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Abstract. Rather than adopting the conventionality of simultaneity, we discuss the possible 
identification of a ‘correct’ Reference Frame for analysing time duration and simultaneity of 
phenomena. Four standard examples are reviewed to illustrate the approach. The discussion includes 
use of the concepts, time vector and event graph1. 
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1 Introduction 

In the theory of special relativity moving reference frames provide different results both for the duration 
of a chain of events and for the simultaneity of events. Many authors discuss the relativity of 
simultaneity, e.g. Debs and Redhead (1996) who argue for a version of the conventionality of 
simultaneity: There will be a time interval of events, all being simultaneous to a (distant) event; which 
of these to choose is rather a matter of convention.  

However, by properly specifying the phenomenon under investigation, one can identify one ‘correct’ 
perspective; i.e. a specific Reference Frame (RF) from which the events should be considered. This 
leads to one ‘canonical’ result for the duration and simultaneity of events. 

Our discussion is based on well-known results of a few standard examples: the travelling twin (TT); two 
spacecrafts moving relative to each other in outer space, the case of the µ-mesons and the Michelson-
Morley experiment.   

2 Background 

First some basic terminology, assumptions and tools are provided. 

2.1 Notation 

We start out from a RF denoted K, which for simplicity has just one space coordinate, x. The RF has 
synchronized, stationary clocks located at virtually any position. Further, there is an object moving at 
velocity, v relative to K along the x-axis. The object starts out from the origin of K when the clock at 
this position on K reads 0.  Further, (we imagine that) this moving object brings with it a clock, and 
when the object passes the origin at time 0, this clock is synchronized with the clock on K at this position.  

Three fundamental parameters are related to the movement of this object. First: 

τ = Clock reading of the clock following the moving object. We would say that this is the ‘internal 
time’ of the object/event, but usually, this is referred to as the ‘proper time’.  

This proper time, τ is independent of which RF we choose as the basis for our observations. Further, we 
have two parameters (t, x), which specify events on the chosen RF, K: 

𝑥 = Position of the moving object relative to K, (when the passing clock reads τ); 

𝑡 = Clock reading of the clock permanently located at position 𝑥 on K, when the moving clock reads 
τ; (this t is usually referred to as ‘calendar time’). 

 
1 A version of this paper appears in J Mod App Phy. Vol 6 No 1 March 

2023.  https://www.pulsus.com/journal-modern-applied-physics/inpress.html 
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Further, we have 

𝑣 = 𝑥/ 𝑡, i.e. the velocity of the object relative to the RF, K. 

c = speed of light, 

Then - according to the so-called time dilation in special relativity, we have (e.g. Mermin (2005)) the 
fundamental relation 

                                               𝜏 = ඥ𝑡ଶ − (𝑥/𝑐)ଶ = 𝑡ඥ1 − (𝑣/𝑐)ଶ                                           (1) 

2.2 Time Vector  

Now, we proceed to introduce the time vector of an event (t, x), cf. Hokstad (2018): 

                                                           𝑡 = ቀ ఛ
௫/௖

ቁ = ቀ
௩/௖

ඥଵି(௪/௖)మ
ቁ 𝑡                                                         (2) 

Note that the absolute value of this vector equals  

                                                           │𝑡│ = 𝑡 = ඥ𝜏ଶ + (𝑥/𝑐)ଶ                                                        (3) 

Thus, the time vector comprises the information on all the fundamental parameters of an event. Note 
that the three parameters τ, 𝑡 and 𝑥/𝑐 all represent time. In particular, 𝑥/𝑐 equals the time required for 
light to traverse the distance x, (i.e. from the origin to the location of the event). According to eq. (3) it 
could seem rather sensible to denote t for the ‘total time’; as it is split into two components of time. 

2.3 Event Graph 

We will illustrate the discussion with an event graph. This will provide a graphical representation of the 
change in the time vector from a certain initiating event; cf. Hokstad (2023). 

 

Figure 2.1. Following the three relevant clocks of the Twin paradox; (travel to the star). The 
perspective of the earth.  

Thus, a graph illustrates a chain of events, say, a clock moving at a constant velocity relative to a specific 
RF, K. Fig. 2.1 illustrates the ‘movements’ in spacetime for three relevant clocks in the well-known 
Twin paradox. The graphs are given relative to the earth’s RF, K; considering just the period from the 
departure from the earth until the TT’s arrival at the star. In Fig. 2.1 the ‘distance’ to the star equals OC; 
the event vector OB represents the travel of the TT. The vector OA is the corresponding change in the 
time vector of the earthbound twin, and CD represents the (imagined) clock permanently located at the 
star. For the last two clocks, there are (of course) no change in x/c. Further, the three vectors OA, OB 
and CD have the same length; i.e. the time required for the TT to reach the star, (according to the RF, 
K).  

