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Summary 

In this article, we solve one of the oldest and most celebrated problems in number 

theory, namely the existence or nonexistence of odd perfect numbers. We know there is no 

number of this type having less than 100 digits. A number is said to be perfect if it is the 

sum of its proper divisors. Euclid in his The Elements ninth book gives a formula for all even 

perfect numbers. We answer the question of whether there exists an odd perfect number in 

the negative by proving a theorem asserting that the existence of such a number would lead 

to contradictions (proof by reductio ad absurdum). Somewhat remarkably, perhaps, this result 

is proved using only elementary methods. Hence, the popular conjecture that odd perfect 

numbers do not exist, no matter how large these numbers might be, is confirmed to be 

correct. Thus, one of the oldest and most celebrated questions in mathematics has now a 

definitive answer. 
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1. Introduction 

In this article, we solve one of the oldest and most celebrated problems in number theory, 

namely the existence or nonexistence of odd perfect numbers. It is not known whether any 

odd perfect number exists. We know only that none exists that are less than 1036, a number 

having no less than 100 digits (this result was proven in 1967; see Guy [3], p. 66). A number 

is said to be perfect if it is the sum of its proper divisors. The theory of perfect even numbers 

is well known. Euclid in his The Elements ninth book gives a formula for all even perfect 

numbers. He proved that if (2p − 1) is prime, then 2p − 1 (2p − 1) is an even perfect number. 

The first four perfect (even) numbers – 6, 28, 496, and 8128 – were known to Euclid. Several 

centuries later Leonard Euler proved that every one of them is of this type (see Voigt [7]). 

Perfect numbers have seen a great deal of attention, ranging from very ancient numerology. 

The Pythagoreans equated the perfect number 6 to marriage, health, and beauty on account 

of the integrity and agreement of its parts (see Voigt [8]). Saint Augustine (among others, 

including the early Hebrews) considered 6 to be an ideal perfect number, since God 

fashioned the Earth in precisely these many days. Significantly, they were also important to 

the seventeenth century great mathematicians, such as Renée Descartes and Pierre de 

Fermat, whose investigations led the latter to the (little) theorem that bears his name. Such 

theorem states that if p is a prime number and n a positive integer then p is a divisor of (np 

– n). In 1747 Leonard Euler showed that every even perfect number arises from an 

application of Euclid’s rule. Primes of the form (2p - 1), defining the Euclid’s rule for 

constructing even perfect numbers, are called Mersenne primes. Up to now, 51 have been 

found as part of the Great Internet Mersenne Prime Search (GIMPS; see 

http://www.mersenne.org/). Despite its ancient roots the subject of perfect numbers 

remains very much alive today, harbouring perhaps the “oldest unfinished project of 

mathematics” (c.f. Stan [6]). It is not known whether there exist infinitely many Mersenne 

primes and therefore we do not know whether there exist infinitely many (even) perfect 

numbers. Similarly, we do not know if near-perfect numbers - the sum of all proper divisors 

of a natural number N, except for one of them (c.f. Pollak and Shevelev [4]) – have an upper 

bound or not. As we have pointed out, equally mysterious, up to now, remains the question 

of whether there are any odd perfect numbers2. 

In this paper we answer the odd perfect numbers existence or nonexistence question by 

giving a proof of their nonexistence. Perhaps somewhat remarkably this result is proved 

using only elementary methods. In essence, our proof proceeds by contradiction showing 

that if one assumes that odd perfect numbers existed such assumption would lead to an 

absurd statement for the value of the Euler’s Sigma-Function for odd perfect number. This 

should imply that their existence is logically impossible. Hence the popular conjecture that 

no odd perfect number is to be expected to exist, no matter how large such number might 

be, is confirmed to be correct. Thus, the Euclid’s and Euler’s results provide a complete 

characterisation of perfect numbers. However, there is still an open problem: whether the 

 
2 For a survey of the open problems concerning perfect numbers the Reader is referred to Guy [3], Ch. 4, or 
Sandor and Crstici [5], Ch. 1. 



set of even perfect primes is finite or infinite, namely whether there are finitely or infinitely 

many Mersenne primes. 

2. Odd Perfect Numbers Nonexistence Proof 

Let N be a positive integer. Following the number theory literature, N is said (in 

increasing order of generality) to be perfect when 𝜎(𝑁) = 2𝑁, 

Definition 1. Leonard Euler introduced the concept of Sigma-Function, 𝜎(𝑁), which sums 

the (positive) natural divisors of an integer N, 

𝜎(𝑁) ≡ ∑ 𝑑

(𝑑|𝑁)

 ;  𝑑 ∙ 𝑘 = 𝑁;  𝑘, 𝑑 ∈ ℕ ≡ {0,1,2,3,… , }, 𝑑 > 0,𝑁 ∈ ℕ,𝑁 > 0   

(1) 

Where (𝑑|𝑁)   means the integer d divides N and runs over the positive divisors of N, 

including 1 and N itself; k is a positive integer solution and ℕ denotes the set of natural 

numbers including zero. For example, 𝜎(11) = 1 + 11 = 12  and 𝜎(15) = 1 + 3 + 5 + 15 =

24.  

