path postulate will be replaced by the assumption that the 

quantum particle entity can at all times be associated with a point in physical 

space which evolves continuously in space and time. Placing the quantum 

object in a space and time platform during the attoseconds transition remains the 

simplest explanation, circumventing the need for complex metaphysics. A

micro-path, likewise dependent on two indices, can then be associated with a 

transition. Physically, matrix elements can be interpreted to refer to classical 

paths of finite duration. With this re-definition the position matrix would refer 

to an ensemble of time-dependent transition positions describing particle-paths.

Based on experimental duration intervals, the proposed paths will be on the 

scale of the electron wavelength for atomic systems.

Physically, it has to be assumed that the ensemble is a feature of an individual 

object. Associating an ensemble with a single entity may seem an implausible

departure from the classical definition of a particle. However, if all ensemble 

information is not contained by a single entity it becomes difficult to see how 

protective measurements, which have been performed experimentally, would be 

possible [15-16]. Notwithstanding some controversy, the single particle 

ensemble assumption thereby has empirical justification. Under this assumption 

however quantum matter cannot be seen as point particles without internal 

definition. What is a particle? remains an interesting question [17].



That QM can be based on an endogenous substructure has been previously 

proposed [16].  

With the preliminary analysis a quaternion representation in 2× 2 matrix was 

introduced to describe a unit transition. That assumption will continue but 

subject to development.

Heisenberg introduced a number of other fundamental postulates which will 

continue to apply, as previously discussed [9]. Obviously, the proposed model 

adheres to the statistical interpretation of QM [18]. 

Recently, von Neumann’s theorem has been re-interpreted as showing that HV

theories cannot represent their quantities as Hermitian operators, rather than the 

original completeness conclusion. Whether the proof was actually about 

completeness is a matter of historical conjecture. A re-assessment of Kochen-

Specker has found that contextuality is not imposed on possible HV theories 

[19]. While the proposed model is consistent with both theorems its validity is 

based on the stronger condition of reproducing QM [9].

The legendary discoveries of Plank and Einstein established that the generic 

quantum process is a discontinuous, discrete energy transaction between an 

energy-quanta and a particle in oscillations. This process is the essence of 

Heisenberg and Born quantization procedure with the modification that 

oscillations are omitted by the non-path postulate, replaced by a more general 



concept of particle energy-state.  By re-introducing oscillatory motion the 

proposed model aligns with the original concepts.

3. Matrix Mechanics

Born accepted the basics of Heisenberg’s mathematics: applicability of classical 

equations of motion, non-commutation of the product rule for quantum 

variables, as well as the frequency and quantum conditions:

( , ) +  ( , ) =  ( , )                (1a)

: [ ( , ) ( , ) ( , ) ( , )] = ( ) (1b)

:     ( , )| ( , )| =               (1c)

Non-commutation inspired Born to mathematically represent quantum 

observables by matrices where elements represent transition amplitudes. 

Physically however a matrix representation is seen here as a consequence of the 

ensemble assumption. Replacing Heisenberg’s transition amplitudes with 

endogenous motion, assuming such motion is the same as that of the harmonic 

oscillator, gives the ensemble quantities in BJ (notation) infinite order matrix as

[9]:

= + = ( , ) ( , ) + ( , ) ( , ) (2a)

= + = ( ( , ) ( , ) + ( , ) ( , ) ) (2b)



If the factor in the second terms is omitted the final results will be the same 

provided definitions remain consistent. Matrix elements which describe the 

individual transition path are:

( , , ) = ( , ) ( , ) + ( , ) ( , ) (3)

Relations (2) give two definitions of position (and momentum): the classical 

endogenous position represented by constituent matrix elements which is not

defined in Born-Jordan and the quantum ensemble position represented by the 

infinite order matrix. Each is governed by different algebra implying different 

mathematical (including measurability as a geometric-mathematical property)

and so different physical properties [9]. 

It is important to clarify that the following equations define relations between 

ensemble quantities subject to Heisenberg’s three conditions. Element

components of (3) corresponding to BJ will initially be referred to as transition 

amplitudes in keeping with Heisenberg’s definition. However, since amplitudes 

and paths appear to be different there is a potential inconsistency in the meaning 

of the ensemble quantities. This issue will be addressed.

