LAGRANGIAN APPROACH TO DERIVING THE GRAVITY
EQUATIONS FOR A 3D-BRANE UNIVERSE.

RUSLAN SHARIPOV

ABSTRACT. Recently some arguments were suggested saying that our universe should
be considered as a three-dimensional brane equipped with a Riemannian metric de-
pending on the cosmological time. These arguments are based on the concept of
temporal coexistence applied to events in the four-dimensional spacetime. Relying
on the three-dimensional brane presentation of our universe, the four-dimensional
Einstein’s gravity equations were rewritten as three-dimensional time-evolution equa-
tions for the three-dimensional metric presenting the gravitational field in the frame-
work of this three-dimensional brane model. In the present paper some of these
time-evolution equations for the three-dimensional metric are rederived using the
Lagrangian approach.

1. INTRODUCTION.

Subdivision of the four-dimensional spacetime into the three-dimensional space
and one-dimensional time is not new in cosmology. One can see it in the Friedmann-
Robertson-Walker metric! (see Section 1.1.3 in [1]):

dr?

2 _ 0y2 042

+r2do* + 12 sin29d¢2>. (1.1)

The metric (1.1) belongs to the class of block-diagonal metrics with the direct and
inverse metric tensors of the form

10 0 0 1 0 0 0

o 0 —g11 —g12 —913 i 0 —g'! —g'2 —g3
v V= L (12
! 0 —ga1 —g22 —g23 0 —g2t —g22 —¢?3 (1.2)

0 —g31 —g32 —g33 0 _g31 _932 _933

Local presentation of the form (1.2) in some local coordinates is applicable to any
pseudo-Euclidean metric of general relativity and cosmology (see § 97 of Chapter XI
in [2]). The 3D-brane universe theory from [3] prescribes the form (1.2) to the four-
dimensional metric G globally (see also [4] and [5]). The quantities g;; and g%/ in [3]
are understood as the components of a time-dependent three-dimensional Euclidean
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I Here 20 = ct, where c is the speed of light and ¢ is the cosmological time (see [6]). The other
three coordinates are ! =7, 22 = 6, 23 = ¢. There are three options for the constant K: K =1,
K =0, and K = —1 corresponding to the closed spherical universe, to the open flat universe, and
to the open hyperbolic universe respectively.
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metric g. The time derivative of the metric g with respect to the cosmological time
t (see [6]) determines a separate tensor field b according to the formula

dig
25 —by, (1.3)

Both g;; and b;; obey the following set of differential equations:

] 3
bij—zg =) (b Y + by B g”ZZbkbq
s 5 e (1.4)
ij R 8
_%ZZ ]’zg Z k bij + Rij — 291J+Aglj—%nj,
k=1gq=1 k=
ka o — ZVJ' b = —8:47 To;, (1.5)
k=1 k=1
1 3 3
“2 2 bty ZZb’“b”——A— (1.6)
k=1g¢=1 k 1g=1

The equations (1.4), (1.5), (1.6) were derived in [3] from Einstein’s gravity equations

8
Tij_gGij_AGij 77'71_,”, (17)

where 7 is Newton’s gravitational constant (see [7]):
vy 6.674-107% cm?® - gt - 572

and c is the speed of light. As a result of redefining other standard units in 2019,
the speed of light ¢ now is defined as an exact physical constant (see [8]):

¢ =2.99792458 - 10'° em - 571,

The constant A in (1.7) is the cosmological constant. It is associated with the dark
energy (see [9]). Its value is quite uncertain, but it is very close to zero (see [10]):

A~ 107° em™2.

The term T;; in the right hand side of (1.7) stands for the matter including the
dark matter (see [11]) and the regular matter. It represents the components of a
symmetric tensor T which is called the energy-momentum tensor (see [12]). The
components of T are presented in the right hand sides of the equations (1.4), (1.5),
and (1.6) as well.

The term 7;; in (1.7) corresponds to the components of the four-dimensional
Ricci tensor r and r is the four-dimensional scalar curvature (see § 8 in Chapter IV
of [13]). Similarly, R;; in (1.4) are the components of the three-dimensional Ricci
tensor R, while R in (1.4) and in (1.6) is the three-dimensional scalar curvature.