∎ 

The central reason for using the function 𝜎(𝑁) is that it possesses some special 

properties. Among them 𝜎(𝑀 ∙ 𝑁) = 𝜎(𝑀) ∙ 𝜎(𝑁) whenever M and N are coprime (or 

relatively prime) numbers, namely their Greatest Common Divisor is equal to 1; 

𝐺𝐶𝐷(𝑀,𝑁)  =  1. Hence 𝜎 is completely determined when its value is known for every 

prime-power argument. This yields the following useful statement for the sum-of-divisors 

of 𝑁 as,  

Lemma 1 (see [7], th.4): 

𝜎(𝑁) =∏𝛿𝑖

𝑚

𝑖=1

=∏
(𝑝𝑖)

𝛼𝑖+1 − 1

𝑝𝑖 − 1

𝑚

𝑖=1

 

𝛿𝑖 ≡ 𝜎[(𝑝𝑖)
𝛼𝑖] = 1 + (𝑝𝑖)

1 + (𝑝𝑖)
2 +⋯+ (𝑝𝑖)

𝛼𝑖 , 𝑝𝑖 ∈ 𝕡, 𝛼𝑖 ∈ ℕ, 𝑖 = 1,𝑚 

(2) 

where m is the number of prime factors decomposing N, 𝕡 denotes the set of all prime 

numbers, {𝑝𝑖} is the set of prime divisors of N and 𝛼𝑖 is the exponent of the highest power 

of the prime number 𝑝𝑖 that divides N, 

𝑁 =∏(𝑝𝑖)
𝛼𝑖

𝑚

𝑖=1

, 𝑝𝑖 ∈ 𝕡 , 𝛼𝑖 ∈ ℕ, 𝑖 = 1,𝑚 ,𝑚 ∈ ℕ,𝑚 > 0   

(3) 

For example,  

 𝜎(11) = 1 + 11 = 12;  𝜎(15) = 1 + 3 + 5 + 3 ∙ 5 = 24 



𝑁 ≡ 11 = 1 ∙ 11 , 𝛼 = 1,𝑚 = 2;𝑁 ≡ 15 = 1 ∙ 3 ∙ 5, 𝛼 = 1,𝑚 = 3  

(4) 

∎ 

Remark 1: 𝜎(𝑁) can be either an even or an odd number. However, if 𝑝𝑖 = 2 , and there 

therefore 𝑁 must be an even number (eq. 3), the term 𝛿𝑖 in eq. (2) is a sum of powers of 2 – 

which is an even number - plus 1. As a result, 𝛿𝑖 should be odd (see Appendix, addition 

rules (a)-(i) and (a)-(iii)).  

For 𝑝𝑖 ≥ 3, 𝛿𝑖 should be an odd (resp. even) number when 𝛼𝑖 is even (resp. odd) 

number. This latter implication can be obtained by adding recursively the powers of 𝑝𝑖, 

which are all odd numbers, to the initial even number (1 + 𝑝𝑖)  which makes it for an 

alternating sequence of odd-even integers, (Even-Number ⨁ Odd-Number ≗ Odd-Number and 

Odd-Number ⨁ Odd-Number ≗ Even-Number; see Appendix, Addition Rules (a)-(ii) and (a)-

(iii)). Hence, 𝜎(𝑁) is even if and only if there exists at least an exponent 𝛼𝑖 of an odd prime 

𝑝𝑖 being odd. In fact, only one odd exponent 𝛼𝑖 is sufficient to get an even number 𝛿𝑖 for 

𝑝𝑖 ≥ 3, making 𝜎(𝑁) necessarily an even number (see Appendix, Multiplication Rule (b)-

(vi)).  

Thus, 𝜎(𝑁) being even is a necessary condition for a number 𝑁 to be perfect so that 

the equation, 𝜎(𝑁) = 2𝑁, becomes feasible, since 2𝑁 is an even number by construction. On 

the contrary, if 𝜎(𝑁) were an odd number 𝜎(𝑁) = 2𝑁 is ruled out. Moreover, 𝑁 = 2𝛼−1 can 

never be a perfect (even) number in that 𝜎(2𝛼−1) = (2𝛼 − 1) is always an odd number. 

Hence, it should not come as surprise that any even perfect number should have a prime 

factor in it such as – the Mersenne’s prime -  (2𝛼 − 1), with 𝛼  being a prime, so that 𝑁 =

2𝛼−1(2𝛼 − 1) and 𝜎[(2𝛼−1)(2𝛼 − 1)] = 𝜎[2𝛼−1]𝜎[(2𝛼 − 1)] = (2𝛼 − 1)2𝛼 = 2𝑁 with (2𝛼 −

1)2𝛼 being always an even number and with 2𝛼−1 and (2𝛼 − 1) being coprime, that is the 

only positive integer that is a divisor of both is 1. 

∎ 

The following elementary statement regarding odd numbers factor decomposition is 

useful as well, 

Lemma 2: an odd number 𝑁𝑂 is decomposed by odd prime factors only (denoted 𝑝𝑖
𝑂), 

𝑁𝑂 = ∏(𝑝𝑖
𝑂)
𝛼𝑖

𝑚

𝑖=1

, 𝛼𝑖 ∈ ℕ, 𝛼𝑖 ≥ 1, 𝑝𝑖
𝑂 ∈ 𝕡,  𝑝𝑖

𝑂 ≥ 3, 𝑖 = 1,𝑚, 𝑁𝑂 ∈ ℕ,𝑁𝑂 ≥ 3 

(5) 

Where 𝕡 denotes the set of prime numbers. 

Proof: we proceed by contradiction. Suppose that an odd number  𝑁𝑂were to include the 

integer 2 among its prime m factors,  

𝑁𝑂 = (2)
𝛼1∏(𝑝𝑖

𝑂)
𝛼𝑖

𝑚

𝑖=2

, 𝛼1 ≥ 1 



(6) 

As the right-hand side product contains an even number, (2)𝛼1, by virtue of the 

multiplication rule b-(vi) (see Appendix), it should be an even number as well, thus 

contradicting the assumption that 𝑁𝑂 is an odd number as claimed. 