That endogenous position may be a complex number raises the question of its 

physical meaning. Complex number particle trajectories and their meaningful 

physical association with QM have been proposed [20]. For Heisenberg’s 



measurable-only quantities endogenous paths are nevertheless found to be 

represented by real numbers. 

Born-Jordan introduced a diagonal matrix W, whose elements are energies

consistent with the frequency condition to provide connection with experiment. 

Also introduced is a general matrix function g = g(p,q) which in the modified 

form is:

= + = ( ( , ) ( , ) + ( , ) ( , ) ) (4)

Mathematically, it may seem that this relation should also include product cross 

terms emerging from the two components of (2a, b). Physically however, Born-

Jordan asserted that all quantities – position, momentum and functions of both –

must have the same time factors. In which case, the general g(p, q) must have 

the same form as position and momentum. This critical assertion will continue 

to be addressed. Differentiating gives:

= 2 ( ( , ) ( , ) ( , ) ( , ) ( , ) )         (5)

Following BJ gives:

= {[ , ] [ , ]} (6)

For the Hamiltonian energy-matrix the relation is then:

= ( ){[ , ] [ , ]} (7)



If = 0 BJ show that the standard general matrix must be diagonal. From 

relation (5) the conditions for non-diagonal elements are:

 , ( , ) 0: (8a)

( , ) ( , ) ( , ) ( , ) = 0 (8b)

 :     ( , ) =  ( , ) = 0   (8c)

Condition (8c) establishes that if = 0 then g = g(p, q) is diagonal which 

defines the condition for conserved quantities.  

From the periodicity condition Born-Jordan derived Heisenberg’s quantum 

condition (1b), which applies only for diagonal elements. Following similar

reasoning gives the modified relation:

{[  ( , ) ( , )  ( , ) ( , )]

[  ( , ) ( , ) ( , ) ( , )]}

= ( ) (9)

Importantly, component cross terms cancel. This property ensures the relation is 

consistent with the frequency condition (1a), as required. Born-Jordan then 

established all off-diagonal elements are zero. Following similar steps gives the 

same results for the modified matrices, where the Hamiltonian takes the general 

form (4). Accordingly, the modified quantum relation becomes [9]:



[ , ] [ , ] = (10)

Relations (9) and (10) remain the same if the factor in (2) is omitted. This 

equation refers to ensemble position and momentum transition amplitudes 

matrices not directly to transition paths. The same relation is also obtained 

following Dirac [12].

Like Born, Dirac accepted the basics of Heisenberg’s mathematics to define a 

general quantum algebra based on non-commutation and the frequency 

condition. Dirac also accepted the basic classical Heisenberg assumption that 

variables are still represented by Fourier series. Accordingly, variables x (and y)

are defined as (Dirac notation):

:   ( ) = ( ) (11)

Focusing on components, the general component product term of the product of 

the two variables is:

:    ( ) ( ) = ( ) (12a)

:  ( , ) ( , ) ( , ) ( , ) = ( , ) ( , ) (12b)

Both non-commutative multiplication and critically the frequency condition (1a)

are incorporated into the quantum relation (12b).

Dirac began by defining the non-commutation structure of the QM variables 

based on their two indices. By applying the classical asymptotic condition a 



difference expression was constructed for each variable leading to differential 

terms. The quantum Poisson Bracket equation followed as [12, 21(more 

detailed)]:

=  = { } (13)

Since the following relations are obtained following Dirac only an outline 

identifying the appropriate changes will be presented. Accordingly, the 

modified Dirac x-variable in analogy with (11) for a particular (n, m)

component will take the form: 

:  ( , , ) =  ( , ) ( , ) + ( , ) ( , )              (14a)

:   ( ) = ( ) +  ( ) (14b)

Corresponding form can be expressed for the y-variable. The two terms of the 

quantum component (14a) describe the transition paths introduced by 

assumption as matrix elements of the ensemble position matrix. Initially, no 

assumptions are made about the relation between the two terms, nor is

Heisenberg’s classical assumption (11) of a single series assumed. Relation 

(14b) is chosen as the corresponding classical expression using the usual 

Fourier series basis functions. Clearly (14) which generates two series is 

mathematically different from the single series (11). While the second series is a 

complex conjugate, the two added terms of (14) still form the same general (n, 

m) component as (12). Since the matrix elements represent a different quantity 



to those of BJ the mathematical difference is expected. It will be shown 

however, that all results can be obtained by commencing from Heisenberg’s 

initial single Fourier assumption. 