The main goal of the present paper is to derive the equations (1.4) without using
(1.7) within the three-dimensional Lagrangian approach.
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2. THREE-DIMENSIONAL ACTION INTEGRALS.

The four-dimensional action integral of the gravitational field is well-known (see
§2 in Chapter V of [14]). It is written as

3

Ser = /(r +2A)V—det G d*z. (2.1)

B 167y
The total action integral should include the matter (regular and dark matter):
S = Sgr + Smat- (2.2)

We write the action integral Syt in (2.2) as follows:
Smat = /Emat \% —det G d4{E. (23)

In order to rewrite the integrals (2.1) and (2.3) in the three-dimensional forma-
lism we apply the formulas (1.2). As a result we get

3
Sgr = —— //(r +2A) \/det g d*x da”, (2.4)

167y
Smat = // Lomat Vdet g >z dz®. (2.5)

As it was shown in [3], the four-dimensional scalar curvature r in (2.4) is expressed
in a three-dimensional form as follows:

3 bk 3 3 3 3
r:—QZa—:ﬁ—R—ZZb’;bZ—ZZbﬁbg- (2.6)
k=1

k=1q=1 k=1 qg=1

Here R is the three-dimensional scalar curvature associated with the metric g. The
formulas (2.4) and (2.5) complemented with (2.6) are sufficient in order to proceed
with deriving the equations (1.4).

3. CHOOSING DYNAMIC VARIABLES.

Action integrals are typically used for deriving differential equations through the
stationary-action principle (see [15]). The main issue in applying this principle is
the proper choice of dynamic variables. In the case of the four-dimensional action
integrals (2.1) and (2.3) the dynamic variables are the components of the metric G.
Not those in (1.2), but the whole set of components of the symmetric 4 x 4 matrix
in arbitrary coordinates where it is not blockwise diagonal.

In the case of the three-dimensional action integrals (2.4) and (2.5) we restrict
ourselves to the components of the 3 x 3 symmetric matrix

11 gl2 913
gzg — g21 g22 g23 . (31)
31 932 933
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The matrix (3.1) is obtained as a part of the matrix G from (1.2) in some special

coordinates 2%, !, 22, x3. Their choice is described in [3]. These coordinates are

not considered as dynamic variables within our three-dimensional approach.
4. VARYING THE METRIC.

According to the he stationary-action principle we need to organize variations
of the dynamic variables and then study the changes of the action integrals under
these variations. In the case of the metric (3.1) we write

g” = gij($0,$1,$2,x3) =+ Ehij(‘roaxlax2ax3)a (41)
where € — 0 is a small parameter. From (4.1) we derive
331 go b
detg =+/detg | 1— =+ 4.2
Vs (1 2 )« -

Here in (4.2) and in what follows below through dots we denote higher order terms
with respect to the small parameter €. The formula (4.2) is similar to the formula
(2.15) in §2 of Chapter V in [14].

Substituting (2.6) into the action integral (2.4) we get four integrals

Sgr =51+ S + S5+ 54, (43)

where

167y

3
Sy = — //(R —2A)\/detg d*z dz°, (4.5)
167y
03 3 3
Sy = // >N vk b \/detg dPx da, (4.6)

167y P

3 3 k
S = ¢ //22 % Vdet g d*x da®, (4.4)
k=1

3 3 3
Sy = < //Zsz bi\/det g d*z da®. (4.7)

167y P

Applying the metric variation (4.1) to the integral (4.5), we get

A ec? S R
52—S2+16W7//ZZ(RU—§9U+AQU>'

i=1 j=1
- WYy det g d®xda® + ... .

The arguments and calculations supporting the formula (4.8) are the same as in
deriving the equation (1.7) in §2 of Chapter V in [14].