∎ 

We now turn to the main goal of this paper by focusing on the issue of odd prime 

numbers nonexistence. We start with the formal definition of perfect number, 

Definition 2: A number is perfect if its divisors add up to twice the number itself. Thus, if 

N is a perfect number, it must be the case that, 

 

𝜎(𝑁) = 2𝑁,𝑁 ∈ ℕ,𝑁 > 0 

(7) 

Here is an example of a perfect (even) number, 

𝜎(28) = 1 + 2 + 22 + 7 + 2 ∙ 7 + 28 = 1 + 2 + 4 + 7 + 14 + 28 = 56 = 2 ∙ 28 

𝑁 ≡ 28 = 22 ∙ 7 

(8) 

Notice that example (8) implies that in eq. (4) we should have, 

𝑚 = 2, 𝛼1 = 2; 𝛼2 = 1, 𝑝1 = 2, 𝑝2 = 7 

(9) 

∎ 

One of the oldest (unsolved) problem in number theory is whether there exist an 

odd perfect number, 𝑁𝑂
∗, which would yield, 

𝜎(𝑁𝑂
∗) = 2𝑁𝑂

∗ , 𝑁𝑂
∗ ∈ ℕ 

(10) 

We answer the question whether there exist such odd perfect number – e.g., eq. (10) holds 

for some odd natural number - in the negative by proving the following, 

Theorem 2: No perfect number can be odd. Hence, eq. (10) cannot hold and therefore the 

Euler Sigma-Function, 𝜎(𝑁𝑂), of any odd number, 𝑁𝑂, is never equal to twice its value, 

𝜎(𝑁𝑂) ≠ 2𝑁𝑂 , ∀𝑁𝑂 ∈ ℕ,𝑁𝑂 ≥ 1 

(11) 

Proof: we proceed in several steps by contradiction.  



Let us consider a generic odd (non-prime) number, 𝑁𝑂
∗, which we assume to be 

perfect (recall that no prime number can be perfect). We posit that 𝑁𝑂
∗  can be decomposed 

as follows, 

𝑁𝑂
∗ =∏(𝑝𝑖

𝑂)
𝛼𝑖

𝑚

𝑖=1

, 𝑝𝑖
𝑂 ≥ 3,  𝛼𝑖 ≥ 1, 𝑖 = 1,𝑚,𝑚 ≥ 1 

(12) 

where the product  ∏ (𝑝𝑖
𝑂)
𝛼𝑖𝑚

𝑖=1  represents the prime factor decomposition of 𝑁𝑂
∗ . By virtue 

of Lemma 2 all prime factors, 𝑝𝑖
𝑂 , 𝑖 = 1,𝑚, should be odd. 

Applying the Sigma-Function on both side of (12), according to eq. (2) in Lemma 1 we 

get, 

𝜎(𝑁𝑂
∗) =∏[1 + (𝑝𝑖

𝑂)
1
+ (𝑝𝑖

𝑂)
2
+ (𝑝𝑖

𝑂)
3
+⋯+ (𝑝𝑖

𝑂)
𝛼𝑖
]

𝑚

𝑖=1

 

(13) 

Let us assume that 𝑁𝑂
∗ is an odd perfect number implying that  eq. (10) should hold. 

By virtue of (13) we should then have, 

∏𝛿𝑖

𝑚

𝑖=1

≡∏[1 + (𝑝𝑖
𝑂)
1
+ (𝑝𝑖

𝑂)
2
+ (𝑝𝑖

𝑂)
3
+⋯+ (𝑝𝑖

𝑂)
𝛼𝑖
]

𝑚

𝑖=1

= 2𝑁𝑂
∗  

(14) 

It suffices to consider three possibilities for the terms of the product on the left-hand 

side of eq. (14): 

1) All terms 𝛿𝑖 of the product are odd numbers, which can happen if (and only 

if) all exponents  𝛼𝑖 , 𝑖 = 1,𝑚 are even numbers, as argued in Remark 1; 

 

2)  At least two terms of the product, say 𝛿1and 𝛿2, are even numbers, which is 

the case if (and only if) their corresponding exponent, 𝛼1 and  𝛼2, is an odd 

integer (see again Remark 1); 

 

3) One term of the product, say 𝛿1, is even with its greatest exponent  𝛼1 being 

odd. 

 

The first case entails that the product of all 𝛿𝑖 should be an odd number as well (see 

Appendix, Multiplication Rule (b)-(v)), and therefore 𝜎(𝑁𝑂
∗), the left-hand side of eq. (14), 

being odd, which contradicts the fact that 2𝑁𝑂
∗  on the right-hand side is an even number. 

The second case requires more elaboration. Suppose that not all 𝛿𝑖 are odd numbers. 

Hence, let assume without loss of generality that the first term and the second term of the 

product, 𝛿1 and 𝛿2, are even (therefore 𝛼1 and 𝛼2must be odd; see again Remark 1), 



𝛿1 = [1 + (𝑝1
𝑂)1 + (𝑝1

𝑂)2 + (𝑝1
𝑂)3 +⋯+ (𝑝1

𝑂)𝛼1] ≗ Even − Number ; 𝛼1 ≗ Odd − Number 

𝛿2 = [1 + (𝑝2
𝑂)1 + (𝑝2

𝑂)2 + (𝑝3
𝑂)3 +⋯+ (𝑝3

𝑂)𝛼2] ≗ Even − Number ; 𝛼2 ≗ Odd − Number 

(15) 

Hence, we can decompose 𝛿1 and 𝛿2, which are even numbers as assumed in (15), as follows, 