Dirac’s quantization procedure involves two steps: constructing the non-

commutation relations and using the classical asymptotic condition to obtain the 

PB expressions. Despite different quantities, Dirac’s mathematics is also 

applicable to the modified relations (14).

As with the general matrix (4) it may seem that relation (14a) should include 

cross terms. This important issue will be addressed. For position and 

momentum however, there are no cross terms in which case relation (14) is 

appropriate. The general quantum component for either of the two variables is

then the sum of two terms:

( , ) ( , ) + ( , ) ¯ ( , ) (15)

Accordingly, the corresponding general component for the quantum product 

term for the product of the two variables is then:

( , ) + ( , ) + ( , , ) + ( , , )  (16)

Critically, the cross term frequencies i.e. ( , , ), ( , , ), violate the 

quantum frequency condition (1a), unlike the Dirac product (12b), and are 

therefore non-QM. For the general matrix (4) potential cross terms likewise 

violate the frequency condition and are also non-QM. For (13) the LHS is:



[ , ] = [ + , + ] = [ , ] + [ , ] + [ , ] + [ , ] (17)

Again, the two cross terms will violate the frequency condition. Generic 

relations must be obtained such that non-QM cross terms are excluded. 

Dirac introduced the following commutation expression together with a product 

term for x and y variables for the general (n, m) component:

( , ) ( , ) ( , ) ( , ) (18a)

p  : ( , ) ( , ) (18b)                        

 ( , )
 
; ( , ) (18c) 

Relations (18c) define the asymptotic classical analogy for the quantum 

variables. Similar asymptotic relations apply to the other terms of (18a). The

product term is added and subtract from expression (18a). Applying the 

asymptotic conditions, the resulting expression leads to Dirac’s differential (via 

the difference) relation as a function of the action

variable J):

{  

 
} (19a)

  :   
 

= {
 
( )

 
( )} (19b)

 =   (19c)

A corresponding intermediary expression to (19b) is defined for the y-variable.



Relation (18a) is modified with each quantum variable becoming the sum of 

two terms with indices unchanged while the product term is also modified

giving:

( , ) + ( , ) (20a)

( , ) ( , )

{ ( , ) ( , )} ×          

{ ( , ) ( , )} (20b)

 : = +   = + (20c)

-values for the x-term (and -values for the y-term) should 

be equal. While it is found that = this condition will not be assumed. The 

product term (20b) is again added and subtracted to the modified expression of 

(18a). Assuming the asymptotic classical analogy (18c) applies to both 

components (both subject to same criteria) the expression corresponding to the 

first term of (19a) is:

{[ ( , ) ( , )] +

[ ( , ) ( , )]} (21a)

{( ) + ( ) } (21b)

 = { ( ) ( )}

  = { ( ) (  )} (21c)



 =    =  (21d)

That the action incremental values in (21c) are not equal follows from assuming 

-values are unequal. This condition relates directly to the quantum energy 

changes. Following Dirac gives:

( )  ( ){ + } (22a)

{ + } (22b)

 =   =  ;  +  = 1 (22c) 

These relations lead to:

( )  [ + ] (23)

Using the classical definition for the y-variable corresponding to (11a) Dirac 

introduced the relation:

2  = {   }  = /2 (24)

Substituting (24) into (19a) completes the first Dirac term. Repeating with

interchanging x and y variables completes the second Dirac term of (19a). The 

resulting expression represents the (n, m) component of ( ).

The corresponding modified classical definition for the y-variable is:



2 [ + ] = { } (25a)

 : ( {   }) { } (25b)

Combining relations (20) to (25) and following Dirac leads to the modified 

corresponding first term of Dirac’s relation (19a). By interchanging x and y 

variables and repeating steps leads to the second modified term. The resulting 

relation again represents the (n, m) component of  ( ). Following Dirac, 

( ) itself for p’s and q’s as canonical variables equals:

[ , ] =  {
( ) ( } ( ) ( }

} (26)

-values. This modified equation defines 

a connection between quantum quantities and basis HV.