Before proceeding to the integrals (4.4), (4.6), and (4.7) let’s recall that the
matrix with the components g;; is inverse to the matrix with the components §*/

(4.8)
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n (4.1). Therefore from the formula (4.1) we derive a formula analogous to the
formula (2.7) in §2 of Chapter V in [14]:

3
gij:gij—Ehij—i—...:gij—EZzgiphpngj—F.... (49)
p=1qg=1

The formula (1.3) means

Applying (4.10) to (4.9), we derive
- ° S 1 OhPe
by = biy == 20 (b h™ Gy + 9in W0 bu + Gip 5 o 9ag) +oo o (41D)
p=1qg=1

In (4.4) and in (4.7) we see the trace of the tensor field b. Therefore we need to
calculate the variation of this trace:

3 3 3 3
PILEDIEDIPIIT A (4.12)
k=1 g=1 =1 5=1

Applying (4.1) and (4.11) to (4.12), we derive
SR 1 Oh'i
k=1 k=1 1=1 j=1

Differentiating (4.12) in 2%, we obtain the following formula:

3 a7 3 3 3 iy -

obk bij . Oh" 1 9?h%

Z@ Z EZZ( h3+2b”80+gij§w)+.... (4.14)
k=1 Pl i=1j=1

The variation for the square of the trace (4.12) in (4.7) is also easily calculated:

3 3 3
DD bhby=2 > bibi-

k=1

S Oh'i
—e 3OS (20 by T+ b gy - )+

k=11i=1 j=1

NE

e
Il
-
~
Il
-
e
Il
-

(4.15)

In (4.6) we see the trace of the square of the tensor field b. Therefore we need
to calculate the variation of this trace. Let’s start with

3
= Z big . (4.16)
1=1
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From (4.1), (4.11), and (4.16) we derive

e 1 Ohks
_Ezszh 954_522 8095(1 . (417)

p:l s=

—

Then from (4.17) we derive the required variation of the trace for the square of b:

3 3 3
D BBi=D_ > bybi-
q=1 k=1g=1

3

(4.18)

M= M-

3 3 8h”
—EZZ 208 hil by — ¢ Z s b+
k=11i=1 j=1

1=1

<.
Il
—

Each of the four integrals (4.4), (4.5), (4.6), and (4.7) comprises the term /det g .
Its variation is given by the formula (4.2). Now we apply (4.18) to (4.6) taking into
account (4.2). As a result we derive the following expression:

N hid
S3 = 8 b” Vdet g d3z dx® —
167r’y pr
3 3
16 ¥R b \/det g dPxda® — (4.19)
™ k=11i=1 j=1
3 3 3 1
q ] 3
167T’Y q b 9ij I Vdet g d®xdx® 4.
1g=14i=1 J:l

As it is usual in calculus of variations, the function h% introduced in (4.1) is assumed
to be a function with compact support (see [16]). Therefore we can apply integration
by parts in order to transform the first integral in (4.19). This yields

b” \/det g)

S =53 A3z da® —

16

11]1

¥R b \/det g d*z da® — (4.20)

167{.7 k=11i=1 j=1

3 3 3
bq gij h'7 \/det g d*z dz® + .

167T’}/ 1g=14i=1 J:l

The further transformation of (4.20) is based on the formula

8(\/d€tg) - 1 5 5 kq 8gkq
ozY _5229 ozY \/F (421)

k=1q=1

The formula (4.21) itself is derived from Jacobi’s formula for differentiating deter-
minants (see [17]). The same Jacobi’s formula is used in deriving (4.2). As for the
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formula (4.2), applying (4.21) to it, we get
8bw L kg i
z b;
16 T3 ;;g 90

—Zzbf bk — ZZ bE b gw) hii \/det g d*z dz® + .
k=1

k=1q9=1

Sy

(4.22)

The last step in transforming the formula (4.22) is applying the first formula (4.10)
to it. Then the partial derivatives of g, are expressed through by, and ultimately
we get the trace of the tensor field b in the resulting formula:

‘%w k
Sa 16 * Z bibij -
; 1 (4.23)
= 2bF by —ZZ §b’;bZ9m) R \/detg d*xdx® + ... .
k=1 k=1q=1

Having done with S3, we can proceed to the fourth integral (4.7) in (4.3). In
this case we apply the formulas (4.15) and (4.2). As a result we get

R A3 3 3
Sy =81 — 16m// DO 20 bij b /det g dPz da® —

k=11i=1 j=1

3

o3 3 3 3
167r // ZZbk Gij = 3 5 \/detg d®x da® — (4.24)
v k=11i=1 j=1
3 3
1
Kbl g b9 \/d d®z da®
167“7 B q 9ij etg drdxr” +.