𝛿1 = 2
𝜌1 ∙ 𝑘𝑂,1 ≥ 4; 𝜌1 ≥ 1, 𝑘𝑂,1 ≥ 1, 𝑝1

𝑂 ≥ 3,  𝛼1 ≥ 1   

𝛿2 = 2
𝜌2 ∙ 𝑘𝑂,2 ≥ 4; 𝜌2 ≥ 1, 𝑘𝑂,2 ≥ 1, 𝑝2

𝑂 ≥ 3,  𝛼2 ≥ 1   

(16) 

with 𝑘𝑂,1 and 𝑘𝑂,2 being odd numbers. Notice that, 𝛿𝑗 = 1 + 𝑝𝑗
𝑂 = 4, 𝑗 = 1,2 is the minimum 

value in eq. (16) since  𝛼𝑗 = 1 and 𝑝𝑗
𝑂 = 3, 𝑗 = 1,2 are the lowest possible values for the 

exponents,  𝛼1 and 𝛼2, and their factor primes, 𝑝1
𝑂 and  𝑝2

𝑂. We can substitute the right-hand 

side of (16) in the left-hand side of (14), replacing the first and second term in the product 

∏ 𝛿𝑖
𝑚
𝑖=1  with 2𝜌1 ∙ 𝑘𝑂,1 and 2𝜌2 ∙ 𝑘𝑂,2 to get, 

(2𝜌1 ∙ 𝑘𝑂,1)(2
𝜌2 ∙ 𝑘𝑂,2)∏𝛿𝑖

𝑚

𝑖=3

= 2𝑁𝑂
∗ , 𝜌1 ≥ 1, 𝜌2 ≥ 1,𝑚 ≥ 2 

(17) 

Dividing both sides by 2 we end up with 

(2𝜌1−1 ∙ 𝑘𝑂,1)(2
𝜌2 ∙ 𝑘𝑂,1)∏𝛿𝑖

𝑚

𝑖=3

= 𝑁𝑂
∗ , 𝜌1 ≥ 1, 𝜌2 ≥ 1 

(18) 

Thus eq. (18) turns out to be a contradiction, in that 2𝜌2, with 𝜌2 ≥ 1, must be even and 

thereby, as a result of Multiplication Rule (b)-(vi), its left-hand side must be an even number 

as well. Since the right-hand side, 𝑁𝑂
∗, is (by definition) an odd number our claim is proved. 

The third case deals with the assumption of only one term of the product ∏ 𝛿𝑖
𝑚
𝑖=1 ,  say 

𝛿1, being even with the following decomposition assumed to hold, 

𝛿1 = 2
𝜌1 ∙ 𝑘𝑂,1 ≥ 4; 𝜌1 ≥ 1, 𝑘𝑂,1 ≥ 1, 𝑝1

𝑂 ≥ 3,  𝛼1 ≥ 1   

(19) 

It is convenient to use decomposition (19) by distinguishing the following two cases,  

𝜌1 > 1 

(20a) 

and,  

𝜌1 = 1 

(20b) 



Let us consider the case (20a). Again, we can substitute the right-hand side of (19) in 

the left-hand side of (14), replacing the first term in the product ∏ 𝛿𝑖
𝑚
𝑖=1  with its value  

2𝜌1 ∙ 𝑘𝑂,1, then dividing both side by 2 to get, 

 

(2𝜌1−1 ∙ 𝑘𝑂,1)∏𝛿𝑖

𝑚

𝑖=2

= 𝑁𝑂
∗ , 𝜌1 > 1 

(21) 

which should yield a contradiction in that the left-hand side turns out to be even, since 

2𝜌1−1, 𝜌1 > 1 is certainly even, whereas the right-hand side, 𝑁𝑂
∗ , is (by definition) an odd 

number. 

Let us consider the case (20b) which entails in (19) that, 

𝛿1 = 2 ∙ 𝑘𝑂,1 ≥ 6; 𝑘𝑂,1 ≥ 3, 

 (22) 

Substituting (22) into (16) and dividing by 2 we get 

𝑘𝑂,1∏𝛿𝑖

𝑚

𝑖=2

= 𝑁𝑂
∗  

(23) 

with 

𝑘𝑂,1 ≡
1

2
𝛿1 

(23a) 

Recalling the prime factor decomposition (12) for 𝑁𝑂
∗ we can write (23) as, 

1

2
∏𝛿𝑖

𝑚

𝑖=1

=∏(𝑝𝑖
𝑂)
𝛼𝑖

𝑚

𝑖=1

 

(24) 

which is reduced to a more compact form by simple manipulation,   

∏[
𝛿𝑖

(𝑝𝑖
𝑂)
𝛼𝑖
]

𝑚

𝑖=1

= 2 

(25) 

As a result of Lemma 1 each fraction in (25) turns out to be equal to  



𝛿𝑖

(𝑝𝑖
𝑂)
𝛼𝑖
=

(𝑝𝑖
𝑂)
𝛼𝑖+1

− 1

(𝑝𝑖
𝑂)
𝛼𝑖
(𝑝𝑖
𝑂 − 1)

, ∀ 𝑖 = 1,𝑚 

(25a) 

Inserting (25a) in (25) we get, 

∏[
(𝑝𝑖
𝑂)
𝛼𝑖+1

− 1

(𝑝𝑖
𝑂)
𝛼𝑖
(𝑝𝑖
𝑂 − 1)

]

𝑚

𝑖=1

= 2 

(26) 

We decompose the left-hand side of (26) by separating the last fraction indexed by m, 

𝑃(−𝑚)
1

𝑃(−𝑚)
2

(𝑝𝑚
𝑂 )𝛼𝑚+1 − 1

(𝑝𝑚
𝑂 )𝛼𝑚(𝑝𝑚

𝑂 − 1)
= 2 

(27) 

With 

𝑃(−𝑚)
1 ≡∏[(𝑝𝑖

𝑂)
𝛼𝑖+1

− 1]