3 Choosing the right RF of the event. 

Simultaneity within a single inertial reference frame (RF), K is verified by synchronized clocks; e.g. see 
standard textbooks like Giulini (2005) and Mermin (2005). For events having the same clock reading, t 
on this RF we have simultaneity in the perspective of K.  
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Clocks on different RFs will not agree on simultaneity, and this has led to the concept of relativity of 
simultaneity (and conventionality of simultaneity). However, even if there is an infinite number of RFs 
to describe the chain of events, there is (typically) one that stands out as the most appropriate one. Our 
focus is that this RF gives the ‘correct’ result both for durations and simultaneity of events. 

We now illustrate this statement on time duration and simultaneity in the theory of special relativity by 
looking at four standard examples. 

3.1 Example 1: The twin paradox 

The travelling twin (TT) example is discussed e.g. by Debs and Redhead (1996) and Schuler and Robert 
(2014).  We apply a standard numerical example, (e.g. Mermin (2005)): The TT leaves the earth in a 

rocket of velocity, v = 0.6c (with respect to the earth). This gives ඥ1 − (𝑣/𝑐)ଶ = 0.8. He travels to a 
‘star’ at a distance of 3 light years from the earth. Thus, 𝑥/𝑐 = 3. Further, the earth’s RF has a clock 
located at the star, and by the arrival of the TT, this clock will read  

𝑡 = 𝑥/𝑣 = 3c/0.6c = 5 years. 

At this instant the TT’s clock will – see eq. (1) - read  

𝜏 = 𝑡ඥ1 − (𝑣/𝑐)ଶ  =  5 ∙ 0.8 = 4 years. 

In summary, the arrival of the rocket to the star represents the following event (in the earth’s RF):  

𝜏 = 4 years,     𝑥/𝑐 = 3 years, 𝑡 = 5 years, 

corresponding to the time vector 

𝑡 = ൬
𝜏

𝑥/𝑐
൰ = ൬

4

3
൰ ,   with │𝑡│ = 𝑡 = 5  

 

Figure 3.1. Event graphs of the twins in the perspective of the earth-based RF, K. The blue graphs 
describe the TT’s journey. The red line, OE follows the earthbound twin, having 𝑥/c ≡ 0. 

As discussed above, Fig. 2.1 illustrates the travel to the star. In Fig. 3.1 we now illustrate the total travel, 
using the above numerical values. This includes an abrupt change in the velocity of the TT; requiring a 
new initiating point. Actually, we should rather include a second space ship moving towards the earth 
with velocity -v.2 The returning spaceship starts out from the initial position, D, (i.e., at local time, t = 5 
years). It will, however, calibrates its inner clock with that of the TT, i.e. 𝜏 = 4 years. The returning TT 
(or at least the new calibrated clock) is illustrated by the blue line DF. Thus, the TT’s travel is actually 
given as two distinct travels; OB + DF. The total length of these two travels equals the change in the 
clock rate of the earthbound twin, i.e. 10 years. Here the red line OE represents the total event graph for 
the earthbound twin. 

 
2 This presentation corresponds to the ‘three brothers‘ approach’, suggested by Lords Halsbury,  being referred in 
Debs and Redhead (1996).  
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It remains to argue why this RF (of the earth) must be the correct one here. Actually, both phenomena 
(series of events for the two twins) take place relative to this RF. In particular, when the TT returns to 
the earth the clock of the TT will read 8 years and that of the earthbound twin will read 10 years, as 
predicted by the perspective given in Fig. 3.1. Observers moving relative to the phenomenon will obtain 
different results! It is essential that both the starting/ending point and turning point of the event chains 
are fixed relative to this RF. - Also see discussion in Section 3.2. 

When the RF is specified, the correct results concerning time durations and simultaneity follow. In 
particular, we could ask which event on the earth is simultaneous with the arrival of the TT at the star. 
Now the answer is that this arrival is simultaneous with the earthbound twin’s clock reading t = 5 years 
(identical to the clock reading at the star). The symmetry of the travel to and from the star demonstrated 
in Fig. 3.1 supports this.  

3.2 Example 2: two spacecrafts 

Now consider two spacecrafts in outer space. They start out simultaneously in opposite directions from 
the same position. Our intention is that the experiment shall be completely symmetric with respect to 
the two spacecrafts. So as our RF we now introduce KS with its origin at their common starting point; 
and the spacecrafts move relative to this RF at velocities w and -w, respectively. Further, we choose w 
= c/3, which means – using the standard formula for adding velocities in special relativity – that the 
relative velocity between the two spacecrafts is given by  

𝑣/𝑐 =
ଶ∙(ଵ/ଷ)

ଵା(ଵ/ଷ)మ = 0.6. 