=1qg=1 =1 j=1

In order to transform the second integral in (4.24) we use integration by parts:

Sy = 16 % bij h' \/det g d®x dx® +
k=11i=1 j=1
(bl gi; /d
ng etg)d3 dr 0__ (425)
167r’y
k=11i=1 j=1
3. 3.3
k 7, 3
be gi; h' \/det g d®x dax®
167“7 B q 9ij etg drdxr” +.
k=1q=1i=1 j=1
Applying the first formula (4.10) to (4.25), we can reduce (4.25) to
A ecd °L S Oy \/detg )
S, =S hid g, DO VERI ) g3 g0
4 44_16#7//2_ZZ Jis 0x0
k=1i=1 j=1
(4.26)

3 3 3

ZZZ%bkbgguhumd:sxd‘r 4.

1g=11:=1j5=1

167r’y
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The next step is to differentiate the product b¥ v/det g in (4.26) and to apply (4.21).

As a result we obtain the following formula:

3

& ec’ ap~ iy oby 3 0
54_s4+mm//kz_lzzwgij@,/—detgdxdm +

1j5=1

3 3

3 3 3
_1236557//2222%(7 bqgwh”\/cvdgxd:c + .
k=

And finally, if we apply the first formula (4.10) to (4.27), then we get

ecd
34 =5+ //
167y :

3

3

5 bk

g h" gi; 8—5018 Vdet g d®x da® +
=1 1i=
3

k=1qg=11i=1 j=1

—

j=1

N~

167r’y

3
1 ,
E 3 by b gij g1 % Vdet g d®xda® —
x

by b2 gi; W9 \/det g dPxda® + . ...

(4.27)

(4.28)

The formula (4.14) is prepared for applying to the first integral (4.4) in (4.3). It
is derived by differentiating (4.13). However, it turns out that applying the formula

(4.13) itself to (4.4) leads to easier calculations:

51 = b;i K
S1=5 167w or 0( g+
1 Oh¥ 5 0
+9ij 5 W) Vdet g &’z dz” —
5@3 3 8bk h” d d3 d
167rfy Zzz(gogw Vdetg d*rda®+ ... .
k=11:=1 j3=1
Integrating by parts in the first term of (4.29), we derive
ij
S 16 uh/ +
1=1 j=1
1 Oh¥ 8(\/detg ) 3 0
(%k ij 3 0
gij 7 \/detg dxwda®+ ...
167?}/ k=11=1 j= 1

Now we apply (4.21) to (4.30). As a result we get

3 3 3
S =

J:l :1 g=1

(4.29)

(4.30)
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1 Oh¥ 10)
+ 9ij 5 W) ka gkq Vdet g d®x dx® —

bk
8 h”\/det dPrdz® + .

167{.7 k=11i=1 j=1

Then we apply the first formula (4.10) in order to transform the above formula:

i=1 j=1k=1
503 3 3 3
1=1 j=1k=1
503 3 3 3
lﬁwy//zzz gthJ\/Cngxd:c +
k=11i=1 j=1

R 3 3 3 3 B
Sy =8+ — //ZZZQbijhsz\/detg APz dz® —

167y

3 3 3 3 ok
€¢ Zzzhij 9(gij b vdet g) Vdetg)d% dad — (4.32)
pt 0x0

167y o

3 3 3 3
_15627//2222 gth”\/Cngxd:c +.
k=1

=1i=1 j=1

Note that the second term in (4.32) is similar to the second term of (4.25). Therefore
further steps are similar to (4.26), (4.27), and (4.28):

o(bk \/d
g” etg)db’ d 0_
i= 1] 1k=1 (433)

bk
8 h”\/det dPrdz® + .