Position and momentum definitions (2a) and (2b) define the corresponding 

Dirac variables as:

= (27a)

= (27b)

With these definitions the imaginary constant has been introduced to 

mathematically distinguish the non-QM terms. Final results will be the same if 

the constant is omitted. The LHS of (26) becomes:

[ , ] [ , ] [ , ] [ , ] [ , ] (28)



Substituting into the RHS gives:

( { , } + { , } { , } + { , } ) (29a)

 : =  (( , ) (29b)

 ( , ) = ( + + ) (29c)

Each individual non-commutation term on the LHS (28) also equals its 

corresponding RHS (29a) individual term. For expression (29a) all PB’s are 

equal to one giving (29c). Born-Jordan’s quantization procedure differentiates 

the action integral w.r.t. the action, which means the derivative of the integral 

must then equal one, since = 1[10].  To make the transition from classical to 

quantum frequency the derivative of the integral becomes a difference leading 

by correspondence to the quantum non-commutation bracket to the factor (1/

) . Since the modified relation (10) follows Born-Jordan its non-commutation 

constant is also one. Dirac commences by defining the non-commutation 

bracket leading to the PB which for canonical variables (p, q) equals one. 

Following Dirac’s procedure the modified relation (29a) leads to a constant i.e. 

( , ) . However, Born-Jordan and Dirac quantisation procedures must be

equivalent. In which case the Dirac modified relation constant must also equal 

one. Hence:

( + ) + ( ) = 1 (30)



Since the imaginary term must be zero the two component cross terms of (30)

cancel meeting the requirement of the frequency condition. Leaving:

= = ½ (31a)

    [ , ] [ , ] = (31b)

Alternatively, relation (31a) follows directly by assuming equal - -

values) for the two components as a basic condition. Relation (31b) is obtained 

without Born-Jordan’s physical assertion on the form of the general function 

(4). 

To obtain the corresponding equations of motion H(p, q) and g(p, q) must 

likewise be based on Heisenberg’s mathematics, which following Born-Jordan,

is done by obtaining the general functions from the non-commutation relation

(31b). Relation (31b) reduced to its constituent components can be split into:

[ , ] = ½   [ , ] = ½  (32)

Using relations (32) and following Dirac reproduces the modified Heisenberg 

version (1c) of the quantum condition.

Following Born-Jordan for each individual term individually leads to:

[ , ] + [ , ] = ½( ) + = ½( ) (33a)

 ( , ) = ( , ) + ( , ) (33b)



The same relation can also be obtained following Dirac.  By splitting (33a) into 

two individual component relations, and following Dirac for each gives:

= [ ( , ) ( , ) = ( , ) (34a)

= [ ( , ) ( , ) = ( , ) (34b)

 = + = ( , ) (34c)

Relations (31a) and (31b) imply that the total incremental change in action 

variable of Dirac relation (19b) becomes the sum of equal values for each 

component in relations (32), which results in the quantum half energy 

contributions of (34a, b), and the total energy change (34c).

These relations meet the benchmark criteria of reproducing the frequency 

condition connecting frequencies with quantum energy differences. 

For the general function ( , ) following either Born-Jordan or Dirac gives:

[ , ] = ½( )    [ , ] = ½( ) (35a)

[ , , ] + [ , ] = ½( ) + = ½( ) (35b)

 ( , ) = ( , ) + ( , ) (35c)

Like the energy-matrix, the general function (35c) does not contain cross terms,

which is a consequence of the frequency condition and Born’s assumed physical 



property of the system. Mathematically, the classical Hamilton and the energy-

matrix can then take different forms. 

Substituting ( , ) = ( , ) relation (35a) gives conservation of energy. 

Following BJ  must be diagonal in which case the energy- matrix 

must also be diagonal. In summary:

=  , = 0                                 (36)

These conditions are the three fundamental requirements of matrix mechanics.