This is in fact the same velocity as that of the TT relative to the earthbound twin, (see Section 3.1), 
giving an obvious link to that example. To further link these two cases, we let KS move relative to K (of 
Section 3.1) at speed w. Thus, one spacecraft is stationary with respect to K, and the other has speed v 
relative to K, (in complete analogy with the two twins)!  

When 𝜏 = 4 years we have (since 𝜏 is independent of the RF), that the spacecraft moving to the right 
has travelled the distance to the star (relative to K). As its speed relative to KS equals w=c/3, simple 

calculations give that this corresponds to the event tS = 3√2, xS /c = √2 in KS. 

 

Figure 3.2 Event graphs for the two rockets; in the perspective of the symmetric RF, KS.  

Fig. 3.2 now illustrates the event graphs relative to KS. The line OB represents the spacecraft moving 
the distance from the origin to the star (relative to K), and OC the corresponding travel of the other 
spacecraft. At this point the two spacecrafts will start on their travel to reunite. In order to maintain a 
complete symmetry, they both reverse their velocity, and doing so, we define new initiating events, 

corresponding to the local clock readings, tS = 3√2. Thus, the line DF represents the travel of the first 
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spacecraft back to the origin of KS, and similarly for the other one (see the blue lines). The red line OE 
represents events describing the origin of KS, (from departure of the two spacecrafts, to their return). 

Trying now to ignore the various technicalities, Fig. 3.2 can in principle be seen as the event graph of 
two phenomena: of course the two spacecrafts, but also the TTs. But as these graphs obviously fail to 
give a proper illustration of the TT case, (definitely giving wrong results for the clock reading when the 
twins reunite), it very well describes the symmetry of the spacecraft example. In particular, it gives the 
same ‘age’ as they reunite. An essential difference in the two cases is the difference in the ‘stopping 
rule’ (i.e. the decision of when/how to change the object’s movements, in order for them to get reunited). 

This symmetry also fits the discussion of simultaneity at the turning of the spacecrafts. Here we have 

simultaneity when the clocks of KS read tS = 3√2, and the internal clocks of the spacecrafts read 𝜏 = 4 
years. In summary, by choosing the correct RF for the actual phenomenon under investigation, we 
identify one correct answer. 

3.3 Example 3: The case of the µ-mesons 

Next we discuss the example of the µ-mesons. As stated for instance in Mermin (2005): The µ-mesons 
are produced by cosmic rays in the upper atmosphere. When 'at rest' they have a lifetime of about 2 
microseconds, so if their internal clocks ran at a rate independent of their speed, even if they traveled at 
the speed of light about half of them would be gone after they had traveled 2.000 feet. Yet about half of 
the µ-mesons produced in the upper atmosphere (about 100.000 feet up) manage to make it all the way 
down to the ground. This is because they travel at a speed so close to the speed of light that the slowing 
down factor equals 1/50, and they can survive for 50 times as long as they can when being stationary. 

This phenomenon is easily described by the Lorentz transformation. We have two RFs; that of the earth, 
K, and that of the µ-mesons, named Kv (with parameters (tv, xv)). We will refer to the creation of the µ-
mesons in the upper atmosphere as the initiating event A. At this event, x = xv = 0 and t = tv = 0. Further, 
we refer to the arrival at the ground as event B. At this event xv = 0 and tv = 2∙10-6 sec. Thus, in Kv we 
then have τ = tv = 2∙10-6 sec, and we get the time vector 

𝑡௩ሬሬሬ⃗ = ቀ ఛ
௫ೡ/௖

ቁ = ቀଶ∙ଵ଴షల

଴
ቁ  𝑠𝑒𝑐; (with │𝑡௩ሬሬሬ⃗ │ = 𝑡௩ = 𝜏 = 2 10ି଺ sec)  

Further, this event B has the same 𝜏- value in the RF K of the earth, and the µ-mesons have then gone 
the distance x = 105 feet in K, giving x/c ≈ 10-4 sec. Thus, the time vector of event B, as specified in K 
equals 

𝑡 = ቀ ఛ
௫/௖

ቁ = ቀଶ∙ଵ଴షల

ଵ଴షర ቁ 𝑠𝑒𝑐; (with │𝑡│ =  𝑡 ≈ 10ିସ sec)  

So, these two time vectors verify the given observations, stating that t ≈ tv ∙ 50 ≈ 10-4 sec.  