Sy =8 —

167r’y

167{.7 k=11i=1 j=1

Differentiating the product b¥+/detg in the first term of the formula (4.33) and
applying (4.21) along with the first formula (4.10), we obtain

A 3 3 3 3 ..
51=51 - 167r //Zzzzbﬁbggijwvdetgd?’xdfco—
v 1=1 j=1k=1qg=1 4.34
N (4.34)
167T’Y 223 G Yij h' \/det g d*x dx® + .
k=11i=1 j=1

Now we can gather the variations of all of the terms from (4.3) into one formula.
As aresult we get the variation of the action integral (2.4) of the gravitational field.
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For this variation from (4.34), (4.8), (4.23), and (4.28) we derive the formula

3. 3./ ob, 3 3
Sy = & —k g 208 b, —
g 167'("}/ e 1(8560 ;8 Gij — kZ:l i Yjk
3 3 3
—ZZ b b gij — ZZ S b g+ S b by + (4.35)
k=1q=1 k=1q=1 k=1

R L
+R;; — 59@'4-1\9@-) hi \/detg d®xdx® + ... .

Unlike the case of gravity, the action integral for the matter is not given explicitly
in this paper. It is given implicitly by the formula (2.5). Therefore its variation is
also written only in an implicit form:

Stat = Smat + € / / Z Z Mm“ hw Vdetg d*z da®. (4.36)

1=15=1

Despite being implicit, the formula (4.36) complemented with the explicit formula
(4.35) is sufficient for deriving the differential equations for the metric g through
the stationary-action principle (see [15]).

Theorem 4.1. The stationary-action principle applied to the action integral (2.2)
leads to the following differential equations:

k 3
P zg"ogza St S35 b
k=1

k=1q=1

3 3 3
R 167 Y 5£m t
k A o a
kg E - —‘r kg 1bk bij —|—R1‘j - _2 Gij + 9ij = 3 5 i .

(4.37)

Theorem 4.1 is immediate from the formulas (4.35) and (4.36). The equations
(4.37) can be written in terms of the time variable ¢, where 2° = ct:

by S e S -
e — 3 k=1g=1 (4.38)
y R 16 5£ma
WL beR—A— o

The equations (4.38) can be compared with (1.4). Comparing left hand sides of
(4.38) and (1.4), we find one term with 2% b;), in (4.38) which is different from
the corresponding term in (1.4). However, using symmetry of b;; and ¢ we can
transform this term as follows:

3 3 3 3
2217? bjk = Zz2bingk bjk = Z(bkj bf + b b;c) (439)
k=1

k=1q9=1 k=1
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Due to (4.39) the left hand sides of (4.38) and (1.4) do actually coincide. Comparing
the right hand sides of these formulas, we derive the following formula for the
components of the energy-momentum tensor:

5£mat
C———.

Ty = -2
J 59”

(4.40)

Note that the formula (4.40) applies only to spacial components of the energy-
momentum tensor, i.e. to those where 1 < 7,5 < 3. The components presented in
the right hand sides of the equations (1.5) and (1.6) are not covered by this formula.

5. CONCLUDING REMARKS.

Einstein’s gravity equations (1.7) are written in terms 4 x 4 matrices r;;, G;;, and
T;;, representing three tensor fields — the Ricci tensor r, the metric tensor G, and
the energy-momentum tensor T, and in terms of one scalar field r representing the
scalar curvature. Due to symmetry of the matrices 7,5, G;;, and T;; they constitute
a set of 10 differential equations. Within the paradigm of the 3D-brane universe
they are subdivided into three subsets (1.4), (1.5), and (1.6) comprising 6 equations,
3 equations and 1 equation respectively. Applying Lagrangian approach with action
integrals (2.4) and (2.5), in the present paper we have shown that 6 equations of
the first subset (1.4) can be derived within the framework of the 3D-brane universe
paradigm (see Theorem 4.1 and the equations (4.38)). The other 4 equations (1.5)
and (1.6) cannot be derived due to the lack of dynamic variables. Therefore they
should be omitted from the 3D-brane universe theory.

Reducing the number of equations from 10 to 6, one can expect a larger set of
solutions. The expected new solutions could correspond to new physical phenomena
which are absent in the standard four-dimensional formalism or to new features in
the phenomena which are already known.
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