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Abstract 

    A relation is found between the proper time derivative of mass and angular momentum for a  

covariant charge distribution.  This is based on the rest frame equations of motion of a relativistic  

rotating charge distribution. 

 

I. INTRODUCTION  

   This paper is an extension of articles written by the author and gives a relation 

between the proper time derivative of the mass and angular momentum based on equations from  

the previous articles. 

 

II. REVIEW OF EQUATIONS OF PREVIOUS ARTICLES 

   From previous articles, French1,2,3, we consider a classical mechanical stress-energy  

distribution 
S , four-current 

j , and Electromagnetic field tensor 
F .  Based on the  
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relation 





 = jF,S  (for example see Misner, Thorne and Wheeler (herein MTW)4  )  

and its corresponding rotational equation, we integrate over a space-time volume to obtain the  

following equations in the rest frame 
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where = dvSm 00

0 , = dvSp 0ii , = dvSrm 00ii  and  dv)SrSr(L i0jj0iij −=  .  The  

acceleration ia  is based on an arbitrary world line with ir  being the distance from the world line  

and v represents the volume of the 3-space normal to the world line.  The speed of light has also  

been set to one and repeated indices indicate a summation.  Greek indices represent space-time  

coordinates, Latin indices represent three-space coordinates, and a zero index represents time.  

   To put a restriction on the world line, we set the mechanical momentum 
ip  to zero 

in this frame.  If another restriction is added, that of the center of mass coinciding 

with the world line, then im  is also set to zero.  If these restrictions are applied to eqs. (1-4)  

they become  
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   Eq. (7) is a constraint equation and from French1,2,3 if the self-field terms are ignored it  

yields the condition g = 2 if we ignore second order acceleration terms and take the net current in  

the rest frame to be zero.  If the self-field terms are not ignored, and we use a non-relativistic  

shell of charge we also obtain the condition g = 2 if we ignore the rotational contribution to the  

mass. and again ignore second order acceleration terms.  Both these results are based on the idea  

that the object is small enough that the external fields can be taken as constant over the size of it. 

 

III. COVARIANT CHARGE DISTRIBUTION  

  To include an angular velocity i , we will follow Nodvik5 and use the covariant charge  

distribution 
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where u is the 4-velocity, a  is the 4-acceleration, 
  is the 4-angular velocity, and 


  is 

the antisymmetric Levi-Cevita tensor (for example see MTW4).   is an arbitrary function 

representing the charge density and 0x  represents the world line of the system.  The 4-vectors  

u , a ,  and 0x  are functions of the proper time    Other authors have also used this 

distribution, for example see Appel and Kiessling6.  In the rest frame eq. (9) reduces to the 

relations 
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where 
irr = . 

   When eq. (10) and eq. (11) are put into eqs. (5-8) they become 
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where we have used the relation kij

k  

ij LL = . 

 

IV. RELATION BETWEEN MASS AND ANGULAR MOMENTUM  

  If we add the non-relativistic rotational kinetic energy to a non-rotating rest mass 00m we 

obtain 
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where I is the moment of inertia (for example see Goldstein7).  We want to try to obtain a  

similar equation based on eqs. (12-15).  If we multiply eq. (15) by 
k  it becomes 
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Now consider the second term of eq. (17) which can be written as 
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where  
kj

ijki rf =  
.   Since 'jk'F is antisymmetric under the exchange of j and k'', eq. (18) is 

the negative of itself and thus zero.    Thus the second part of eq. (17) is zero, and if we 

combine eq. (17) with eq. (12) we obtain 
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Now multiply the constraint eq. (14) by 
ia  to obtain 
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This is zero since 
ij

k  jiaa  is zero.   Using eq. (20) in eq. (19) it becomes 
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which gives us a relation between the mass and angular momentum in the rest frame. 

 

V. ANGULAR MOMENTUM IN TERMS OF ANGULAR VELOCITY AND NEW    

     EQUATIONS  

    If we can express kL  in the form of  
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for some function )(I 2 , then eq. (21) reduces to 
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where the integration constant 00m is again taken as the non-rotating rest mass and 
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If I is a constant then we obtain eq. (16). 

    If eq. (22) is valid, then taking the constraint eq. (14) as a condition on the distribution of 

charge in the system, eqs. (12-15) reduce to the two equations of motion 
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and 
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   If eqs. (25) and (26) are looked at in a general frame of reference and a Lagrangian is found  

for them along with the electromagnetic field then we might be able to quantize the system in a 

 way similar to a non-relativistic quantization, French8, and perhaps compare this to a Foldy- 

Wouthuysen type expansion of relativistic Quantum Electrodynamics, (for example see Lin9). 

 



VI. LAGRANGIAN FOR FREE PARTICLE IN GENERAL FRAME 

    Consider a free particle with a moment of inertia given by 
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where the 𝐼𝑛 are constants, and 𝜔0 is the angular velocity in the rest frame, and we have set 

the speed of light to c.    Then F, as defined by eq. (24), becomes  
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   Using eq. (12), eq. (23), eq. (25) and eq. (26), the equations of motion of a free particle in a  

general frame are given by 
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and 
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Now set 𝜔0
   𝑖 = 𝜔𝑖(1 −

𝑣2

𝑐2
)−1/2.   We use 𝜔𝑖 since this is in a general frame and when we make 

a variation with respect to the Euler angles we will want to use the time variable in the general  

frame and 𝜔0
   𝑖 is the angular velocity defined in terms of the derivative of the Euler angles with  

respect to the rest frame time. 



    A Lagrangian is then given by 
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Variation of L with respect to the position yields eq. (29), and variation with respect to the Euler 

 angles yields 
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which yields eq. (30). 

    Using L to find the corresponding conjugate momentum and Hamiltonian, we find that 

The Hamiltonian is given by 

 

   𝐻 = (𝑚00𝑐2 + 𝐹)(1 −  
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Note that this is the same as the classical energy of the particle.  

 

VII. CONCLUSIONS 

   Now that a relation is found between the mass and angular momentum it might 

be possible to find a classical system of particles interacting with the electromagnetic field  

which when quantized yields another way to look at relativistic quantum electrodynamics.   
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