In summary, the given observations are in full agreement with the theory. It is an experimental fact that 
the (imagined) clock following the µ-mesons goes slower by a factor 50, when it is compared with two 
clocks, being stationary relative to the earth. But, how shall we interpret /refer to this? It is somewhat 
surprising that e.g. Mermin (2005) formulates the findings as: "The atomic particles can go much further 
because their internal clocks that govern when they decay are running much more slowly in the frame 
in which they rush along at speed close to c. This is a real effect, and it plays a crucial role in the 
operation of such particles accelerators”. 

However, rather than referring to this as a real effect, I suggest it should be referred to as an 
observational effect; caused by the observer (at K) moving relative to the occurring phenomenon taking 
place on Kv.  

Similarly, regarding use of the concept internal clocks (of the atomic particles): Actually, if the observer 
(the observing clock) is at rest with respect to the phenomenon, then he will find that the average 
‘lifetime’ of the µ-mesons equals 2 microseconds ‘as usual’. So, this value truly expresses the ‘internal 
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clock’ of the µ-mesons; while passing observers - at various speeds, v - will make ‘all kind’ of 
observations, (depending on v). And the 'inner clock' is not affected by passing observers.  So, we see 
𝜏 = 2 ∙ 10ି଺ 𝑠𝑒𝑐 to represents the ‘true’ lifetime of the µ-mesons also in the present observations. I note 
that e.g. Serret (2018) supports this view.  

So, this case exemplifies the argument that the correct RF to describe the phenomenon is the one which 
‘follows’ the event. It is the phenomenon itself – and not the observer – that should have priority. 

3.4 Example 4: The Michelson - Morley experiment  

Finally, we take look at some standard results, which we choose to relate to the well-known Michelson-
Morley experiment, (Michelson and Morley, 1887). They designed an interferometer to compare the 
speed of light in the direction of the earth’s motion and the speed of light at right angles to earth’s 
motion. No difference in speed was found; (thereby, discrediting the so-called ether theory; and one 
could conclude that the speed of light is a universal constant).   

In particular the beams of light in both directions (of an x-y plane) returned to the same location, at the 
same instant. Now making observations in an RF, Kv moving at speed v in the x- direction, relative to 
the RF of the experiment (the earth), we would observe the trajectories of the beams as indicated in Fig. 
3.3; (here with a negative v). The red trajectory, OAC equals the beam along the x-axis, and the blue 
one, OBC that along the y-axis. 

 

 

 

 

 

 

 

 

Figure 3.3 Two light rays in the x-y plane, measured in an RF moving along x-axis (cf. Michelson-
Morley experiment)   

Thus, both beams start in O, and they return simultaneously to the point C (on the moving RF, Kv). At 
this instant of return the clock on Kv reads 2tv. Thus, the distances OB and BC both equal ctv. Further, 
the distance OC equals 2vtv. It directly follows that the time t* when the ‘red beam’ arrives at A equals 
t* = (1+v/c)tv.  

Of course, the ‘blue beam’ arrives at B at the time, tv, and so the arrival to A and B are simultaneous if 
and only if v=0. But in case we actually observe that the two beams return simultaneously at the same 
point they left (i.e. C = O in Fig. 3.3), then we should obviously apply the RF that conforms with this 
observation, that is having v = 0, (giving that the arrivals of the beams to A and B are simultaneous).  

4 Summary and Conclusions 

In the above discussions (of standard results) we pinpoint that it does exist one RF, being best suited to 
describe a phenomenon; and thus, providing ‘correct’ time durations and of simultaneity of events ‘at a 
distance’. We now outline the following rules for specifying the framework of the analysis.  

1. We choose an RF that follows the phenomenon as closely as possible; in particular we apply the 
RF where the chain of events occurs; not that of an observer moving relative to the process. 
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2. The RF shall secure that any inherent (or chosen) symmetry of the situation is accounted for; (but 
not any ‘unwanted’ symmetry).  

3. When an initiating event (or a set of events) is defined, the ‘internal’ clocks of these events are 
calibrated with the local clock on the RF; (focusing on time differences, only).   

4. When there is a change in the velocity of one or more moving object/event involved, we specify 
a new initiating event, restarting from the current time, t of the ‘local clock’. There is, however, 
no update on the internal clock (𝜏) of the chain of events.  

5. We stick to the chosen RF throughout the experiment; i.e. we do not change RF during the course 
of events. 

When we discuss simultaneity, the chains of events involved, typically start out from one common 
initiating event. The choice of RF will depend on process conditions, and by defining a rule for bringing 
the moving objects/clocks together again, we may identify the correct RF, (which rightfully predicts this 
event of reunion). Thereby we may provide a true simultaneity also for events ‘at a distance’. 
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