𝑚−1

𝑖=1

; 𝑃(−𝑚)
2 ≡∏[(𝑝𝑖

𝑂)
𝛼𝑖
(𝑝𝑖
𝑂 − 1)]

𝑚−1

𝑖=1

, 𝑃(−𝑚)
1 > 1, 𝑃(−𝑚)

2 > 1 

(28) 

We rearrange eq. (27) so that we can get - as we will argue for eq. (32) below - a canonical 

linear Diophantine equation, 

𝑃(−𝑚)
1 (𝑝𝑚

𝑂 )𝛼𝑚𝑝𝑚
𝑂 − 2𝑃(−𝑚)

2 (𝑝𝑚
𝑂 − 1)(𝑝𝑚

𝑂 )𝛼𝑚 = 𝑃(−𝑚)
1  

(29) 

We want to prove that (29) cannot have integer solutions so that we obtain a 

contradiction. In this way we can argue that (26), and thereby (25), also do not have natural 

number solutions. As a result, we can claim that (14) does not hold either, thus completing 

our proof that 𝑁𝑂
∗ cannot be an odd perfect number, in that, if it were, it would lead to a 

contradiction. 

It is evident that left-hand side of (29) is divisible by (𝑝𝑚
𝑂 )𝛼𝑚, therefore by dividing 

through both sides of (29) we obtain 

𝑃(−𝑚)
1 𝑝𝑚

𝑂 − 2𝑃(−𝑚)
2 (𝑝𝑚

𝑂 − 1) =
𝑃(−𝑚)
1

(𝑝𝑚
𝑂 )𝛼𝑚

 

(30) 

Hence 𝑃(−𝑚)
1 , which is a positive integer, has to be divisible by  (𝑝𝑚

𝑂 )𝛼𝑚 in that the left-hand-

side of eq. (30) is an integer number, denoted 𝑘𝑚 (see below), 

 



𝑃(−𝑚)
1

(𝑝𝑚
𝑂 )𝛼𝑚

≡
∏ [(𝑝𝑖

𝑂)
𝛼𝑖+1

− 1]𝑚−1
𝑖=1

(𝑝𝑚
𝑂 )𝛼𝑚

= 𝑘𝑚,  𝑘𝑚 ∈ ℕ,  𝑘𝑚 ≥ 1 

(31) 

Recall that eq. (30) has to have an integral solution in 𝑝𝑚
𝑂 , which implies that its left-hand 

side should be an integer. To match this latter, 𝑘𝑚 should be an integer as well. Moreover, 

it must be positive in that the quotient 
𝑃(−𝑚)
1

𝑝𝑚
𝑂  is positive by construction.  

We shall treat eq. (30) as a linear Diophantine equation, with unknown [𝑥, 𝑦] =

[𝑝𝑚
𝑂 , (1 − 𝑝𝑚

𝑂 )] and integral coefficients [𝑎, 𝑏] = [𝑃(−𝑚)
1 , 2𝑃(−𝑚)

2 ], positing the following 

expression, 

𝑎𝑥 + 𝑏𝑦 = 𝑘𝑚 , 𝑎 ∈ ℕ, 𝑏 ∈ ℕ, [𝑎, 𝑏] > [0,0] 

(32) 

We know that (32) has a solution if only if (cf. Andrews, [1], p. 44, th.2-4), 

ℎ𝑚 ≡ 𝐺𝐶𝐷(𝑎, 𝑏)| 𝑘𝑚, ℎ𝑚 ∈ ℕ, ℎ𝑚 ≥ 1 

(32a) 

Namely, the greatest common divisor of [𝑎, 𝑏], ℎ𝑚 , also divides  𝑘𝑚. If this is the case, we 

can find a particular solution [𝑥0, 𝑦0], both integer numbers (at least one of them non-zero; 

cf. Andrews [1], p. 42 and example 2-8, p. 34), such that 

𝑎𝑥0 + 𝑏𝑦0 = ℎ𝑚, [𝑥0, 𝑦0] ≠ [0,0]  

(32b) 

Recall that we do not restrict [𝑥0, 𝑦0] to be non-negative integers; however, we know that 𝑥0 

must be positive whereas  𝑦0 has to negative by virtue of their definition. Moreover, they 

can be found by the Euclidean algorithm (cf. Courant and Robbins [2], 1948, pp. 42-46 and 

p. 51). 

Next step of the algorithm requires to find an integer 𝑔𝑚 such that 

 𝑘𝑚 = ℎ𝑚𝑔𝑚, 𝑔𝑚 ∈ ℕ, 𝑔𝑚 ≥ 1 

(32c) 

We let 

𝑥 = 𝑥0𝑔𝑚, 𝑦 = 𝑦0𝑔𝑚 

(32d) 

Clearly, given (32c) it turns out that (32d) is also a solution of eq. (32). We know that solution 

(32d) is constrained by the following restriction, 

𝑥 + 𝑦 = 𝑝𝑚
𝑂 + (1 − 𝑝𝑚

𝑂 ) = 1 

(33) 



Hence substituting (32d) into (33) we get, 

(𝑥0 + 𝑦0)𝑔𝑚 = 1 

(33a) 

which entails that both (integer) terms on the left-hand side of (33a) should be equal to 1, 

(𝑥0 + 𝑦0) = 1, 𝑔𝑚 = 1 

(34) 

Since (34) dictates that 𝑔𝑚 = 1, (32c) implies that  𝑘𝑚 = ℎ𝑚, therefore  𝑘𝑚 must be a divisor 

– actually the greatest common divisor – of  [𝑃(−𝑚)
1 , 2𝑃(−𝑚)