Equivalence with Born-Jordan is established by comparing transition 

probabilities as measurable quantities. For the modified position matrix the 

transition probabilities averaged over a cycle are:

< | ( , )| > =  |  ( , )| + | ( , )| (37)

The equivalence with Born-Jordan follows as:

( , )   < | ( , )| > |  ( , )| + | ( , )| (38)

Relation (38) also identifies equivalence with the wave function:

< | ( , )| >  ( , )  (39)

Since the endogenous motion is averaged over one cycle to the transition 

amplitudes, it cannot be described by the wave function. Comparing non-

commutation relations (32) with Born-Jordan and assuming equivalence gives:



[ , ] = ½ ,  [ , ] = ½ , (40a)

:       ( , ) =
( , )

 
 ;   ( , ) =

( , )

 
(40b)

          ( , ) =
( , )

;   ( , ) =
( , )

(40c)

If the imaginary constant is omitted in (2) it will need to be omitted in (40c). It 

is important to clarify that equations (31b), (32) and equations (40) which 

follow, refer to transition amplitudes not paths, giving modified transition 

amplitudes (40b, c). These relations define a direct connection with 

Heisenberg’s measurable-only quantities. Using relations (40b, c) with (9), the 

standard BJ quantum condition (1b) is obtained. Heisenberg’s original version

(1c) is also obtained following Dirac. 

Position and momentum matrix elements which describe the endogenous 

trajectories become:

( , , ) =
( , )

 

( , ) +
( , ) ( , ) (41a)

= 2[ ( , ) ( , ) ] (41b)

 = ( , )   = ( , )

( , , ) =
( , )

 

( , ) +
( , ) ( , ) (41c)

= 2[ ( , ) ( , ) ] (41d)



 = ( , )  = ( , )

  ( , , ) = [ ( , ) ( , ) ]       

+ [ ( , ) + ( , ) ] (41e)

Using (41a, c) position and momentum matrices (2a) and (2b) can be obtained 

directly from standard MM. In which case, Heisenberg’s measurable-only 

quantities also determine the endogenous motion. From relations (41b) and 

(41d) it is clear paths are represented by real numbers. Relation (41e) expresses 

the BJ transition amplitude in the same form as the paths although represented 

by complex numbers. A corresponding relation can be obtained for momentum. 

Using BJ equivalence relation (40a) together with (31b) and the Schrodinger 

operators for position and momentum gives:

[ , ] [ , ] ½[ , ] ½[ , ] (42a)

:  [ , ] =  (42b)

Since the wave function does not describe the endogenous motion, the modified 

MM and Schrodinger equation are not physically equivalent. In which case, a 

more nuanced definition of wave function completeness may be required.

Nevertheless, relation (42b) is mathematically equivalent to the corresponding 

Schrodinger operator relation for Heisenberg’s measurable-only quantities,

ensuring computation compatibility.



Omitting the imaginary constant in (27) and continuing with relations (28) and 

(29) gives:

[ , ] = [ , ] + [ , ] = 0 (43a)

: [ , ] [ , ] , = (43b)

Both non-commutation relations (31b) and (32) are still obtained. Relation 

(43b) follows as a consequence of the mathematical equivalence between the 

modified and original Heisenberg-BJ quantum condition. Equivalence with 

Schrodinger operators (42) can also be obtained from (43b). Cross-terms in

(43a) are not included as they cancel. Relation (43a), where matrix elements 

refer to transition paths, is not consistent with the quantum condition (1b), and 

so the periodicity condition, and is thereby not the quantum basis relation,

unlike (10). There is not a corresponding relation for Schrodinger operators. 

Nevertheless, it appears to violate the uncertainty principle in that eigenvalue 

position and momentum are simultaneously measurable.

The violation is however, a question of interpretation not experiment. 

Experimentally verified preparation and measurement formulations of the 

uncertainty principle, together with error-disturbance relations, refer to 

ensemble distributions and relations between such distributions [9 (see refs.)].

Distribution properties of QM are not in question. As Ballentine pointed out in 

the statistical interpretation of QM, uncertainty relations apply to distributions.



Complementarity is preserved by equation (42b) and so preserved as a property 

of the wave function, and by (43b) as a property of position and momentum 

transition amplitudes (consistent with BJ) but not with (43a), although all are 

underpinned by the same HV.

That matrix elements have different meaning creates a difficulty in interpreting 

the ensemble quantities, as identified. However, by relation (41c) BJ amplitudes 

can also be interpreted as describing complex transition paths. Born –Jordan and 

HV ensemble position and momentum will then have the same physical 

meaning. Being complex numbers BJ quantities cannot directly be associated 

with physical quantities. That is not the case however with HV quantities which 

are represented by real numbers. Computability remains the same as seen by the 

equivalence relations. 