2 ]. Thus, we should have for the 

first coefficient, 𝑃(−𝑚)
1 , 

𝑃(−𝑚)
1

 𝑘𝑚
= (𝑝𝑚

𝑂 )𝛼𝑚 = 𝑙𝑚, 𝑙𝑚 ∈ ℕ, 𝑙𝑚 ≥ 3  

(35) 

with 𝑙𝑚 being a positive integer (greater or equal 3). Similarly, the second coefficient, 2𝑃(−𝑚)
2 , 

should also be divisible by  𝑘𝑚, namely 

2𝑃(−𝑚)
2

 𝑘𝑚
=
2𝑃(−𝑚)

2 (𝑝𝑚
𝑂 )𝛼𝑚

𝑃(−𝑚)
1 = 𝑟𝑚,  𝑟𝑚 ∈ ℕ, 𝑟𝑚 ≥ 𝑙𝑚 

(36) 

with 𝑟𝑚 being a positive integer which should be greater than (or equal to) 𝑙𝑚 = (𝑝𝑚
𝑂 )𝛼𝑚  (see 

eq. 35) in that the quotient  
2𝑃(−𝑚)

2

𝑃(−𝑚)
1  has to be a positive integer as well (see below). 

 Clearly, (36) could hold – namely 𝑟𝑚 be apositive integer - if and only if at least one term of 

the product in the numerator – either 2𝑃(−𝑚)
2  or (𝑝𝑚

𝑂 )𝛼𝑚 - is divisible by 

𝑃(−𝑚)
1  (cf. Courant and Robbins [2], Lemma, p. 47). As a result, we must have that either 

2𝑃(−𝑚)
2

𝑃(−𝑚)
1 = 𝑣𝑚,  𝑣𝑚 ∈ ℕ,  𝑣𝑚 ≥ 1 

(37) 

with 𝑣𝑚, being a (positive) integer or, 

(𝑝𝑚
𝑂 )𝛼𝑚

𝑃(−𝑚)
1 = 𝑢𝑚,  𝑢𝑚 ∈ ℕ, 𝑢𝑚 ≥ 1 

(38) 

with 𝑢𝑚being a (positive) integer - or both - must hold. 

While (35) evidently confirms that  𝑘𝑚 is a proper divisor of 𝑃(−𝑚)
1 , in that 

𝑙𝑚 = (𝑝𝑚
𝑂 )𝛼𝑚  is indeed a positive integer, we show, on the contrary, that  𝑘𝑚 is not a proper 



divisor of 2𝑃(−𝑚)
2 , namely neither (37) nor (38) should hold. Thus, 𝑃(−𝑚)

1  is not a proper 

divisor of neither 2𝑃(−𝑚)
2  nor (𝑝𝑚

𝑂 )𝛼𝑚 and thereby eq. (36) is contradicted, namely, 𝑟𝑚 is not 

an integer. We prove both claims in the Appendix; in particular, 𝑃(−𝑚)
1  not a divisor of 2𝑃(−𝑚)

2   

 (cf. Lemma 2 and Remark 2), as well as not a divisor of  (𝑝𝑚
𝑂 )𝛼𝑚 (cf. Lemma 3). 

Since eq. (36) is contradicted (𝑟𝑚 not an integer), it turns out that eq. (32) does not 

have a solution and thereby eq. (29) also does not have an integer solution. Hence, we 

obtained a contradiction. By the same token, eqs. (26)-(27) and, by implication, eq. (14) does 

not hold either, thereby completing our proof that eq. (10) does not have an integer solution. 

As a result, 𝑁𝑂
∗ cannot be a perfect odd number, in that inequality (11) should always hold. 

Thus, to summarise, no twice odd number can be equal to its Sigma-Function value and 

thereby no odd number can be a perfect one. 

∎ 

To conclude, we can argue that one of the oldest and most celebrated questions in 

mathematics has now a definitive answer: odd perfect numbers do not exist. 
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Appendix 

For Reader’s convenience we summarise summation and multiplication rules 

involving even and odd numbers which are used, explicitly or implicitly, in the main text.  

Even and odd numbers, respectively, are denoted below as 

𝑎(𝑛) = 2𝑛, 𝑏(𝑛) = 2𝑛 + 1, 𝑛 ∈ ℕ 

(1A) 

(a) Summation Rules for Natural Numbers (⨁ denoting “addition”): 

 

(i) Even-Number ⨁ Even-Number ≗ Even-Number 

𝑎(𝑛1) + 𝑎(𝑛2) = 2(𝑛1 + 𝑛2) = 𝑎(𝑛1 + 𝑛2), 𝑛1, 𝑛2, (𝑛1 + 𝑛2) ∈ ℕ 

 

(ii) Odd-Number ⨁ Odd-Number ≗ Even-Number 

𝑏(𝑛1) + 𝑏(𝑛2) = 2[(𝑛1 + 𝑛2) + 1] = 𝑎(𝑛1 + 𝑛2 + 1), 𝑛1, 𝑛2, (𝑛1 + 𝑛2 + 1) ∈ ℕ 
 

(iii) Even-Number ⨁ Odd-Number ≗ Odd-Number 

𝑎(𝑛1) + 𝑏(𝑛2) = 2(𝑛1 + 𝑛2) + 1 = 𝑏(𝑛1 + 𝑛2), 𝑛1, 𝑛2, (𝑛1 + 𝑛2) ∈ ℕ 

 

(b) Multiplication Rules for Natural Numbers (⊗ denoting “multiplication”): 

(iv) Even-Number ⊗ Even-Number ≗ Even-Number 

𝑎(𝑛1) ∙ 𝑎(𝑛2) = 2 ∙ [2(𝑛1 ∙ 𝑛2)] = 𝑎[𝑎(𝑛1 ∙ 𝑛2)], 𝑛1, 𝑛2, (𝑛1 ∙ 𝑛2) ∈ ℕ 

 

(v) Odd-Number ⊗ Odd-Number ≗ Odd-Number 

𝑏(𝑛1) ∙ 𝑏(𝑛2) = 2[𝑛1 + 𝑛2 + 2𝑛1𝑛2] + 1 = 𝑏(𝑛1 + 𝑛2 + 2𝑛1𝑛2),

𝑛1, 𝑛2, (𝑛1 + 𝑛2 + 2𝑛1𝑛2), ∈ ℕ 
 

(vi) Even-Number ⊗ Odd-Number ≗ Even-Number 

𝑎(𝑛1) ∙ 𝑏(𝑛2) = 2[𝑛1 ∙ 𝑛2 + 𝑛1] = 𝑎(𝑛1 ∙ 𝑛2 + 𝑛1), 𝑛1, 𝑛2, (𝑛1 ∙ 𝑛2 + 𝑛1) ∈ ℕ 

 

Lemma 2: if 2𝑃(−𝑚)
2 > 𝑃(−𝑚)

1 , then  𝑃(−𝑚)
1  not a divisor of 2𝑃(−𝑚)

2 .  

Proof: we can assert that 

𝑃(−𝑚)
1 ≡∏[(𝑝𝑖

𝑂)
𝛼𝑖+1

− 1]

𝑚−1

𝑖=1

> 𝑃(−𝑚)
2 ≡∏[(𝑝𝑖

𝑂)
𝛼𝑖+1

− (𝑝𝑖
𝑂)
𝛼𝑖
]

𝑚−1

𝑖=1

 

(2A) 

Since it is evident that each term of the product in 𝑃(−𝑚)
1  is greater than its corresponding 

term in 𝑃(−𝑚)
2 , namely 

 



(𝑝𝑖
𝑂)
𝛼𝑖+1

− 1 > (𝑝𝑖
𝑂)
𝛼𝑖+1

− (𝑝𝑖
𝑂)
𝛼𝑖
> 0, ∀ 𝑖 = 1,𝑚 − 1 

(3A) 

recalling that 

(𝑝𝑖
𝑂)
𝛼𝑖
> 1 , 𝑝𝑖

𝑂 > 1, ∀ 𝑖 = 1,𝑚 − 1 

(4A) 

then all terms in (3A) is (strictly) positive. 

Dividing both side of inequality (2A) by 𝑃(−𝑚)
1  we get, 

1 >
𝑃(−𝑚)
2

𝑃(−𝑚)
1  , 𝑃(−𝑚)

1 > 0, 𝑃(−𝑚)
2 > 0,  

(5A) 

and multiplying by 2 both sides of (5A) yields, 

2 >
2𝑃(−𝑚)

2

𝑃(−𝑚)
1  

(6A) 

Since we assumed that 
2𝑃(−𝑚)

2

𝑃(−𝑚)
1 > 1, inequality (6A) implies that 𝑃(−𝑚)

1  is not a divisor of 2𝑃(−𝑚)
2 . 

∎ 

 

Remark 2:  it is evident that Lemma 2 does not encompass the special case in which the 

quotient  
2𝑃(−𝑚)

2

𝑃(−𝑚)
1  is unity. Hence, to complete the proof that 𝑃(−𝑚)

1  is never a divisor of 

2𝑃(−𝑚)
2 we need to rule out the case 

2𝑃(−𝑚)
2

𝑃(−𝑚)
1 = 1 

(7A) 

namely, 

𝑃(−𝑚)
1 = 2𝑃(−𝑚)

2  

(8A) 

However, it can be shown that (8A) would contradict eq. (27) (which for convenience is 

recalled below), 

 



𝑃(−𝑚)
1

(𝑝𝑚
𝑂 )𝛼𝑚+1 − 1

(𝑝𝑚
𝑂 )𝛼𝑚(𝑝𝑚

𝑂 − 1)
= 2𝑃(−𝑚)

2  

(9A) 

Since the quotient in (9A) is greater than 1 

(𝑝𝑚
𝑂 )𝛼𝑚+1 − 1

(𝑝𝑚
𝑂 )𝛼𝑚(𝑝𝑚

𝑂 − 1)
=

(𝑝𝑚
𝑂 )𝛼𝑚+1 − 1

(𝑝𝑚
𝑂 )𝛼𝑚+1 − (𝑝𝑚

𝑂 )𝛼𝑚
> 1 

(10A) 

as (𝑝𝑚
𝑂 )𝛼𝑚 > 1, it must be the case that  

𝑃(−𝑚)
1

(𝑝𝑚
𝑂 )𝛼𝑚+1 − 1

(𝑝𝑚
𝑂 )𝛼𝑚(𝑝𝑚

𝑂 − 1)
> 2𝑃(−𝑚)

2  

(11A) 

if eq. (8A) were to hold. Clearly, (11A) contradicts (9A). But, if eq. (9A) - eq. (27) for that 

matter - does not hold, then eq. (14) cannot hold either. And if eq. (27) does not hold, our 

claim that eq. (10) does not have a solution immediately follows and thereby completing 

our proof that no odd perfect number should exist. However, if eq. (9A) is assumed to hold, 

inequality (10A) evidently would imply that   

𝑃(−𝑚)
1 < 2𝑃(−𝑚)

2  

(12A) 

If inequality (12A) holds, eq. (27) (or 9A for that matter) again cannot hold, in that 𝑃(−𝑚)
1  is 

never a divisor of 2𝑃(−𝑚)
2  . In fact, as a result of (11A) and Lemma 2, we must have, 

1 <
2𝑃(−𝑚)

2

𝑃(−𝑚)
1 < 2 

(13A) 

 It is worth pointing out that that set of  eqs. (7A)-(13A) do not depend upon the value of m, 

namely the number of (odd) prime factors decomposing 𝑁𝑂
∗. 