Consistency of physical meaning can also be established without arbitrary re-

interpretation. Accepting Heisenberg’s initial classical assumption the Fourier 

series (11) can be expanded (using conjugate symmetry) as:

( ) = ( ) = ( ) + ( )  

 = ½ (44a)

  [ , ] [ , ] [ , ] [ , ] =  (44b)

Using equivalence condition (38) with complex conjugate definitions from 

(44b), leads directly to relations (40b, c) and (41a, c) and then to the individual 

non-commutations relations (32). All other results follow. Alternatively, 



commencing with (44a) and following Born-Jordan leads directly to (32) 

assuming equivalence. This result is most interesting. Endogenous motion is 

implicit in the mathematics of standard matrix mechanics.

For the unit transition position and momentum matrices are:

( , ) =
0 ( , , )

( , , ) 0
(45a)

( , ) =
0 ( , , )

( , , ) 0
(45b)

:   [ , ]( , ) = 0 (45c)

Both are Hermitian and commuting but not in general quaternions, which is 

different from the treat of the HO. The preliminary HO analysis was aimed at 

establish a physical basis for the model, and was not fully consistent with matrix 

mechanics. Unit transition eigenvalues and corresponding eigenstates are:

( , )
= (±) 2[ ( , ) ( , ) ] (46a)

( , )
= (±) 2[ ( , ) ( , ) ] (46b)

=
( , )

( , , )
(46c)

 =
( , )

( , , )
(46d)



These relations describe an eigenpath. Magnitudes of the eigenvalues are the 

same as those of the endogenous quantities (41). Because of relation (45c)

position and momentum eigenvalues are simultaneously measurable.The 

significance of these relations have been previously discussed [9]. Although 

with the preliminary treatment eigenpath position and momentum were not 

simultaneously measurable, that discussion remains relevant. That position and 

momentum for the proposed micro eigenpaths are simultaneously measurable is 

an empirical departure from standard QM.

For the HO, ensemble position and momentum are obtained directly using (41a)

and (41c) together with BJ transition amplitudes without further calculations.

The energy- matrix using (33b) is diagonal with elements reproducing standard 

eigenvalues. With the preliminary treatment, the classical Hamilton was 

incorrectly used and was found to not be diagonal. Uncertainty relations where 

uncertainty is defined as standard deviations of position and moment trajectory 

relations (41) are also reproduced. Of interest is minimum uncertainty for the 

HO ground state whether trajectories are: 

( , + 1, ) =
½

cos ( ) (47a)

( , + 1, ) = [( )]½sin ( ) (47b)

    ( ) =   < > =½( ) (47c)



Relation (47c) identifying the minimum expectation energy with the HO ground 

state, is obtained following the QM mathematical reasoning of minimizing the 

expectation value of the classical Hamilton together with the position-

momentum minimum uncertainty expression. While the mathematics is the 

same the physical basis is different. Uncertainties and minimum energy (47c)

are based on the proposed endogenous motions mathematically expressed by 

(47a, b).

Unit transition matrices of (44) for each individual component term of relations 

(41a, c) are also modified unit transition amplitudes matrices. Using relations 

(40b, c) to define the modified transition amplitudes leads to the following 

relations for the HO as particular case: 

 ,
( )

= ( + 1)½ (48a)

  = ½  ; = ½ (48b)

 = ( + 1)
½

(cos( ) ½ + sin( ) ½ ) (48c)

 = [( )( + 1)]½( sin( ) ½ + cos( ) ½ ) (48d)

Relation (48c, d) expresses the modified unit transition position and momentum 

matrix in quaternion representation in Pauli notation. For the ground state 

transition the RHS are mathematically equivalent to the corresponding spin 

components. Assuming this equivalence is physically meaningful, the relations



suggest an association between spin and unit transition, at least to the extent of 

similar mathematical properties. 

4. EPR-conundrum

Mermin gives an alternative analysis of EPR by considering a Bell-type 

experiment [22]. Briefly, singlet spin particles emerge from a source to two 

spatially separated detectors. Each detector can be randomly set in one of three 

orientations. Each device can flash green (G) or red (R) depending on spin,

where measurement is set such that a particle pair with opposite spin along the 

same orientation flash the same colour. Mermin considers two cases: case (a) is 

where each device has the same setting and where both detectors flash the same 

colour. Case (b) is where detectors have different settings and where both 

detectors flash the same colour a quarter of the time. Outcomes are predicted by 

QM.

Mermin introduces the notion of the particle as the carrier of information by 

way of instruction sets which inform measurement outcomes. Accordingly, each 

particle can be classified into eight types: {RRR, RRG, RGR, RGG, GRR, 

GRG, GGR, GGG}, for each of three possible outcomes. Assuming both 

particles carry the same information, then for case (a) detectors will always 

flash the same colour because particles carry the same instruction set. This 

outcome agrees with QM. Assuming the same colour code hypothesis for case 



(b) the same colour occur at least a third of the time, which is contrary to QM 

(unless RRR and GGG never occur). Clearly, there is a conundrum.

While alternative interpretations have been proposed, it will be accepted that the 

conundrum is genuine [23].

Since instruction sets at set at source, thereby defining initial conditions, local 

causality is preserved. 

Colour combinations assign outcomes on unmeasured orientations assuming 

pre-existing values. Accordingly, the undefined property hypothesised by 

Mermin must instruct a classical measurement. However, since QM is agnostic 

to non-measurement outcomes, the correct instruction set must differ by 

instructing a non-classical measurement.  Basic QM requires that:  a) outcomes 

are random, b) net zero spin conservation, and c) eigenstates are mutually 

exclusive. It is reasonable to assume that the correct instruction set should 

adhere to these basics. Assuming the particle is indeed defined by its properties,

a basic flaw in Mermin’s EPR conundrum is to assume a classical particle.

This conclusion may well appear too elementary! However, it must also be 

considered whether thought experiments, paradoxes, no-go theorem and 

conundrums are sufficiently detailed to enable conclusions which are otherwise.

At least for position and momentum, the proposed HV define QM variables not 

directly the results of QM experiments. However, any HV model (including one 



for spin) which reproduces quantum variables would reproduce results of 

quantum experiments. This raises the question whether violation actually 

excludes these types of models. Despite claims of its generality, does Bell’s 

hidden variable parameter make assumptions about model-type?

A QM measurement is measurement of the generated eigenstate - eigenvalue 

system, where the outcome need not be pre-determined. If as hypothesised, the 

QM particle contains all ensemble information then in pre-measurement the 

quantum object need not be in a specific eigenstate. Accordingly, a pre-

measurement eigenvalue cannot be specified. Measurement procedures for 

hidden and QM variables must then differ, requiring quantum measurements to

be apparatus-interactive [9, 3, 24]. That reality exists is never in question [25].

While aspects of Copenhagen-type subjectivism persist, its origin is localised 

within the dimensions of the QM particle and would be attributed to its internal

endogenous properties, presently not well known [26].

5. Conclusion

This work follows a different path in exploring the foundation question by 

proposing an actual hidden variables model. As a more traditional starting 

point, the physical assumptions and mathematical consequences of Heisenberg 

and also Born in formulating matrix mechanics are re-visited. Bohr’s 

instantaneous state-to-state transition has been experimentally invalidated, and 

is rejected. Heisenberg’s non-path postulate is replaced by periodic endogenous 



paths during the now finite transition. Although in disagreement with some

interpretations of QM and Bell inequalities violations, the model is nevertheless 

guided by EPR-Bell analysis. The resulting modified matrix mechanics is 

mathematically equivalent to Born-Jordan reproducing all standard results. 

Indeed, endogenous motion is found to already be implicit in the mathematics 

of standard matrix mechanics. Because such motion averages out over a cycle it 

is unseen by the wave function. Nevertheless, mathematical equivalence with 

position and momentum non-commutation of the Schrodinger equation is 

preserved.

The proposed model does raise questions relevant to EPR-Bell: whether a re-

definition of wave function completeness is required, and whether additional 

HV model-type assumptions are implicit in Bell’s hidden variables parameter. 

Replacing the non-path postulate is not however a claim that QM is not a 

departure from classicality: an assumption of the model is that a quantum 

particle is not classical.
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