To summarise, assuming that eq. (27) has a solution would lead to a contradiction. Thus eq. 

(27) cannot hold. 

∎ 

Lemma 3:  𝑃(−𝑚)
1  is not a divisor of (𝑝𝑚

𝑂 )𝛼𝑚. 

Proof: We rule out at the outset the trivial case, 

𝑃(−𝑚)
1 > (𝑝𝑚

𝑂 )𝛼𝑚 

(14A) 

which entails that 



0 <
(𝑝𝑚
𝑂 )𝛼𝑚

𝑃(−𝑚)
1 < 1 

(15A) 

thereby implying that  𝑃(−𝑚)
1  cannot be a divisor of (𝑝𝑚

𝑂 )𝛼𝑚. More interesting is the 

exploration of the alternative case, 

𝑃(−𝑚)
1 ≤ (𝑝𝑚

𝑂 )𝛼𝑚 

(16A) 

We proceed by contradiction in assuming that  (𝑝𝑚
𝑂 )𝛼𝑚 is divisible by 𝑃(−𝑚)

1 , 

(𝑝𝑚
𝑂 )𝛼𝑚

𝑃(−𝑚)
1 =

𝑝𝑚
𝑂 ∙ 𝑝𝑚

𝑂 ∙ … ∙ 𝑝𝑚
𝑂⏞          

𝛼𝑚

∏ [(𝑝𝑖
𝑂)
𝛼𝑖+1

− 1] ,𝑚−1
𝑖=1

= 𝑧𝑚, ∈ ℕ, 𝑧𝑚 ≥ 1 

(17A) 

We know that 𝑧𝑚can be a (positive) integer if and only if at least one term of the product in 

the denominator of (17A) should be a divisor of 𝑝𝑚
𝑂  (cf., Courant and Robbins, 1948, p. 47, 

Lemma). If no such term exists our claim is proved.  

Let suppose that such a term, say [(𝑝𝑖
𝑂)
𝛼𝑖+1

− 1], exists, namely 

𝑝𝑚
𝑂

(𝑝𝑖
𝑂)
𝛼𝑖+1

− 1
= 𝑞𝑖, ∈ ℕ, 𝑞𝑖 ≥ 1, 𝑖 ∈ {1,2, … ,𝑚 − 1} 

(18A) 

Multiplying through by [(𝑝𝑖
𝑂)
𝛼𝑖+1

− 1] we get, 

𝑝𝑚
𝑂 = 𝑞𝑖 [(𝑝𝑖

𝑂)
𝛼𝑖+1

− 1] 

(19A) 

Dividing by 𝑞𝑖 and re-arranging the terms in (19A), 

(𝑝𝑖
𝑂)
𝛼𝑖+1

= 1 +
𝑝𝑚
𝑂

𝑞𝑖
 

(20A) 

Clearly, the right-hand-side of (20A) has to be a (positive) integer greater than 2 and 

therefore the ratio 

𝑝𝑚
𝑂

𝑞𝑖
 

(21A) 



should be an integer not less than 2. Recall that 𝑝𝑚
𝑂  is a prime and therefore it is divisible 

only by 1 or 𝑝𝑚
𝑂 . Hence, in order to ensure that the fraction (21A) is a (positive) integer we 

must have, either 

𝑞𝑖 = 1 

(22A) 

or 

𝑞𝑖 = 𝑝𝑚
𝑂  

(23A) 

Substituting (22A) and (23A) in (20A) yields 

(𝑝𝑖
𝑂)
𝛼𝑖+1

= 1 + 𝑝𝑚
𝑂  

(24A) 

and 

(𝑝𝑖
𝑂)
𝛼𝑖+1

= 1 + 1 = 2 

(25A) 

Clearly, (25A) cannot hold in that, 

 

(𝑝𝑖
𝑂)
𝛼𝑖+1

≥ 3 

(26A) 

Hence, (23A) should be discarded.  

We are left dealing with (22A) and therefore we proceed by inspecting (24A) whose 

left-hand-side can be decomposed as follows, 

𝑝𝑖
𝑂 ∙ 𝑝𝑖

𝑂 ∙ … ∙ 𝑝𝑖
𝑂⏞        

𝛼𝑖+1

= 1 + 𝑝𝑚
𝑂  

(27A) 

Without loss of generality, we assume that, 

𝑝1
𝑂 < 𝑝2

𝑂 < ⋯ < 𝑝𝑚−1
𝑂 < 𝑝𝑚

𝑂  

(28A) 

Hence, it must be the case that 

𝑝𝑖
𝑂

1 + 𝑝𝑚
𝑂 <

𝑝𝑖
𝑂

𝑝𝑚
𝑂 < 1, ∀𝑖 = 1,𝑚 − 1 

(29A) 



and therefore 1 + 𝑝𝑚
𝑂  is not a divisor of any 𝑝𝑖

𝑂 , 𝑖 = 1.𝑚 − 1. As a result, (27A), and (24A) for 

that matter, cannot hold and thereby (18A) cannot hold either, namely none of the terms  

[(𝑝𝑖
𝑂)
𝛼𝑖+1

− 1] can be a divisor of 𝑝𝑚
𝑂 . Thus (18A) gives rise to a contradiction in that 𝑧𝑚 

cannot be an integer and thereby ruling out that (𝑝𝑚
𝑂 )𝛼𝑚 is divisible by 𝑃(−𝑚)

1 . Thus, our claim 

is proved.  

∎ 

 

 


